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Abstract
Genome-wide association studies result in inflated false positive results when unrecognized
cryptic relatedness exists. A number of methods have been proposed for testing association
between markers and disease with a correction for known pedigree-based relationships. However,
in most case-control studies, relationships are generally unknown, yet the design is predicated on
the assumption of at least ancestral relatedness among cases. Here, we focus on adjusting cryptic
relatedness when the genealogy of the sample is unknown, particularly in the context of samples
from isolated populations where cryptic relatedness may be problematic. We estimate cryptic
relatedness using maximum-likelihood methods and use a corrected chi-square test with estimated
kinship coefficients for testing in the context of unknown cryptic relatedness. Estimated kinship
coefficients characterize precisely the relatedness between truly related people, but are biased for
unrelated pairs. The proposed test substantially reduces spurious positive results, producing a
uniform null distribution of p-values. Especially with missing pedigree information, estimated
kinship coefficients can still be used to correct non-independence among individuals. The
corrected test was applied to real data sets from genetic isolates and created a distribution of p-
value that was close to uniform. Thus the proposed test corrects the non-uniform distribution of p-
values obtained with the uncorrected test and illustrates the advantage of the approach on real data.
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INTRODUCTION
Genome-wide association studies have been proposed as an efficient and powerful method
of uncovering genetic variants that contribute to complex disease [Hirschhorn and Daly,
2005; The Wellcome Trust Case Control Consortium, 2007]. Especially when genes have
modest effects on disease risk and have common risk allele frequencies, association studies
are believed to be more powerful than linkage studies, which are widely used for detecting
genes of a major effect [Risch and Merikangas, 1996; Cardon and Bell, 2001; Carlson et al.,
2004]. However association testing can lead to spurious positive results when unrecognized
population structure exists [Hirschhorn and Daly, 2005; Cardon and Bell, 2001]. This has
motivated the development and use of robust association methods to correct for effects of
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population structure caused by stratification, including the Transmission Disequilibrium
Test (TDT) [Spielman et al., 1993; Ewans and Spielman, 1995], and generalizations
implemented in the Family Based Association Test (FBAT) [Laid et al., 2000], even though
such family-based designs diminish statistical efficiency. In population-based association
studies, several statistical methods have also been developed to detect population
stratification and to account for its effect on testing [Pritchard and Rosenberg, 1999; Devlin
and Roeder, 1999; Bacanu et al., 2000; Shmulewitz et al., 2004; Price et al., 2006; Zang et
al., 2007].

Another way to avoid effects of population stratification is to use population isolates. With a
small number of founders and long isolation, population isolates have long been exceptional
resources for genetic studies of simple genetic diseases. Researchers have also argued that
population isolates provide advantages for mapping complex traits [Wright et al., 1999;
Peltonen et al., 2000; Peltonen, 2000; Shifman and Darvasi, 2001; Escamilla, 2001; Venken
and Del-Favero, 2007]. In addition to reducing genetic heterogeneity, such isolates have
more homogeneous environmental backgrounds than are typical in larger heterogeneous
populations [Peltonen, 2000; Shifman and Darvasi, 2001]. With less population
stratification, Hardy-Weinberg Equilibrium (HWE) is more likely to hold in population
isolates. [Peltonen et al., 2000]. These factors increase the validity of testing for differences
in allele frequencies between cases and controls. However, a challenge to the use of
population isolates is that classical statistical methods for ideal population data, which
consist of independent individuals, may not be applicable: an important feature of
population isolates is that the relatedness of two random individuals may be non-negligible
[Bourgain and Genin, 2005]. Such cryptic relatedness may also be found in outbred
populations as a source of population structure, and cryptic relatedness among affected
individuals might be another serious source of spurious positive results [Devlin and Roeder,
1999; Bacanu et al., 2000] because cases share a genetic disorder [Bourgain and Genin,
2005; Voight and Pritchard, 2005].

There are a number of statistical methods that are designed to overcome this problem. When
the entire genealogy of the sample is known, one suggested approach is to use the Armitage
trend test with a correction factor that is computed conditional on the marker genotypes and
pedigree structure [Slager and Schaid, 2001]. With the same idea, the standard χ2 test for
comparing allele frequencies between cases and controls can be modified with a correction
factor to account for relatedness among individuals (corrected χ2 test) [Bourgain et al.,
2003]. This correction factor depends only on kinship and inbreeding coefficients derived
directly from the pedigree information. While a modified Armitage trend test is not
applicable to complicated pedigree structures, the corrected χ2 test can be used for any
population structure for which kinship coefficients among pairs of individuals and
inbreeding coefficients of every individual are known [Bourgain et al., 2003]. Furthermore,
the χ2 test can be easily performed for multiallelic data, including the presence of rare
alleles. To improve power, a quasi-likelihood score (QLS) test has also been proposed
[Bourgain et al., 2003]. The QLS test is derived from the quasi-likelihood framework and
also accounts for the correlations among individuals. However, the QLS test can lead to
negative values for estimated allele frequencies, particularly when alleles are rare, thus
making it less applicable to general situations than the corrected χ2 test. Finally, all such
proposed corrections for relatedness to date assume knowledge of the relationships in the
sample.

Since relationships will be unknown in most case-control studies, it is useful to consider
approaches that do not depend on the existence of known relationships. Genetic relatedness
among individuals can be estimated if genetic markers are available. Under the assumption
that the loci are unlinked, several methods for estimating relatedness have been developed
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including traditional maximum-likelihood estimation [Thompson, 1975] and other
estimators based on method-of moments approaches [Ritland, 1996; Lynch and Ritland,
1999; Wang, 2002]. Compared to other estimators, maximum-likelihood estimators of
relatedness exhibit the desirable features of having consistently lower standard errors and
being adaptable to many sampling situations [Milligan, 2003; Thompson, 1975].

In this paper, our goals are (1) to characterize the effect of cryptic relatedness on testing in
case-control samples, particularly from an isolated population, (2) to estimate cryptic
relatedness with such samples, and (3) to develop an approach for testing for association
with a correction for cryptic relatedness. To test for association between markers and disease
and to simultaneously account for unknown relatedness among individuals, we propose to
modify the corrected χ2 test by using estimated, rather than assigned, coefficients of
relatedness. We focus on the corrected χ2 test because of its desirable statistical behavior,
ease of computation, and applicability to a variety of marker and data types. We perform
simulations to evaluate the statistical properties of the corrected χ2 test for use in the context
of case-control data, and we illustrate the advantage of the proposed method by application
to two samples from genetic isolates.

METHODS
RELATIONHIP ESTIMATION

The simplest summary of the degree of a pairwise relationship is the kinship coefficient, ϕ,
which is the probability that a pair of homologous alleles chosen from two individuals are
identical by descent (IBD). In this section, we briefly describe how to estimate ϕ by
estimating the set of three k-coefficients in a non-inbred population [Crow and Kimura,
1970].

The three k-coefficients, k0, k1 and k2, are defined as the probabilities that a pair of
individuals share neither, one or both, respectively, of their two alleles at a locus IBD.

(1)

where ki ≥ 0, k0 + k1 + k2 = 1 and X is the number of alleles shared IBD. The kinship
coefficient can be computed as ϕ = 0.5k2 + 0.25k1.

Assume that individuals are from a non-inbred population in Hardy-Weinberg Equilibrium
(HWE) and that each marker locus is segregating independently. For given IBD modes, the
conditional probabilities of the seven possible identity by state (IBS) modes Si are shown in
Table I. For a single locus of observed IBS Si, the likelihood of the k-coefficients is
[Thompson, 1975] :

(2)

Assuming independent unlinked loci, the likelihood for the overall genome is then simply
the product of the single locus likelihoods. We used the EM algorithm [Dempster et al.,
1977] to find maximum-likelihood estimators for the k-coefficients [McPeek and Sun, 2000]
and then obtained an estimate of the kinship coefficient ϕ̂ = 0.5k̂2 + 0.25k̂1. The EM
algorithm provides more efficient computation than the simplex method, a hill-climbing
optimization technique, which has been used previously [Milligan, 2003].
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Relationship estimation can be extended to inbred populations by estimating probabilities of
Jacquard’s nine IBD modes instead of three k-coefficients [Jacquard, 1972; Anderson and
Weir, 2007; Weir et al., 2006]. The inbreeding coefficient, f, which is the probability that a
person carries two alleles IBD at a locus, can also be estimated by maximizing the
likelihood using the EM algorithm [Dempster et al., 1977; Thompson, 2000]. In human
genetic isolated populations, it is rare to have inbreeding within an individual even though
there are higher kinships among individuals [Agarwala et al., 2001].

THE CORRECTION OF TYPE 1 ERROR FOR ALLELIC ASSOCIATION TESTING
A corrected χ2 test has previously been proposed to correct for inflated false positive rates
for association tests in the context of known relationships [Bourgain et al., 2003]. We begin
by outlining this test for the diallelic case. Suppose we have Nc sampled individuals in a
case group and Nt sampled individuals in a control group. Let Y = (Y1, …Yi, …YN)T where
Yi = 0.5 × (the number of alleles of type 1 in individual i) and N = Nc + Nt. Let p be the
frequency of allele 1, 0 < p < 1. Under the null hypothesis of no association between a given

marker and disease and HWE for the given marker, E0(Y) = p1N and ,
where

(3)

where fi is the inbreeding coefficient of individual i, and ϕij is the kinship coefficient
between two individuals i and j, 1 ≤ i, j ≤ N. Here fi = 0 if we assume a non-inbred
population.

To test for an association between the marker alleles and the disease, we consider the model:
E(Y) = μ = (μ1, ⋯, μN)T with μi = p + r if i is a case and μi = p if i is a control. The null
hypothesis is H0 : r = 0. The proposed corrected χ2 test is one that extends the χ2 test by
taking into account the correlation structure among individuals. The test statistic of the
corrected χ2 test is [Bourgain et al., 2003] :

(4)

where , and 1c is a vector of length N with
ith entry 1 if individual i is a case and 0 if i is a control. The statistic  follows a χ2

distribution with 1 degree of freedom asymptotically under the null hypothesis [Thornton
and McPeek, 2007]. When all kinship and inbreeding coefficients are zero, the test statistic
in (5) is the χ2 test statistic,
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(5)

The corrected χ2 test can be easily extended to the multiallelic case and under the null
distribution, the test statistic asymptotically follows a χ2 distribution with (a − 1) degrees of
freedom, where a is the number of alleles, as described previously [Bourgain et al., 2003].

The corrected χ2 test requires known kinship coefficients and inbreeding coefficients. We
propose replacing these coefficients with their MLEs. We call this statistic a corrected χ2 test
with estimated coefficients,  and this is same as  except that we use Φ̂ rather than
the assigned Φ from a known pedigree structure. With estimates of kinship and inbreeding
coefficients, unknown background relatedness or cryptic relatedness caused by common
population history can be accommodated. An estimate of kinship would also be useful in the
case that a sample includes a mixture of known and unknown relationships or any missing/
misspecified pedigree relationships.

EVALUATION OF THE PROPOSED METHOD
To investigate the performance of kinship estimation, we estimated kinship coefficients
based on both simulated data and CEPH family data. The simulated data was used to
evaluate performance for use with multiallelic marker and with varying available
relationship information, and the CEPH data was used to evaluate performance for use with
denser SNP markers. We also performed a simulation study to explore the null distribution
of p-values and to compare the power of the corrected χ2 tests using different types of
kinship coefficients with the classical χ2 test. Four kinship coefficients were considered:
actual (ϕact), pedigree-based (ϕped), estimated (ϕest), and posterior (ϕpost) kinship
coefficients. The actual kinship coefficient, ϕact, is computed based on the underlying truth
in the simulation and the pedigree-based kinship coefficient, ϕped, is assigned from a known
pedigree structure. The estimated kinship coefficient, ϕest, is the maximum-likelihood
estimate computed based on genome data only, without pedigree information. The posterior
kinship coefficient, ϕpost, is also an estimated coefficient, but based on both genome data
and pedigree information. In all cases, we used the average of posterior kinship coefficients
over the whole genome panel of markers. Merlin 1.1.2 was used to compute the posterior
IBD and kinship coefficients [Abecasis et al., 2002].

We focused only on individuals and families from non-inbred populations, which means that
inbreeding coefficients were assumed zero. The program genedrop in Morgan 2.8.2
[Thompson, 1995; Thompson, 2000b; Thompson, 2005] was used for generating marker
genotypes for the simulated data sets. For each individual, we simulated 400 microsatellite
markers based on Rutgers map positions and allele frequencies from the version 10 CEPH
data at ftp://ftp.cephb.fr/ceph_genotype_db/. These markers were chosen randomly, subject
to the condition that they were separated by an average of 10cM. Except where otherwise
noted, we used all 400 markers for further analyses.

The simulation studies were performed based on three relationship scenarios. (1) In Scenario
I, the case group consisted of 250 individuals from 50 pedigrees as seen in Figure 1 with
each pedigree having five cases. The entire pedigree information was assumed known for
the case group. The control group simply included 250 independent and unrelated
individuals. (2) Scenario II was the same as Scenario I except the cases were chosen from a
large pedigree of 13 generations and 4070 individuals to simulate the background
correlation among individuals. Each set of parents in the 13 generations had one or two
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offspring, and 1124 individuals were unrelated founders. We assumed that the genealogy of
only the last two generations was available. (3) In Scenario III, samples were simulated for
500 related and 500 independent unrelated people. The related individuals were in the final
generations of a large pedigree of 13 generations as in Scenario II, but the pedigree
information was assumed known for the last three generations. Controls in each of these
three scenarios were unrelated, which is the most ideal situation. Cases of Scenario I were
from an entirely known pedigree without any background correlation. Scenario II and III
simulated background correlation among cases with limited pedigree information, which
commonly occurs in genetic studies. Scenario II had less pedigree information than Scenario
III, so we could explore more efficiently the effect of lack of pedigree information on ϕped,
ϕpost and ϕest.

PERFORMANCE OF KINSHIP ESTIMATION—To evaluate the performance of kinship
estimation, we carried out a simulation study based on Scenario I. Multiallelic marker
simulation was done without reference to the fixed disease status, thus representing
genotypes generated under H0. The relationships in this sample are 150 parent-offspring
(PO), 50 avuncular (AV), 100 grand parent-grand child (GG) and 50 first cousin (CO) pairs.
Also, 124,400 unrelated pairs (UN) were included in the sample. For each individual, we
simulated 400 microsatellite markers as described above and among these simulated
markers, subsets of 50, 100, 200 and 400 markers were used to calculate MLEs of kinship
coefficients using the EM algorithm. Allele frequencies were assumed unknown and sample
allele frequencies were used for such estimation.

We also investigated the performance of kinship estimation based on diallelic markers by
estimating kinship coefficients of CEPH families based on the real data, single-nucleotide
polymorphism (SNP) markers from the version 10 CEPH data at
ftp://ftp.cephb.fr/ceph_genotype_db/. We selected 91 individuals of 12 pedigrees with more
than 80% genotyped markers. To investigate the effect of use of different numbers of
markers, three marker panels were used: 500 SNP markers, 5,000 SNP markers, and all of
the 16,977 SNP markers of the whole genome. In the first two panels, the markers were
randomly chosen from the 16,977 SNP markers. Kinship coefficients were estimated for all
possible pairs of 91 individuals based on these two marker panels. The entire pedigree
information was known and estimated kinship coefficients were compared with pedigree-
based kinship coefficients.

NULL DISTRIBUTION OF THE P-VALUES OF THE CORRECTED χ2 TEST—In
Scenario I, we evaluated whether resulting p-values were distributed uniformly as would be
expected under the null distribution. The χ2 test and the corrected χ2 test with ϕact, ϕped, ϕest,
and ϕpost were performed for each multiallelic marker and Q – Q plots were used to examine
the uniformity of the p-value distributions. Note that the same markers are used for both the
estimation of kinship coefficients in the previous section and for the test of association.

ASSESSMENT OF THE EFFECT OF MISSING PEDIGREE INFORMATION—We
further investigated the null distribution of p-values for Scenario II where only part of the
genealogy was known. We assumed only part of the genealogy known, and ϕped and ϕpost
were computed based on the pedigree information and the pedigree plus multiallelic marker
information of the last two generations. Under the null distribution, we performed the
classical χ2 test and the corrected χ2 test with ϕact, ϕped, ϕest, and ϕpost for each simulated
marker. Q – Q plots were used to present the null distribution of p-values.

To assess the performance of various kinship coefficients based on limited pedigree
information, ϕped, and ϕest were compared with ϕact in Scenario III. The genealogy of only
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the last three generations was used for the computation of ϕped and ϕpost to mimic a typical
situation in which more distant relationships are not known.

POWER OF THE χ2 AND CORRECTED χ2 TESTS—For comparing the power of the
classical χ2 test and the corrected χ2 test with various kinship coefficients, we performed
simulations based on Scenario III. The genotype of the trait locus was simulated under a
disease allele frequency of 0.5, with affected status assigned based on the simulated
genotypes at the trait locus and the penetrance probabilities shown in Table III. This yielded
a variable number of cases and controls over replicates. The mean sizes of the case and
control samples were reported with their standard deviations in Table III. The power of the
χ2 test and the corrected χ2 test were estimated from 10,000 replicates.

APPLICATION TO REAL DATA
The method was applied to two real data sets, one from Guam and the other from Kosrae.
Both studies were approved by University of Washington Institutional Review board (IRB).
The data set from Guam consisted of a genome scan for association in a case-control sample
collected to complement a family-based linkage study. The disorder of cases has
characteristics of both amyotrophic lateral sclerosis and parkinsonism combined with
dementia and is prevalent in the Chamorros, the indigenous people of Guam. A sample of
140 cases and 88 age-matched Chamorro controls were available with no known
relationships among these subjects at the time they were sampled. The markers consisted of
a standard genome-scan panel of 402 multiallelic markers. For each pair of individuals, the
kinship and inbreeding coefficients were estimated using the methods described above. For
each marker, allele frequencies of cases and controls were compared using the standard and
the corrected χ2 tests.

The data set from Kosrae consisted of a genome scan for schizophrenia [Wijsman et al.,
2003]. A sample of 36 cases and 76 unrelated controls from the island was available with the
genealogy known for the case group. Even though the pedigree information of the cases was
available, we suspected there might be additional relatedness among cases and cryptic
relatedness among controls since the data were collected from a relatively small population.
The genome scan consisted of a standard panel of 379 microsatellite markers. As in the
analysis of the Guam data, estimation of relatedness and association tests were performed.
Also, using the known genealogy, the corrected χ2 test with pedigree-based assigned kinship
coefficients was performed.

RESULTS
EVALUATION OF THE PROPOSED METHOD

PERFORMANCE OF KINSHIP ESTIMATION—With increasing number of markers
used for estimation, ϕest was closer to ϕped, with also less variation in the estimates from
multiallelic markers. The values of the pedigree-based k-coefficients and kinship
coefficients for non-inbred individuals are shown in Table II. Figure 2 shows the relation
between ϕest and ϕped using 50 and 400 multiallelic markers (Panel A). For most
relationships, ϕest was close to the pedigree-based expectation, ϕped, with the accuracy of the
estimate increasing with the number of markers. For example, in the case of PO pairs, the
mean of ϕest was 0.255 (s.d. 0.009), 0.254 (0.006), 0.253 (0.005) and 0.252 (0.003) when 50,
100, 200 and 400 multiallelic markers were used, respectively. Estimation of other
relationships showed a similar trend (not shown).

Similarly, in the case of diallelic markers, ϕest was closer to ϕped when more markers were
used. Figure 2 shows the the relation between ϕest and ϕped in the diallelic case of CEPH
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families with 500, 5,000 and 16,977 SNP markers (Panel B). Panel B also shows the similar
results of kinship estimation from 5,000 and 16,977 markers, which indicates that the
number of SNPs does not need to be too large. The estimate of the kinship coefficient for
parent-offspring was more accurate than that for full-siblings in the CEPH data. In the case
of the 5,000 diallelic marker panel, the means of the estimated kinship coefficients were
0.243 (0.026, N=8) for full-sibling and 0.243 (0.008, N=87) for parent-offspring. The means
of the parent-offspring and full-sibling relationships were similar, but that for the parent-
offspring relationship had a smaller standard deviation even with the larger sample size.
However, kinship coefficients were overestimated for unrelated pairs for both the simulated
and CEPH data.

The EM algorithm was used for estimating relatedness with computation time proportioned
to MN2, where M is the number of markers and N is the number of individuals. We
implemented the method by using R-2.5.0. In the case of the CEPH data (91 individuals),
computation times on a linux AMD Opteron 1.8GHz computer were 804.41 sec for 500
markers, 1617.68 sec for 1,000 markers and 7712.80 sec (2.14 hrs) for 5,000 markers.

NULL DISTRIBUTION OF THE P-VALUES OF THE CORRECTED χ2 TEST—The
corrected χ2 test using kinship coefficients reduced the false positive rate substantially. The
Q – Q plots of p-values of the four association tests for 50 and 400 markers are shown in
Figure 3. Results for 100 and 200 multiallelic markers were consistent with these (not
shown). Since genotypes of all markers were simulated under the null hypothesis of no
association, p-values are expected to be uniformly distributed. Figure 3A suggests a high
false positive rate when the classical χ2 test was used. Panels B, C and D of Figure 3
demonstrate that the corrected χ2 test reduces the false positive rate, producing a distribution
of p-values that is close to uniform. Since the entire genealogy was known, ϕped was close to
ϕact and the p-values were uniformly distributed (Figure 3D). The ϕpost had the same results
as the pedigree-based results (not shown). When ϕest was used, the Q – Q plots of p-values
were slightly different from the uniform distribution (Figure 3C). Overestimated kinship
coefficients for UN pairs, especially when one individual is from the case group and the
other is from the control group, may lead to slightly inflated false positive rates.

ASSESSMENT OF THE EFFECT OF MISSING PEDIGREE INFORMATION—With
missing pedigree information, the corrected χ2 test using ϕest reduces the rate of spurious
positive results more than when using ϕped or ϕpost. Figure 4 presents the Q – Q plots of p-
values of the χ2 and the corrected χ2 tests when only part of the genealogy is known. As with
the previous simulation, the χ2 test had a high false positive rate, and the p-values of the
corrected χ2 test with ϕact were uniformly distributed (Figure 4). However, missing pedigree
information resulted in undercorrection of false positives when ϕped was used. In the case of
ϕest, the Q – Q plot was consistent with the previous simulation (with the entire genealogy)
since the performance of kinship estimation was not affected by missing pedigree
information.

With the incomplete genealogy, ϕest gave more precise estimates for related pairs, but ϕped
and ϕpost characterized unrelated pairs better because of the intrinsic overestimation of
kinship coefficients in this case (Figure 5). Because MLEs of the kinship coefficient of UN
pairs were overestimated, this approach may not distinguish unrelated people from people
sharing a common genetic background. On the other hand, based on only the part of the
pedigree information used in the analysis, ϕped and ϕpost were 0 for some of the pairs that
shared their unknown genetic background. This leads to an under-correction of relatedness
and an inflated false positive rate. For related pairs, the mean squared error (MSE) of ϕest,
ϕped and ϕpost was 1.1 ×10−4, 3.3 × 10−4 and 3.2 × 10−4 respectively. For unrelated pairs,
the MSE of ϕest was 1.36 × 10−4 and the MSEs of ϕped and ϕpost were 0.
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POWER OF THE CORRECTED χ2 TEST USING ESTIMATED AND ACTUAL
KINSHIPS—Overall, the χ2 test is most powerful at the nominal significance level, as
expected, given the inflated false positive rate. Table IV shows the estimated power for the
χ2 test and the corrected χ2 tests with ϕact, ϕped, ϕest and ϕpost. At the nominal significance
level, the corrected χ2 test has lower power than the χ2 test, and in particular, the corrected
χ2 test with ϕact has the least power. The corrected χ2 test with ϕest is more powerful than the
corrected χ2 test with ϕped and ϕpost. This result shows that the correction for kinship may
cause apparent loss of power given a nominal significance level. However the corrected tests
give the proper null distribution of p-values as we showed previously. As a result, the test
has the correct type I error in contrast to the χ2 test, which is too liberal. Because power in
our simulation was estimated under the nominal significance level, but the tests have
different type I errors, it is not meaningful to compare actual power in this situation.

APPLICATION TO REAL DATA
ESTIMATION OF CRYPTIC RELATIONSHIPS—Estimated kinship coefficients
suggested that there were unknown relationships in the Guam and Kosrae data. Even though
some pedigree information in the Kosrae data was known, more relationships were found by
estimating kinship coefficients. Panel A and B of Figure 6 presents the estimated k-
coefficients and Panel C and D of Figure 6 shows the cumulative distribution of the
estimated kinship coefficients in the two samples. Estimation of k-coefficients allows us to
quantify not only well-defined and possibly verifiable relatives such as parent-offspring, full
sibling or cousin pairs, but also continuous degrees of relatedness. In the Guam data, the
means and standard deviations of the estimated kinship coefficients are 0.023 (0.016) for the
case group and 0.021 (0.020) for the control group with the case group having slightly
higher average estimated kinship coefficients. This is consistent with the expectation that
affected individuals may be more closely related because they share an ancestral mutation
leading to the genetic disorder [Voight and Pritchard, 2005]. In the Kosrae data, the mean
estimated kinship coefficients in the case group is 0.026 (0.025), which is also slightly
higher than 0.024 (0.017) in the control group.

TESTING ASSOCIATIONS—The corrected χ2 test based on ϕest successfully reduced
spurious associations between markers and disease. Q – Q plots of the p-values are shown in
Panel E and F of Figure 6. In the Guam data analysis, p-values of the uncorrected χ2 tests are
not uniformly distributed, but p-values of the corrected χ2 tests based on ϕest are close to
uniformly distributed. These results show that the false positive rate was reduced by
correcting for relatedness. If the distribution of the p-values were exactly uniform, the
expected 1% and 5% quantiles would be 0.01 and 0.05, but the 1% and 5% quantiles of the
χ2 test are 0.0007 and 0.007, which are considerably smaller than the nominal quantiles. For
the corrected χ2 test, the 1% and 5 % quantiles are less extreme at 0.02 and 0.098, and are
actually conservative. When the uncorrected χ2 test was used, 95 markers were significantly
associated with the disease at significance level 0.05, but only 10 markers remained at this
significance level with the corrected χ2 test.

Similar to the Guam data analysis, a Q – Q plot of p-values in the Kosrae data analysis
reveals that the χ2 test results in a high false positive rate, but these false associations
diminished in two corrected χ2 tests (Figure 6F). Since, in the Kosrae study, the pedigree
information of the case group was available, the corrected χ2 tests were performed with ϕped.
However, since the known genealogy does not include complete information of relatedness
among individuals, the corrected χ2 tests work better with ϕest than with ϕped. The 1% and
5% quantiles of the χ2 test are 0.0014 and 0.0095, and the 1% and 5 % quantiles of the
corrected χ2 test with ϕest are 0.0095 and 0.036, much closer to their nominal levels. We had
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50 significant markers at significance level 0.05 with the χ2 test, but 22 of these markers
were not significant after correcting relatedness by using ϕest.

After correction of relatedness among individuals, the p-values increased, which implies less
significant associations between disease and markers. The ten markers with the smallest p-
values are reported in Table V for the Guam study and Table VI for the Kosrae study. For
the Guam study, the correction for cryptic relatedness gave a p-value that was 1-3 orders of
magnitude higher than that from the uncorrected test, while for the Kosrae study, the p-
values for all these extreme markers increased by one order of magnitude.

DISCUSSION
We have presented here an evaluation of the usefulness of estimated kinship coefficients to
account for cryptic relatedness in a population-based association study. Such cryptic
relatedness may occur even when there is no population structure and when pedigree
information is available. For example, the pedigrees may not fully describe the actual
relatedness among individuals, such as when individuals share a long common genetic
background history, or in other situations such as the presence of non-paternity or
unreported adoption. We showed that the use of whole-genome scan markers to estimate
relationships and to determine an appropriate variance correction reduces the false positive
rate that otherwise results from use of the data without such a correction.

While part of our investigation involved simulation, simulation cannot evaluate every
possible situation. In particular, in isolated populations, there may be variable levels of
inbreeding, common genetic background from the shared complex and deep genealogies, or
differences between social kinship and biological kinship. Such isolated populations
motivated us to explore Scenario II and III which simulated the relatively simple situation of
the availability of only partial information about relatedness among samples. Real situations
probably involve much deeper genealogies, but even these simple situations demonstrated
the impact of the missing relationship information.

To properly reduce spurious positive evidence of association, it is important to get accurate
estimates of relationships. Our results indicate that estimated kinship coefficients can be
more accurate than are pedigree-based or posterior kinship coefficients. The reasons for this
improved accuracy are that pedigree-based kinship coefficients allow no variability within a
class of relative pair, and posterior kinship coefficients do not allow for sources of
relationship other than the pedigree. The one exception to this is the case of unrelated pairs,
for which MLEs can be biased because only non-negative values are allowed for estimated
kinship coefficients, thereby resulting in overcorrection of the test statistic. An ad hoc
method might be considered to avoid overcorrecting for such related pairs, such as setting
kinship coefficients to 0 for pairs with estimated kinship coefficients smaller than a specific
threshold. This might improve the over correction of inflated false positive rates. Another
concern in estimating relatedness is potential violation of the HWE assumption which might
affect the resulting MLEs if there is Hardy-Weinberg Disequilibrium (HWD) in the sample.
We have not formally evaluated the effect of HWD on the resulting estimates. Since
substantial HWD is rare in unstructured populations and inbreeding (leading to HWD) levels
are small even in genetic isolates that have been evaluated [Agarwala et al., 2001], it is
likely that the impact of HWD is minimal.

We estimated relationships based on diallelic markers with comparable accuracy to those
based on multiallelic markers. As we showed, the 5,000 and 16,977 marker panels had
similar variances for kinship estimates, indicating that all markers in the dense SNP panel
are not necessarily needed. The subset of markers that were spaced suffciently far apart
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provides enough information for estimating kinship coefficients and removes the need to
account for linkage-disequilibrium (LD) among SNP dense markers. We can therefore
consider SNP markers as the simplest case of multiallelic markers and the analysis
performed on multiallelic markers in this study can be applicable and valid to SNP markers
as well. Computation time for SNPs was also not exorbitant, compared to smaller number of
multiallelic markers, even for our R code used to carry out these analyses. Computation time
could be improved by carrying out some computations with C or C++.

In the proposed method, the idea of correcting the variance using genomic data is similar to
the idea behind Genomic Control (GC) [Devlin and Roeder, 1999]. Both approaches use a
constant correction for tests based on all genome markers. However, GC corrects the test
statistics after inflated test statistics are observed, while the proposed method uses the
genome data to adjust the variance so that the test statistic is not inflated in the first place.
This also explains why the proposed test is straightforward for more complicated markers
such as multiallelic markers, while GC needs separate correction factors for each type of
marker, defined by the number of alleles. GC suffers when used for multiallelic markers
because a separate correction for each type of marker is needed, and because a large number
of markers of each type of marker are required to achieve an adequate correction [Marchini
et al., 2004]. In general, multiallelic markers or haplotypes based on multiple SNPs can be
considerably more informative than diallelic markers for association testing [Ott and
Rabinowitz, 1997; Chapman and Wijsman, 1998]. For use with multiallelic markers or
haplotype data, the easy extension and computation of the corrected χ2 test to the multiallelic
situation is an advantage over GC.

A previous study recommended use of pedigree-based (prior) kinship coefficients because of
the theoretical justification for the test statistic [Thornton and McPeek, 2007]. While we
have not studied the asymptotic properties for the corrected χ2 test based on estimated
kinships, as shown in the simulation study, p-values are uniformly distributed under the null
hypothesis, so that the corrected χ2 test based on estimated kinships is useful in practice and
is also applicable to testing associations. We believe the corrected χ2 test with estimated
kinships would be more appropriate for reducing the false positive rate if there is
background correlation among individuals beyond what is reflected in the known pedigree
structures. Especially among cases, individuals are more likely to share their ancestral
background and to be genetically similar to one another than are controls [Voight and
Pritchard, 2005]. Estimated kinship coefficients would also be more appropriate for
adjusting an unbalance of relatedness between the case and control group. We believe that
the proposed approach will provide a practical tool for association studies to reduce false
positive results caused by the cryptic relatedness beyond a known or unknown genealogy.

APPENDIX

EM ALGORITHM FOR MLE OF K-COEFFICIENTS

Start with arbitrary initial values of . In the E-step, for given 
and the observed IBS Si,m of genotypes at marker m, find the probability of IBD state Xm = j,
j = 0, 1, 2.

(1)
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The probability of genotypes of IBS Si,m for given Xm is shown in Table I.

In the M-step, for given Pr(Xm = j|Si,m), m = 1…M, update k0, k1 and k2, which maximize
the complete likelihood,

(2)

The updated estimate of k-coefficients is . Then,
repeat the E-step and M-step until k̂0, k̂1 and k̂2 converge.

WEB RESOURCES
The R and Perl code for the proposed method will be available at
http://faculty.washington.edu/wijsman/software.shtml
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Figure 1.
Pedigree for simulation study: black is affected and white is unaffected.
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Figure 2.
Box plots of estimated kinship coefficients. A: the simulated sample of Scenario I using 50
and 400 microsatellite markers. B: CEPH families using 500, 5,000 and 16,977 SNP
markers.
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Figure 3.
Quantile-quantile plots of χ2 test and corrected χ2 tests for 50 markers (dashed line) and 400
markers (solid line) in the simulated sample of Scenario I. A: Classical χ2 test. B: Corrected
χ2 test with actual kinships. C: Corrected χ2 test using estimated kinships. D: Corrected χ2

test using pedigree-based kinships.
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Figure 4.
Quantile-quantile plots of χ2 test and corrected χ2 tests in the simulated sample of Scenario
II.
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Figure 5.
Comparison of kinship coefficients: actual kinships vs. estimated, pedigree-based and
posterior kinships in the simulated sample of Scenario III.

Choi et al. Page 19

Genet Epidemiol. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Estimated k-coefficients of pairs in (A) Guam and (B) Kosrae samples. Cumulative
distribution of estimated kinship coefficients of cases and controls in the (C) Guam and (D)
Kosrae data sets. Quantile-quantile plot of p-values of χ2 test and corrected χ2 test in (E)
Guam and (F) Kosrae samples. In the Kosrae study, ϕ is the pedigree-based kinship
coefficient and ϕ̂ is the estimated kinship coefficient.
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Table I

Probability for seven identity-by-state modes

Si Genotypes Pr(Si | k)

S1 AiAi, AiAi

S2 AiAi, AjAj

S3 AiAi, AiAj

S4 AiAi, AjAm

S5 AiAj, AiAj

S6 AiAj, AiAm

S7 AiAj, AmAl 4k0pipjpmpl
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Table II

Pedigree-based assigned kinship coefficients for non-inbred relatives

Relationship k0 k1 k2 ϕ

Unrelated 1.00 0 0 0

Parent-offspring 0 1.00 0 0.25

Grandparent-grandchild 0.50 0.50 0 0.125

Avuncular 0.50 0.50 0 0.125

First cousin 0.75 0.25 0 0.0625
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Table IV

Estimated Power (sd) of the classical χ2 test and the corrected χ2 test with actual and several estimated kinship
coefficients with significance level 0.05

Additive Dominant Recessive

No correction .788 (0.004) .699 (0.005) .865 (0.003)

Φact .657 (0.005) .532 (0.005) .779 (0.004)

Φest .719 (0.004) .607 (0.005) .819 (0.004)

Φped .701 (0.005) .586 (0.005) .808 (0.004)

Φpost .701 (0.005) .586 (0.005) .809 (0.004)
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Table V

Guam Data results

Chr Marker Position χ2 test Corrected χ2 test with ϕ̂

4 D4S403 27.250 2.30 × 10−5 2.80 × 10−3

6 D6S434 109.241 7.33 × 10−5 1.30 × 10−2

14 D14S258 65.035 2.52 × 10−4 1.40 × 10−2

4 D4S1572 112.691 7.46 × 10−4 2.32 × 10−2

21 D21S263 32.143 2.20 × 10−4 2.58 × 10−2

21 D21S266 54.988 9.24 × 10−4 3.79 × 10−2

3 D3S1304 20.465 1.40 × 10−3 3.84 × 10−2

4 D4S1575 136.798 5.81 × 10−3 3.85 × 10−2

2 D2S142 168.287 2.87 × 10−3 4.45 × 10−2

5 D5S428 102.903 1.79 × 10−3 4.46 × 10−2
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Table VI

Kosrae Data results

Chr Marker Position χ2 test Corrected χ2 test with ϕ̂

2 D2S305 40.761 4.73 × 10−5 6.12 × 10−4

15 D15S127 96.023 3.66 × 10−5 9.83 × 10−4

4 D4S2935 13.531 2.56 × 10−4 1.81 × 10−3

7 D7S550 184.839 1.30 × 10−3 8.47 × 10−3

3 D3S1267 134.568 1.42 × 10−3 9.80 × 10−3

1 D1S252 152.755 1.85 × 10−3 1.11 × 10−2

5 D5S408 209.550 2.45 × 10−3 1.16 × 10−2

6 D6S441 163.648 1.92 × 10−3 1.40 × 10−2

10 D10S1693 140.353 4.76 × 10−3 1.93 × 10−2

16 D16S3136 63.737 5.74 × 10−3 2.04 × 10−2
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