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Abstract
Genome-wide association studies (GWAS) require considerable investment, so researchers often
study multiple traits collected on the same set of subjects to maximize return. However, many GWAS
have adopted a case-control design; improperly accounting for case-control ascertainment can lead
to biased estimates of association between markers and secondary traits. We show that under the null
hypothesis of no marker-secondary trait association, naïve analyses that ignore ascertainment or
stratify on case-control status have proper Type I error rates except when both the marker and
secondary trait are independently associated with disease risk. Under the alternative hypothesis, these
methods are unbiased when the secondary trait is not associated with disease risk. We also show that
inverse-probability-of-sampling-weighted (IPW) regression provides unbiased estimates of marker-
secondary trait association. We use simulation to quantify the Type I error, power and bias of naïve
and IPW methods. IPW regression has appropriate Type I error in all situations we consider, but has
lower power than naïve analyses. The bias for naïve analyses is small provided the marker is
independent of disease risk. Considering the majority of tested markers in a GWAS are not associated
with disease risk, naïve analyses provide valid tests of and nearly unbiased estimates of marker-
secondary trait association. Care must be taken when there is evidence that both the secondary trait
and tested marker are associated with the primary disease, a situation we illustrate using an analysis
of the relationship between a marker in FGFR2 and mammographic density in a breast cancer case-
control sample.
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Introduction
Genome-wide association studies (GWAS) require massive investments of time and money,
so researchers are understandably looking to maximize return by studying multiple traits
collected on the same set of subjects. For example, recent GWAS for height [Lettre, et al.
2008; Sanna, et al. 2008; Weedon, et al. 2007] and body mass index [Loos, et al. 2008] were
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conducted using samples from multiple GWAS which were originally conducted to find
markers associated with risk of diabetes, breast and prostate cancers, and other traits. An
explicit goal of the NHGRI's dbGAP and PhenX projects is to facilitate the sharing and
harmonization of data on multiple traits relevant to human health collected on samples that
have already been genotyped as part of a GWAS. Considering the large sample sizes necessary
to minimize the chances of both the false positive and false negative results when conducting
GWAS [Chanock, et al. 2007; Hunter and Kraft 2007], combining existing GWAS data even
when the trait under study was not the primary outcome of all (or perhaps even any) of the
component studies is an attractive, quick and inexpensive option.

However, many GWAS to date have adopted a case-control design that implicitly conditions
on a primary disease outcome. This non-random ascertainment from the study base can in
principle lead to inflated Type I error rate for tests of association between markers and a
secondary trait that either ignore ascertainment (i.e. treat the sample as representative of the
entire study base) or "adjust for" ascertainment by conditioning on disease status (e.g.
restricting analysis to controls or including case-control status as a covariate in a regression
model). These commonly-used analysis approaches can also provide biased estimates of the
effect of marker genotypes on the secondary trait under the alternative hypothesis where there
is a direct effect of the marker on the secondary trait.

Richardson et al. [Richardson, et al. 2007] recently showed that if an exposure (in the GWAS
context: marker genotype) and a secondary trait are each independently associated with a
disease trait, then estimates of exposure-secondary trait association are typically biased. In
response, we argued [Kraft 2007] that for binary genotypes and binary secondary traits this is
the only situation where the odds ratio relating the secondary trait to genotype in the ascertained
sample differed from the same odds ratio in the general population. In other words, if the marker
is not associated with the primary disease or the secondary trait is not associated with the
primary disease, the secondary trait-marker genotype odds ratio from the case-control study is
not biased. Here we extend this result to general (ordinal, categorical) genotypes and general
(ordinal, categorical, continuous) secondary traits. We demonstrate that bias can occur if the
secondary trait is a cause of the primary disease. We show that common analytical approaches
(including the common practice of restricting to controls) are not always effective at
eliminating bias, and may in some circumstances increase the amount of bias observed. We
illustrate that the degree of this bias is dependant on the rarity of the primary disease and the
strength of the association between the secondary and primary traits as well as the association
between the tested marker and the primary trait.

In the setting of most GWAS, where the magnitudes of the marker-phenotype association are
often low, common analytical approaches will have appropriate Type I error rates and good
power. Moreover, replication in further studies that have not been ascertained on the basis of
the primary trait will help reduce the risk of false positives due to ascertainment bias. When
the strength of the association between the secondary and primary traits is high, however, and
the marker is thought to be associated with the primary trait – see for example the recent series
of papers regarding the interrelatedness of 15q24/15q25.1, smoking behavior and lung cancer
[Amos, et al. 2008; Chanock and Hunter 2008; Hung, et al. 2008] Thorgeirsson, et al. 2008] –
special care will be needed to avoid bias in estimating the effect of the marker on the secondary
trait. We address how to handle this type of situation.

Richardson et al. [Richardson, et al. 2007] also proposed using inverse-probability-of-sampling
weighted (IPW) regression to estimate genotype-secondary trait association when case and
control sampling fractions are available. These sampling fractions will be available for case-
control studies nested within a prospective cohort, for example [Langholz, et al. 1999]. We
illustrate why this approach provides unbiased estimates of genotype-secondary trait
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association even when both the genotype and secondary trait are independently associated with
primary disease outcome and verify that it does so via simulation. We also investigate the
relative power for IPW regression and commonly-used analyses in situations where the latter
provide valid (or nearly valid) tests.

The outline of the remainder of this paper is as follows. In the first section, we investigate the
circumstances under which commonly-used analyses that either ignore case-control
ascertainment or stratify on disease status provide valid tests of the null hypothesis of no direct
marker-secondary trait association and the circumstances where they provide unbiased
estimates of marker-secondary trait association. We also describe IPW regression and provide
some motivation for why it provides valid tests and unbiased estimates. In the second section
we quantify Type I error rates, power, and bias for commonly-used analyses and IPW
regression via simulation. In the third section we illustrate the various methods by applying
them to a study of the association between a SNP in fibroblast growth factor receptor 2
(FGFR2 [MIM 176943]) and mammographic density in a sample of breast cancer cases and
controls. Finally, we discuss the implications of our qualitative and quantitative results for the
design and analysis of GWAS and candidate gene studies of secondary traits using samples
ascertained on the basis of another trait.

Type I error rate and bias: qualitative results
Figure 1 presents directed acyclic graphs (DAGs) for the joint, cross-sectional distribution of
marker genotype(s) G, secondary trait X, primary (disease) phenotype D, and ascertainment
(sampling) indicator S in the study base (e.g. underlying cohort for a nested case-control study).
Here S=1 if a subject was selected to be in the case-control study, and S=0 otherwise. We use
these DAGs as convenient representations of the joint G, X, D, and S distribution, based on
conditional probabilities and assumptions of conditional independence [Greenland, et al.
1999]. For example, the single arrow from D to S implies that S is independent of G and X,
conditional on D. This is a reasonable assumption in many cases, but may not be true. (If
participation rates vary by ethnicity, for example, then ascertainment may be associated with
both D and G; or the ascertainment scheme may directly depend on both D and X, for example
if controls in a prostate cancer study are required to have low PSA levels [Eeles, et al. 2008].)
We also assume there are no measured or unmeasured confounders of the G-X relationship. It
is possible these exist—again perhaps due to population stratification—but our goal here is to
determine when the case-control sampling design per se induces bias in measures of genotype-
secondary trait association. Finally, we assume there are no arrows leading from X, D, or S
into G, based on the directionality of any causal relationships among G, X, and D (genetic
variation causes traits, not vice versa).

We can make inferences about the independence or non-independence of G and X conditional
on D or S using the topology of these DAGs and the following simple rules [Lauritzen, et al.
1990] Robins, et al. 2001]. We create a "moralized ancestral graph" for X and G and a set of
conditioning variables C by first removing any variables (and any corresponding edges) not in
AN[{X,G} ∪ C]. Here AN[{X,G} ∪ C] denotes the set of ancestors of variables in {X,G} ∪
C, where a variable is an ancestor of a second variable if there is a directed path from the first
to the second. We then connect any two variables that share a common child (i.e. there is an
arrow from each into a third variable) with a non-directed edge. (The graph is "moralized"
because all parents are "married.") Therefore, in scenario E the moralized ancestral graph for
X and G conditional on S would have a line connecting G and X to indicate that they share a
common child (D); scenario C, however, would have no such line as G is not a cause of D in
scenario C.
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It can be shown that G and X are independent conditional on a set of variables C if and only
if any path from G to X in the moralized ancestral graph passes through some variable in C
[Lauritzen, et al. 1990; Robins, et al. 2001]. In scenarios A, B, C and D in Figure 1, there is
no path from G to X in the moralized ancestral graph, so commonly-used analyses that
condition on S (by restricting to a case-control sample but otherwise ignoring ascertainment)
or condition on D and S (by including case-control status as a covariate in a regression model,
or by restricting analysis to cases or controls) provide valid tests of the null hypothesis of G-
X independence. In scenario E, G and X are connected by an edge in the moralized ancestral
graphs conditional on S or {S,D}, so none of the commonly-used analyses of case-control data
provide valid tests of the null hypothesis. In scenario F, the analysis that conditions on S but
not D (e.g. regressing X on G in a case-control sample but ignoring ascertainment) does not
provide a valid test of the null hypothesis of no direct effect of G on X, while analyses that
condition on both S and D (by stratifying on case-control status or restricting to cases or
controls) do provide valid tests of this hypothesis.

We note that for prospectively collected X (e.g. for nested case-control studies where
information on dietary patterns or anthropometry or plasma biomarkers et cetera are collected
at baseline on a cohort of disease-free subjects) scenarios D and F are unlikely (but not
impossible: some of the cohort may have had undiagnosed disease at baseline). These two
scenarios are more likely when X is collected retrospectively, after a subject's diagnosis (as in
a classic case-control study); "reverse causality" is a concern in this context. Subject matter
considerations may also rule out some of these scenarios; for example, onset of menarche
predates diagnosis with breast cancer by several decades, so scenario F where disease status
causes age at menarche in the general population is unrealistic.

These qualitative results on presence or absence of bias under the null can also be derived using
the rules of conditional probability—in fact the results on DAGs and conditional independence
used in the previous paragraphs are based on these rules [Lauritzen, et al. 1990; Robins, et al.
2001]. In Appendix 1 we use the basic rules of probability to infer the presence or absence of
bias under the alternative, when there is a direct effect of genotype on the secondary trait (an
arrow from G to X). Conclusions about the presence or absence of bias in Scenarios A-F under
the null or alternative summarized in Table I. Neither these calculations nor the DAGs are able
to clearly illustrate the potential magnitude of the bias; therefore, we investigate the magnitude
of bias via simulation in the next section.

Finally, the DAGs in Figure 1 also provide some insight into how IPW regression removes
any bias induced by sampling conditional on D. If G and X were available on the entire study
base, then regressing X on G (and not conditioning on either D or S) provides a valid test of
the null hypothesis of G-X independence in scenarios A through E, because the corresponding
moralized ancestral graphs do not contain a path from G to X. (Scenario F is a special case
where X and G are marginally associated, because G influences X through the intermediate
D.) Loosely, IPW approximates the study base by upweighting each sampled subject so that
he or she stands in for multiple individuals in the study base. For example, say there are 10,000
individuals in the study base, of whom 500 have the disease. Genotype and secondary trait
information are collected on a case-control sample consisting of all 500 cases and 1,000
randomly selected controls. Then in an IPW analysis, each case stands in for his- or herself,
while each control represents his- or herself and 8.5 other controls. Thus IPW regression
"recreates" the study base and allows for unbiased estimation of the G-X association. A
variance correction is needed to account for the fact that subjects in the case-control sample
are "stand-ins" for multiple subjects in the study-base; this correction is easily implemented in
standard software (Appendix 2). Although our discussion of IPW regression has been rather
heuristic, we note that the procedure (and corresponding variance corrections) can be placed
on solid theoretical grounds by considering the case-control study as a two-stage design [Reilly
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and Pepe 1995;Siegmund, et al. 1999] or missing data problem [Robins 1995;Robins, et al.
1995;Wacholder 1996].

Type I error rate and bias: quantitative results (simulation study)
To quantify the power and bias of commonly-used analyses and IPW regression for secondary
traits in a case-control sample, we simulated case-control studies drawn from an underlying
cohort of size n. Diallelic genotypes Gi for subjects i=1,…,n were sampled assuming the cohort
was in Hardy Weinberg Equilibrium with a minor allele frequency of 0.13 (carrier prevalence
of 0.25). We focused our simulation study on the prospective scenarios in Figure 1 (A, B, C
and E), so we sampled the continuous trait Xi conditional on Gi. Xi was drawn from a normal
distribution with mean=βXG Z(Gi) and standard deviation=1, where Z(Gi) was an additive
coding for the genotype (Z(Gi)=number of minor alleles carried by subject i). Disease status
Di was sampled conditional on Gi and Xi as a Bernoulli random variable with logit{P(Di=1|
Xi,Gi)} = β0+βDG Gi+ βDX Xi. Case-control samples were generated by sampling all n1 cases
from the simulated cohort and randomly sampling n1 controls from the n0=n-n1 disease-free
subjects.

We simulated 108 scenarios, varying four parameters: disease prevalence κ∈
{0.001,0.01,0.10,0.20}; the percent of variance in X explained by G = r2

XG
∈{0, 0.005, 0.01};

the increase in log odds of disease per copy of the minor allele = βDG
∈ {0, log(1.7)/2, log1.7};

and the increase in log odds of disease per unit change in X = βDX
∈ {0,log(2)/2,log(2)}. The

mean change in X per copy of the minor allele (βXG) and the baseline odds parameter β0 were
chosen to be consistent with r2

XG and κ, respectively. We varied the underlying cohort size n
so that on average approximately n1=1,000 cases and n0=n1=1,000 controls were sampled in
all scenarios. A total of 5,000 replicate data sets were simulated for each scenario.

We conducted the following seven analyses for each simulated data set:

1. Full cohort analysis: simple linear regression of X on G in the full cohort.

2. "Unadjusted" case-control analysis: simple linear regression of X on G in the case-
control sample (ignoring D).

3. "Adjusted" case-control analysis: regress of X on G and an indicator for case-control
status D in the case-control sample.

4. Controls only: simple linear regression of X on G among controls.

5. Cases only: simple linear regression of X on G among cases.

6. Joint analysis: regress X on G, an indicator for D, and the product interaction term
D×G; test the joint null hypothesis that there is no main effect of G and no D×G
interaction (leads to a 2 d.f. test for association between X and G [Kraft, et al.
2007]).

7. IPW regression: regress X on G using weights w1=1 for cases and w0=n0/n1 for
controls and apply appropriate variance correction (Appendix 2).

The bias of each of the seven methods for each condition was obtained by subtracting the
expected value βXG from the mean estimated βXG. The probability of rejecting the null
hypothesis under each of the methods and scenarios was estimated when applying nominal
significance thresholds of α=0.05, 0.01, and 0.001.

Type I error and power
Table II and Table III summarize the Type I error rates across 18 of the null scenarios
(βXG=0) we considered. (Results for κ=0.001 and κ=0.20 are not shown but similar to those
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for κ=0.01 and κ=0.10, respectively). As predicted by the theoretical considerations in the
previous section, all of the analysis methods for the case-control data had appropriate Type I
error rate as long as either βDX=0 or βDG =0, and the IPW regression analysis had appropriate
Type I error rates for all of the scenarios considered. For rare disease (κ=0.01; Table II), we
did not detect any inflation in Type I error for analyses that condition on case-control status
(Analyses 3–6) even when both X and G directly influence disease; for more common disease
(κ=0.10; Table III) we did detect an inflation in Type I error rates for these analyses when X
and G each directly influence disease. "Unadjusted" tests (Analysis 2) had noticeably inflated
Type I error rates whenever βDX≠0 and βDG≠0, although the inflation decreases as the disease
becomes more common (and the case-control sample becomes more representative of the
cohort as a whole).

Figure 2 and Figure 3 summarize the power of tests based on these seven analyses over all
scenarios with κ=0.01 and κ=0.10. Not surprisingly, analyses restricted to cases or controls
generally have less power than any of the analyses that use the entire case-control sample. Due
to the relatively large variance in parameters estimates from IPW regression, tests from
Analysis 7 generally have the lowest power of the analyses that use the entire case-control
sample. For more common disease (κ=0.10 or 0.20 [not shown]), there are scenarios (namely
when βDX≠0 and βDG≠0) where IPW has greater power than analyses that adjust for case-
control status (Analyses 3 and 6), because the adjusted analyses are biased towards the null in
these scenarios (Figure 4). However, the IPW regression analysis still has lower power than
the unadjusted analysis (Analysis 2) in these scenarios. This is an unfair comparison, as the
unadjusted analysis has inflated Type I error rate for tests of βXG=0 in these scenarios, but we
note that the inflation is small (Table II) and the unadjusted analysis provides a valid test of
the joint null hypothesis βXG=0 and βDG=0.

Among the commonly-used analyses, the unadjusted analysis (Analysis 2) always has greater
power than any adjusted analyses (Analyses 3–6), although we caution that for rare disease
(κ=0.01) the unadjusted analysis can have a strikingly inflated Type I error rate whenever both
βDX≠0 and βDG≠0.

Bias
Figure 4 and Figure 5 show the average bias over the simulated scenarios for rare (κ=0.01) and
common (κ=0.10) disease, respectively. As predicted, none of the analyses are biased when
βDX=0. When βDX≠0, the commonly used analyses can be biased, although for rare disease,
methods that condition on case-control status (Analyses 3–6) have no perceptible bias (p>0.05)
when βDG=0. The bias for the unadjusted method is small (magnitude<3.5% of the true βXG)
when βDX is modest (a 1.3-fold increase in disease odds per standard deviation change in X).
When both the secondary trait and the marker are independently associated with disease risk
(βDX≠0 and βDG≠0), the unadjusted analysis can be quite biased.

For common disease, all methods except IPW regression have detectable bias when both
βDX≠0 and βDG≠0. The unadjusted analysis overestimates βXG, while the adjusted analyses
underestimate βXG. In particular, the analysis restricted to controls has the greatest magnitude
of bias among the adjusted analyses. This may seem counter-intuitive; but we note that while
for rare disease controls are fairly representative of the underlying population (even when
βDX≠0 and βDG≠0), for common disease controls will not be representative of the underlying
population if βDX≠0 and βDG≠0.

IPW regression has no detectable bias in any of the situations we simulated.
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Example: FGFR2 and mammographic density
To illustrate the application of these methods, we present several tests for association between
the FGFR2 SNP rs2981582 and pre-diagnostic mammographic density in a set of 790 breast
cancer cases and 1,140 controls from the Nurses' Health Study. This study was approved by
the Committee on the Use of Human Subjects in Research at Brigham and Women’s Hospital.

Both FGFR2 rs2981582 and mammographic density are known to be risk factors for breast
cancer, and in fact both are significantly associated with risk in this data set [Easton, et al.
2007; Hunter, et al. 2007]. The crude, marginal per-minor-allele odds ratio of breast cancer
risk for rs2981582 is 1.32 (CI: 1.16–1.51), and the crude, marginal odds ratio comparing the
80th percentile of mammographic density in controls to the 20th percentile was 2.33 (CI: 1.91–
2.86). The association between rs2981582 and breast cancer risk remains significant
(p<0.0001) after adjusting for mammographic density, and the per-allele odds ratio changes
little (OR: 1.34; CI: 1.17–1.52). Thus, based on our qualitative and quantitative results, this is
a situation where the commonly-used methods may provide biased estimates of the association
between FGR2 rs2981582 and mammographic density. However, as this sample was nested
within a cohort study, we can estimate the case and control sampling fractions and conduct an
IPW regression analysis.

The underlying cohort for this nested case-control study consisted of 29,625 women in the
Nurses' Health Study who were cancer-free when they gave a blood sample from 1989 to 1990.
Of the 934 eligible women in this cohort who developed breast cancer by 1998, 790 had
available genotype and mammographic density data. Controls selected for genotyping were
matched to individual cases on age and menopausal status at blood draw and were required to
be breast-cancer-free up to the case's date of diagnosis; 1,440 genotyped controls had available
mammographic density data. The sampling fractions by age, menopausal status at blood draw
and case-control status are given in Table IV. Because controls were matched to cases on age
and menopausal status, we use these stratified sampling fractions in the IPW regression
analysis. (Controls were also matched on post-menopausal hormone use at blood draw and
other variables related to plasma biomarker ascertainment--e.g. time of day of blood draw; for
simplicity we ignore these factors in this illustration.)

We regressed square-root transformed mammographic density on rs2981582 under an additive
model using six different methods (Analyses 2–7, listed above); the results are summarized in
Table V. All of these methods yielded similar effect estimates, suggesting no direct association
between rs2981582 and mammographic density. This is consistent with the results from our
simulation study, which suggest that for a rare outcome and little or no association between
the tested marker and the secondary trait, Analyses 3–7 have no detectable bias, while the bias
for unadjusted case-control analysis (Analysis 2) is small, leading to a slight inflation in the
Type I error rates. As expected, Analyses 2 and 3 (unadjusted and naively adjusted analyses)
had the smallest standard errors, while methods that reduce sample size (case-only and control-
only analyses) or adjust for weighting (IPW) yielded much larger standard errors. It is important
to note that not applying the proper variance correction (Appendix 2) in the IPW analysis would
have falsely deflated our standard error from 0.096 to 0.073.

Discussion
We have shown analytically (and verified through simulation) that under the null hypothesis
of no direct association between marker genotypes and a secondary trait, several simple,
commonly-used analyses of genotype-secondary trait association in case-control samples have
appropriate Type I error rates as long as either the marker or the secondary trait is not associated
with disease risk in the study base. In particular, the naive analysis that ignores case-control
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ascertainment and treats the sample as if it were cross-sectional provides a valid test in these
situations, as does the analysis that simply includes case-control status as a covariate in a
regression of a secondary trait on marker genotype, and the analysis restricted to controls.
Moreover, when the secondary trait is independent of disease risk, these simple analyses
provide unbiased estimates of measures of marker-secondary trait association.

These results have important implications for genome-wide association scans of secondary
traits, both those that have already been conducted—which have typically used one of these
simple analyses—and those yet to come. For those secondary traits that are not associated with
disease risk, these simple analyses are easily conducted using standard software for genome-
wide association analyses (e.g. PLINK [Purcell, et al. 2007]) and provide valid tests and
unbiased estimates of the marker-secondary trait association in the study base for all markers,
even those associated with disease risk. There is no need to restrict analysis to controls to
preserve test validity or remove bias—which is encouraging, as restricting to controls greatly
reduces sample size and power.

For those secondary traits that are associated with disease risk—often the case, as researchers
are interested in discovering the variants that influence risk factors for disease (e.g.
mammographic density or age at menarche for breast cancer)—these standard approaches
provide valid tests as long as the tested marker is not independently associated with disease
risk (Figure 1, Scenarios A, C and D). Considering that the vast majority of tested markers are
in fact not independently associated with disease risk, these simple analyses will provide near-
nominal control of the expected number of false positive tests across all tested markers. For
example, if 500 out of 500,000 markers are truly associated with disease risk, and we assume
a ten-fold increase in the nominal Type I error rate of 0.001 for these 500 markers (larger than
any inflation we observed in our simulation studies), then we expect 499,500×0.001 +
500×0.010 = 504.5 significant tests instead of 500. Furthermore, any association seen in the
initial scan should be replicated in an appropriate independent sample [Chanock, et al. 2007]
—preferably a cross-sectional sample, or perhaps a case-control study for a disease not
associated with the secondary trait. Similarly, the fact that these simple analyses provide biased
estimates of the marker-secondary trait association in the general population for those few
makers that are associated with both disease risk and the secondary trait is not of vital
importance in the genome-wide scan context, where the primary goal is to discover loci
associated with the secondary trait. Larger, appropriately-designed follow-up studies will be
required to characterize the marker-secondary trait association in different populations.

The problem of increased Type I error rate for these simple analyses is arguably even less of
an issue for meta-analyses of multiple genome-wide studies, some of which were originally
case-control studies for different diseases related to the secondary trait, some of which were
case-control studies for disease unrelated to the secondary trait, and some of which were cross-
sectional or originally designed to study the secondary trait (i.e. the trait may be secondary for
some studies and primary in others). In this situation, the bias under the null hypothesis will
be reduced by averaging the biased estimates from some studies with the unbiased estimates
from others. (Under the alternative, some of the heterogeneity in measures of marker-secondary
trait association may be due to differences in ascertainment across studies.)

Throughout this paper we have assumed that the probability of being sampled depends only
upon case-control status. As we mentioned above, this will not be the case in some situations.
However, in these situations the corresponding DAG can be drawn and inferences about the
presence or absence of bias under the null hypothesis can be made using the rules we have
outlined. For example, if controls are sampled conditional on the secondary trait (e.g. a prostate
cancer case-control study where controls are required to have low PSA levels), the DAGs in
Figure 1 can be modified by adding a directed arrow from X to S.
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An earlier letter [Kraft 2007] examining the presence of bias in measures of association between
marker genotypes and a secondary trait in case-control studies was restricted to the special case
where the marker genotype and secondary trait were binary, and the measure of interest was
the genotype-secondary trait odds ratio. The qualitative arguments we have made in this paper
(based either on DAG theory or conditional probabilities) make no assumptions about the
distributional forms of the marker genotypes G or secondary trait X. In particular, G could
represent an additive, dominant, or general coding of a marker genotype, or indeed some coding
for a multi-marker genotype, while X could be binary, categorical or continuous; for continuous
X we did not assume normality or any other particular form for the distribution.

In contrast to scans testing many markers for association with a secondary trait, the bias induced
by the case-control design will be a concern when the goal of the study is characterizing the
relationship between a marker and a secondary trait that are both known to influence disease
risk. In particular, some loci may have pleiotropic effects and influence disease risk both
through their association with the secondary trait and another independent causal mechanism.
For example, it is of great current interest to determine whether variants in the 15q25.1 region
are associated with lung cancer indirectly, because of their association with smoking behavior,
or if they are also associated with lung cancer along a second, distinct causal pathway [Chanock
and Hunter 2008]. We have shown that when sampling fractions are known, IPW regression
provides unbiased estimators of measures of association between the marker and secondary
trait in case-control studies. Further work is necessary to examine the degree of bias induced
using incorrect sampling fractions, or developing more efficient, unbiased methods. Of course,
when characterization of the secondary marker-trait association is a primary goal, the analytic
problem can be avoided at the design phase; convenience samples from an existing GWAS
may not be the best choice. The savings in genotyping costs for a small number of markers
may be too small to offset concerns regarding analytic validity.

Appendix 1
In general, the probability of X conditional on G and S in scenarios where there is no edge
connecting X to D in the Directed Acyclic Graph is:

[1]

Under the assumption that Pr(D|X,G)=Pr(D|G) (i.e. in scenarios A and B, or when there is a
directed arrow from G to X but no edge connecting X and D) expression [1] reduces to Pr(X|
G)—so the distribution of X in the case-control sample is identical to that in the underlying
study base. Under the assumption that Pr(X|G)=Pr(X) and Pr(D|X,G)=Pr(D|X) (Scenario C),
expression [1] simplifies to:

Although this is not identical to the distribution of X in the study base, X remains independent
of G, so tests of G-X independence should have valid Type I error rates. However, when there
is a directed edge from G to X, expression [1] becomes
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[2]

which does not in general simplify to Pr(X|G). Thus under the alternative the distribution of
G and X in the ascertained sample is not identical to the distribution in the study base, and
measures of the G-X association in the case-control sample (or restricted to either controls or
cases) will in general be biased, i.e. they will not reflect the G-X relationship in the study base.
(The odds ratio relating a binary exposure X to a binary genotype G is one exception to this
rule [Kraft 2007].) The magnitude of the bias is not clear from expression [2]; we investigate
the magnitude of bias via simulation.

Similar calculations lead to conclusions about the presence or absence of bias in Scenarios A-
F under the null or alternative summarized in Table I.

Appendix 2
The following SAS and R code perform IPW regression with appropriate variance correction
(via the weight statement in PROC GENMOD or weights option in the geeglm() function. Here
id is a unique subject identifier; X is a continuous trait; G is some coding for marker genotypes
(e.g. count of minor alleles); and weight is the (known) inverse probability of being sampled
into the case-control data set.

SAS
proc genmod data=fgfrw;

class id;

model X = G;

weight weight;

repeated subject=id;

run;

R
library(geepack)

ipw.fit <- geeglm(X∼G,weights=weight,id=id)
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Figure 1.
Directed Acyclic Graphs (DAGs) describing the joint probabilities and conditional
independence structure for genotype (G), disease status (D), secondary trait (X), and sampling
indicator (S) for the six scenarios described in the text.
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Figure 2.
Power of six analyses of marker-secondary trait association in a case-control sample (and an
analysis in the full underlying cohort); rare disease (prevalence κ=0.01), nominal Type I error
rate α=0.001.
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Figure 3.
Power of six analyses of marker-secondary trait association in a case-control sample (and an
analysis in the full underlying cohort); common disease (prevalence κ=0.10), nominal Type I
error rate α=0.001.
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Figure 4.
Average bias of analyses of marker-secondary trait association; rare disease (prevalence
κ=0.01).
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Figure 5.
Average bias of analyses of marker-secondary trait association; common disease (prevalence
κ=0.10).
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Table I

Presence or absence of bias in measures of marker-secondary trait association under the null and alternative
hypotheses of commonly-used analyses that condition on case-control ascertainment or disease status

Conditioning event C
S1 {S,D}2

Scenario A Null No Bias No Bias
Alternative3 No Bias No Bias

Scenario B Null No Bias No Bias
Alternative No Bias No Bias

Scenario C Null No Bias No Bias
Alternative Bias4 Bias

Scenario D Null No Bias No Bias
Alternative Bias Bias

Scenario E Null Bias Bias
Alternative Bias Bias

Scenario F Null Bias No Bias
Alternative Bias Bias

1
Conditions only on ascertainment, S=1; e.g. analyses that ignore case-control sampling

2
Conditions on ascertainment (by restricting to case-control sample) and case-control status D, e.g. analyses restricted to controls (or cases) or stratified

by case-control status

3
Relationships among G, X and D as in the corresponding null scenario, with the addition of a directed edge from G to X

4
Measures of the G–X relationship conditional on C may not reflect the G–X relationship in the general population
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Table V

Association between FGFR2 rs2981582 and mammographic density in a Nurses' Health Study breast-cancer
case-control sample

Analytic Approach Mean Difference Standard Error P-value

2. Unadjusted analysis −0.0017 0.0681 0.97
3. Adjusted analysis −0.0577 0.0672 0.39
4. Controls only −0.0339 0.0922 0.71
5. Cases only −0.0864 0.0979 0.37
6. Joint analysis  (controls) −0.0339 0.0922 0.14
       (cases) −0.0864 0.0979
7. IPW regression 0.0055 0.0960 0.95

Note: Mean difference is the per-minor-allele change in mean square-root transformed mammographic density, estimated using each of the six approaches
outlined in the text.
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