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We have been exploring a strategy for the synthesis of small molecules having properties
that increase the probability of success in all facets of probe- and drug-discovery pipelines –
including discovery, optimization and manufacturing.[1] This strategy involves: 1) the
synthesis of building blocks having functionality suitable for subsequent “coupling” and
“pairing” steps, 2) intermolecular coupling reactions that join the building blocks in all
stereochemical combinations and 3) intramolecular pairing reactions that join different
combinations of functional groups yielding diverse skeletons.[2] Here, we describe a
multicomponent coupling reaction that we believe will be well suited for the coupling phase
of this strategy since, among others, it yields complex and diverse α-pyrones, which are core
elements found in many biologically active compounds.[3]

Convergent syntheses[4] of α-pyrones have traditionally involved the lactonization of
ketoesters.[5] Transition metal-catalyzed cycloaddition[6] and annulation reactions[7] are
recent alternatives that have attracted much attention, but most are limited by the resulting
poor regioselectivity or the requirement for harsh reaction conditions. We envisioned that
the readily accessible propargyl propiolate 1 could be converted to different products via a
cascade process (Figure 1).[8] Late transition-metal catalyzed [3,3]-sigmatropic
rearrangement of 1 would generate an enyne allene A.[9] A 6-endo-dig cyclization would be
induced by the activation of the alkyne moiety in A to furnish the oxocarbenium
intermediate B. In one possible pathway, elimination (➀, Figure 1) would afford a vinyl α-
pyrone 2. We anticipated that the intermediate B could also be trapped by a variety of
nucleophiles. We hypothesized that we could control the trapping of electrophilic
intermediate B, which can in principle be attacked at three distinct sites (➁, ➂ and ➃,
Figure 1) by using different nucleophiles and reaction conditions. We describe the
successful realization of many of these concepts.
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A similar [3,3]-sigmatropic rearrangement followed by 6-endo-dig cyclization cascade has
been reported by Toste and coworkers for the synthesis of aromatic ketones.[9a] Stimulated
by this result, we attempted to use the reported silver(I) catalysts to achieve the
rearrangement of 1a (Table 1, entry 1). The desired vinyl α-pyrone 2a, however, was
obtained in low yield. In contrast, the widely used cationic Au(I) catalyst (entry 2)[10] at
room temperature provided 2a in 61% yield. At higher temperatures, 2a was obtained in
81% yield (entry 3) while a comparison experiment using only 5% AgSbF6 afforded a low
yield of 2a (entry 4). Increasing the temperature in 1,2-dichloroethane led to a decreased
yield (entry 5). 10% pyridine was added in hope of accelerating the elimination pathway
(entry 6), but this resulted instead in the inhibition of the reaction, presumably by
inactivation of the cationic gold catalyst by pyridine coordination.[11] Polar or coordinating
solvents decreased the reaction efficiency and acetonitrile inhibited the reaction (supporting
information).[10b] The reaction mixture converted to a gel when THF was used as the
solvent (entry 7), presumably due to the polymerization of THF induced by reactive cationic
species.[12] Three other Au(I) species were tested (entries 8–10), but none was superior to
[(Ph3P)AuCl]/AgSbF6 used in the model reaction.

The rearrangement of propargyl propiolates 1b–1f gave the desired vinyl α-pyrones 2b–2g
in 65–84% yields (Table 2). We note that the olefin moiety in 1f did not interfere with the
cascade reaction despite the precedent of reactions involving 1,6-enynes.[10b,13] Substrate
1h resulted in a less efficient reaction, yielding 2h in only 40% yield, likely due to an
intramolecular attack of the cationic intermediate by the ketal oxygen.[14]

We have also determined that the cationic intermediate B can be trapped by electron-rich
arenes and heteroarenes in a Friedel-Crafts-type reaction. Performing the model reaction
with 5 mol % [(Ph3P)AuCl]/AgSbF6 at room temperature in the presence of 2 equivalents of
trimethoxybenzene afforded the α-pyrone 3a in 82% yield (Table 3). None of the
rearrangement product 2a, or the products resulting from the nucleophilic attack at the other
two positions (➂ and ➃, Figure 1) was observed. The addition of the aromatic ring to the
alkyne[15] does not interfere with the tandem reaction. 3a was not detected when α-pyrone
2a was subjected to the reaction conditions, indicating that 2a is not an intermediate in the
formation of 3a. Electron-rich aromatics and heteroaromatics, such as indole, furan and
benzofuran, are also suitable nucleophiles in the Friedel-Crafts-type reaction, affording 3b–
3h in 59–85% yields (Table 3). We note that 3a–3h mimic the structure motif of
diarylmethanes, which have a broad spectrum of biological activities.[16] The structure of
3d was verified by X-ray analysis.[17]

When the enantiopure propargyl propiolates (R)-1e and (R)-1i were subjected to the same
reaction conditions in the presence of electron-rich heteroarenes, racemates of 3e and 3i
were obtained (Figure 2). This result suggests that the nucleophile bonds to both
enantiofaces of the oxocarbenium B with equal facility (Figure 2).

When 1j was subjected to the reaction conditions, tri-substituted α-pyrone 2j was obtained
in only 16% yield, while the major product, tricyclic compound 4, was obtained in 69%
yield (Figure 3). Since 2j was not converted into 4 when resubjected to the same conditions,
4 apparently results from a 1,2-hydride shift in intermediate C, yielding tertiary carbocation
D, which is trapped by the phenyl group in an intramolecular Friedel-Crafts reaction.[18]

Considering that the propargyl propiolates used in these multicomponent coupling reactions
can be readily synthesized from terminal alkynes and aldehydes, which are among the most
highly varied and abundant building blocks, we anticipate that this coupling reaction will be
well suited for the strategy noted in the Introduction. Two additional observations reinforce
this expectation. Our preliminary studies suggest that trapping the intermediate
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oxocarbenium ion with alcohol-based nucleophiles results in attack at the lactone carbonyl
carbon, resulting in an alternative skeleton (manuscript in preparation). Secondly, strategic
placement of suitable functionality in the building blocks allows functional group-pairing
reactions that enable further skeletal diversification. To illustrate, coupling product 3k
undergoes a ring-closing metathesis to yield the polycyclic α-pyrone 5 (Figure 4). We are
currently exploring the potential of these reaction processes in diversity syntheses and
determining the assay performance of the resulting products using many small-molecule
screens.
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Figure 1.
Syntheses of trisubstituted α-pyrones via transition metal-catalyzed cascade reactions.
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Figure 2.
Racemic products result from non-racemic propargyl propiolates.
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Figure 3.
Cascade process yielding a tricyclic α-pyrone.
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Figure 4.
Intramolecular functional group-pairing reaction involving substituents attached to distinct
building blocks prior to the intermolecular coupling reaction (c.f., “Build/Couple/Pair
strategy”[2]).
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Table 1

Optimization of reaction conditions for the rearrangement of 1a into 2a

Entry Catalyst Conditions Yield [%]a

1a 2a

1 AgSbF6
b CH2Cl2, RT 95 trace

2 [(Ph3P)AuCl]/AgSbF6 CH2Cl2, RT 0 61

3 [(Ph3P)AuCl]/AgSbF6 CH2Cl2, reflux 0 81

4 AgSbF6 CH2Cl2, reflux 25 11

5 [(Ph3P)AuCl]/AgSbF6 1,2-DCE, 60°C 0 67

6 [(Ph3P)AuCl]/AgSbF6
c CH2Cl2, RT 96 0

7 [(Ph3P)AuCl]/AgSbF6 THF, 40°C -- --d

8 [(Ph3PAu)3O]BF4
e CH2Cl2, reflux 95 0

9 [(Ph3P)AuNTf2] CH2Cl2, reflux 0 45

10 [(Ph3P)AuCl]/AgOTf CH2Cl2, reflux 0 48

a
Isolated yields after column chromatography.

b
2 mol % PPh3, 1.5 equiv. MgO as additive.

c
10 mol % pyridine as additive.

d
The reaction mixture became vigorous and solidified.

e
2 mol % catalyst.
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Table 2

Gold(I)-catalyzed rearrangement of propargyl propiolates to vinyl α-pyronesa

Substrate Product Substrate Product

1b 2b 1c

2c
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Substrate Product Substrate Product

1d`

2d

1e

2e

1f

2f

1g

2g
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Substrate Product Substrate Product

1h

2h

a
Reaction conditions: propargyl propiolate (0.05 M), [(Ph3P)AuCl]/AgSbF6 (5 mol %), CH2Cl2, reflux, 12 h.
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Table 3

Gold(I)-catalyzed syntheses of trisubstituted α-pyrones from propargyl propiolatesa

Substrate/Nu Product Substrate/Nu Product

1a+ 3a

1b+

3b

1c+

3c

1d+

3d
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Substrate/Nu Product Substrate/Nu Product

1e+

3e

1f+

3f

1g+

3g

1h+

3h

a
Reaction conditions: propargyl propiolate (0.05 M), nucleophile, [(Ph3P)AuCl]/AgSbF6 (5 mol %), CH2Cl2, room temperature, 24 h.
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