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Abstract

Central nervous system (CNS) invasion during acute-stage HIV-infection has been demonstrated in a small number of
individuals, but there is no evidence of neurological impairment at this stage and virus infection in brain appears to be
controlled until late-stage disease. Using our reproducible SIV macaque model to examine the earliest stages of infection in
the CNS, we identified immune responses that differentially regulate inflammation and virus replication in the brain
compared to the peripheral blood and lymphoid tissues. SIV replication in brain macrophages and in brain of SIV-infected
macaques was detected at 4 days post-inoculation (p.i.). This was accompanied by upregulation of innate immune
responses, including IFNb, IFNb-induced gene MxA mRNA, and TNFa. Additionally, IL-10, the chemokine CCL2, and
activation markers in macrophages, endothelial cells, and astrocytes were all increased in the brain at four days p.i. We
observed synchronous control of virus replication, cytokine mRNA levels and inflammatory markers (MHC Class II, CD68 and
GFAP) by 14 days p.i.; however, control failure was followed by development of CNS lesions in the brain. SIV infection was
accompanied by induction of the dominant-negative isoform of C/EBPb, which regulates SIV, CCL2, and IL6 transcription, as
well as inflammatory responses in macrophages and astrocytes. This synchronous response in the CNS is in part due to the
effect of the C/EBPb on virus replication and cytokine expression in macrophage-lineage cells in contrast to CD4+
lymphocytes in peripheral blood and lymphoid tissues. Thus, we have identified a crucial period in the brain when virus
replication and inflammation are controlled. As in HIV-infected individuals, though, this control is not sustained in the brain.
Our results suggest that intervention with antiretroviral drugs or anti-inflammatory therapeutics with CNS penetration
would sustain early control. These studies further suggest that interventions should target HIV-infected individuals with
increased CCL2 levels or HIV RNA in the CNS.
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Introduction

HIV infection of the brain is thought to occur during acute

infection based on a limited number of case reports and studies

[1–3]. Because the earliest stage of infection cannot be studied in

humans, it is not clear whether acute infection in the central

nervous system (CNS) elicits inflammatory responses similar to

those that are observed during late-stage infection in the brain. It

has been postulated that HIV infection is cleared from the brain

after acute infection, and that CNS deficits occur because of re-

entry of virus into the CNS during late-stage disease—when there

is high viral load in peripheral blood and immune impairment

[4,5]. This is particularly relevant in the current HAART-era,

when patients frequently maintain suppression of virus replication

in the peripheral blood. Despite this control of patient virus

replication, HIV-associated neurocognitive disorders are prevalent

and increasing [6–8]. Thus, it is essential to understand the innate

mechanisms in the brain that may naturally suppress both virus

replication and the accompanying inflammatory responses that are

linked to eventual loss of neuronal function and neuronal apoptosis

in the CNS.

The regulation of virus replication in the brain and the

peripheral blood may be different because productively infected

cells in brain are of macrophage-lineage, in contrast to CD4+
lymphocyte in the peripheral blood and immune tissues [9–13].

Our reproducible SIV macaque model of HIV/AIDS and CNS

disease provides an opportunity to examine the brain and

periphery during specific time points during acute and early

infection. We previously have characterized innate immune

response in the brain that regulated the transcriptional regulation

of virus in infected macrophages in vitro and in vivo during acute

infection.

Our earlier studies in the SIV macaque model demonstrated

that there is virus replication in the brain during acute infection.
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After acute infection, virus is not completely cleared from the

brain despite reduction in viral replication. SIV DNA levels

remain constant in the brain from acute- to late-stage disease;

however, there is a shift in transcriptionally active to inactive SIV

DNA during the asymptomatic period [12,14,15]. Induction of

innate immune responses in brain macrophages—the predomi-

nant productively-infected cells in the brain—can suppress SIV

gene expression in these cells, resulting in cerebrospinal fluid (CSF)

and brain viral load reductions. We have further demonstrated

that induction of IFNb, the first type I IFN to be produced in

response to viral infections, reduces SIV replication in vitro in

primary macaque macrophages by a transcriptional mechanism.

Additionally, acute infection IFNb induction in the brain

correlates with repression of SIV transcription in macrophages;

this correlation is also observed with the IFNb downstream

transcriptional regulatory pathway protein C/EBPb, a member of

the CCAAT/enhancer binding protein family of transcription

factors in macrophages [14–26]. In addition to controlling virus

infection, IFNb-induced genes—particularly C/EBPb—regulate

inflammatory gene cascades, limiting inflammation and damage in

tissues [26–31].

Understanding the regulation of inflammatory pathways in the

brain during infection and the molecular events linked to control

of inflammation is critical to preventing the development of HIV

encephalitis and cognitive changes observed in HIV-infected

individuals. HIV-1 and SIV infection upregulate the inflammatory

cytokines IL1b, TNFa and IL-6 in brain in macrophages, as well

as the chemokine CCL2 in macrophages and astrocytes [32–39];

this induction, along with the induction of type I IFNs, promotes

antiviral responses. However, these cytokines, including IFNb and

C/EBPb, also prevent inflammatory responses from continuing

unchecked [26–31]. IFNb regulates the transcription factor C/

EBPb, which is critical to the transcriptional regulation of the

proinflammatory genes IL-6, CCL2 and TNFa [29,40,41].

Previous studies in our model demonstrated that increased levels

of C/EBPb in macrophages and the brain led to the decreases in

RNA transcription and SIV promotor histone acetylation [14,15].

The dominant-negative form of C/EBPb also may be important

for regulation of proinflammatory genes in the HIV-1- or SIV-

infected brain.

Using our SIV macaque model of HIV/AIDS and CNS

disease, we demonstrate in this study that infection of the brain

occurs during the earliest phase of acute infection. By 4 days post-

inoculation (p.i.), SIV replication is detected in CD14+ macro-

phages in the brain and infection is accompanied by a widespread

innate immune response. Further, there is coordinated induction

of TNFa, IL10 and CCL2 in the brain during acute infection.

Following acute infection (4–10 days p.i.), there is a decrease in

the levels of proinflammatory cytokines in the brain, accompanied

by a reduction in inflammatory markers in macrophages,

endothelial cells and astrocytes in brain. This downregulation of

cytokines and SIV in the brain is not sustained; increased

expression can occur macaques with development of CNS disease

by 42 days p.i.

Results

In previous studies we examined SIV virus load, CCL2 and IL6

protein in CSF from infected macaques [9,36,37,42–44]. In this

study, we quantified virus replication, proinflammatory cytokines

and innate immune responses directly in the brain of SIV-infected

macaques at multiple times during acute and early stages of

infection to correlate them with longitudinal disease progression.

In addition, SIV-infected macaques were euthanized at 42 days

p.i. to examine cytokine and innate immune responses that are

present during resurgence of virus replication.

SIV Infection and Innate Immune Responses in Brain at 4
Days P.I.

Based on our previous studies, SIV viral load is detectable at 7

days p.i. in the plasma and CSF of infected macaques, while SIV

mRNA in the brain is observed at 7 and 10 day p.i.

[9,36,37,42,43]. In this study, we examined the brain of SIV-

infected macaques at 4 days p.i. to determine when virus infection

in the brain occurs compared to the peripheral blood. There was

significant virus in the peripheral blood (median of 5.26106 SIV

RNA copy eq./ml plasma in 6 SIV-infected macaques) and in

CSF (median of 3.56104 RNA copy eq./ml CSF) at 4 d p.i. at

these early time points (Figure 1). SIV RNA also was detected in

the brain (basal ganglia and the adjacent white matter and

cerebral cortex) in 6 of 6 SIV-infected macaques at this early time

point (Table 1). Since there is no evidence that there is breakdown

of the blood brain barrier at or that virus is transported across the

blood brain barrier these data strongly suggest that virus enters

and replicates in the brain during the earliest period of acute

infection in the peripheral blood.

To determine whether macrophages in the brain are infected at

4 days p.i., macrophages were isolated from brain of the SIV-

infected macaques euthanized at 4 days p.i. (as previously

described [45]). From the isolated brain macrophages, CD14+
macrophages were selected with CD14-antibody coated beads and

Figure 1. Quantitation of SIV virion RNA in plasma and CSF of
SIV-infected macaques. SIV RNA was isolated from 140 ml of plasma
and CSF collected at terminal time points from uninfected and SIV-
infected macaques sacrificed at 4, 7, 10, 14, 21, or 42 days p.i. SIV RNA
copy equivalents were determined by quantitative RT-PCR, and the
means (diamonds for plasma and squares for CSF) and standard
deviation for each experimental group are indicated.
doi:10.1371/journal.pone.0008129.g001

Table 1. SIV Replication in Brain 4 Days P.I.

SIV RNA Copy equivalents/ug RNA

Brain homogenate 191 (47–399)

CD14+ selected macrophages 9,390 (148–14,550)

CD11b+/CD142 selected
macrophages

60 (,10–198)

doi:10.1371/journal.pone.0008129.t001

SIV Infection in Brain
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the remaining unselected cells were then selected with CD11b-

antibody coated beads. The CD14+ macrophages have recently

entered the brain and are located in the perivascular region, while

the CD11b+ (CD142) macrophages represent the resident brain

microglia in the brain parenchyma [46–50]. The CD14+
macrophages had significantly higher levels of SIV RNA than

the brain homogenates from basal ganglia or parietal cortex

(Table 1), while the CD11b+ population had low or no detectable

SIV RNA. These data strongly suggest that the CD14+
macrophages that have recently entered the brain are the source

of SIV replication during the earliest period of CNS infection and

virus is not replicating to a significant level in microglia at this

time.

Viral infection in the brain is accompanied by innate immune

responses, in particular, the induction of mRNA for IFNb and

MxA [14,15,25]. Almost all cells express the IFNa/b receptor,

thus, once the innate immune response is initiated by infection in

the cell, soluble IFNb binds to many cells inducing IFNb and IFN-

induced genes, such as MxA. The levels of IFNb and MxA

mRNAs were measured in brain homogenates and isolated

macrophages from the brain of SIV-infected macaques euthanized

at 4 days p.i. (Table 2). IFNb mRNA was induced 1.8-fold in SIV-

infected brain homogenate over uninfected levels; this induction

was comparable to levels induced in SIV-infected macrophages in

vitro [14,25]. The increase in IFNb mRNA has a multiplicative

effect on the downstream MxA mRNA, which is induced .50 fold

(Table 2), reflecting the induction of the innate immune responses

in the brain at 4 days p.i. In comparison when the CD14+
macrophages were analyzed, there was a 38 fold increase in the

induction of IFNb mRNA and over a 800 fold increase in MxA

RNA, reflecting the response to SIV replication in these cells as

well as the paracrine response to IFNb produced by the infected

CD14+ macrophages. In contrast, the CD11b+ microglia that

contain low levels of SIV RNA had a 200 fold increase in IFNb
mRNA and a 830 fold increase in MxA RNA, reflecting a

paracrine response to the IFNb produced in the infected CD14+
macrophages.

SIV Replication in Peripheral Blood and Brain
To compare virus replication in peripheral blood, CSF, and

brain, SIV RNA isolated from plasma and CSF was measured by

quantitative RT-PCR at the terminal time point for each of the 55

SIV-infected macaques (Figure 1). There was a difference in the

increase in virus during acute infection in plasma (4–7 days p.i.)

compared to CSF (4–7 days p.i. and 4–10 days p.i.) as well as in

the peak of levels of virus, in plasma the peak was at 7 days p.i.

compared to 10 days p.i. in CSF. The difference in levels and peak

of virus in the peripheral blood and CSF could be due to the delay

in virus infected cells entering the brain as well as the different cells

in the two compartments that support virus replication, predom-

inantly, CD4+ lymphocytes in the peripheral blood compared to

macrophages in the brain.

In both plasma and CSF, viral load decreased approximately

10-fold from the peak level at 14 days p.i. Decrease in the levels

of virus occurred more rapidly in CSF (from 10–14 days p.i.) than

in plasma (from 7–14 days p.i. and from 10–14 days p.i). The

decrease in SIV replication in brain has been shown in our model

to be due to the effects of IFNb produced in response to infection

that reduces SIV transcription in macrophages [9,14] but does

not have this effect in CD4+ lymphocytes. Further, the more

rapid decline in SIV in CSF suggests that there are different

mechanisms that control SIV replication in plasma versus CSF or

brain.

Median brain SIV RNA levels for six macaques showed a rapid

increase between 4 and 10 days p.i., with very little change

between 10 and 14 days p.i. (Figure 2). SIV RNA levels were

more variable at 21 days p.i. The rapid increase in SIV RNA

from 4–10 days p.i., followed by the small increase between 10

and14 days p.i., indicates control of SIV replication, which is

reflected in the CSF as a 10-fold reduction in virus. At 42 days

p.i., SIV RNA levels showed a wide range of virus replication:

from levels below day 4–21 days p.i. to levels 100–1000–fold

higher than 21 days p.i. Thus, in some of the SIV-infected

macaques virus replication appears to have been controlled,

while in others virus replication resurged to levels much higher

than during acute and early infection. However, there was no

difference in the level of virus in the plasma of the macaques that

controlled SIV replication in the brain compared to those that did

not. The level of SIV RNA in brain correlated with the severity of

CNS lesions (r = 0.95; p,0.001) (Table 3) while there was no

correlation between the level of virus load in the plasma and the

severity of CNS lesions.

Table 2. Innate Immune Response in Brain 4 Days P.I.

IFNb mRNA* MxA mRNA*

Brain homogenate 1.8 54.1

CD14+ selected macrophages 37.8 813.8

CD11b+/CD142 selected
macrophages

213.0 831.9

*Fold increase compared to uninfected control levels in brain.
doi:10.1371/journal.pone.0008129.t002

Figure 2. SIV RNA expression in brain of SIV-infected
macaques. SIV RNA copies were quantitated by quantitative RT-PCR
in RNA isolated from brain collected at each terminal time point from
uninfected and SIV-infected macaques (4, 7, 10, 14, 21, or 42 days after
inoculation). Medians (black bars) and the range (vertical bars) for each
experimental group are indicated. The 21 day group (12 macaques)
were split into two groups that had viral RNA levels above or below the
median of the 14 day macaques; the median for these two groups are
shown. For the 42 day group, each diamond represents one animal,
color-coded according to CNS disease severity (red - severe; blue -
moderate; turquoise - mild; green–none), and the black bars represent
the medians for severe/moderate (red dotted line), and mild/none
animals (green dotted line).
doi:10.1371/journal.pone.0008129.g002

SIV Infection in Brain
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Innate Immune Responses in SIV-Infected Brain
In these studies, IFNb and MxA mRNA levels (as well as all of

the cytokine RNA levels) were quantified by the DDCT method,

normalized to levels in uninfected control macaques, and reported

as fold-change in RNA copies (Figure 3). IFNb mRNA was

induced 1.6- and 2.0-fold over levels in uninfected animals at 4

and 7 days p.i. respectively, and was reduced to comparable with

uninfected animals at 10 and 14 days p.i. The IFNb-induced gene

MxA was induced 54- and 63-fold over uninfected levels at 4 and 7

days, respectively, in parallel with IFNb induction; and at 10 and

14 days induction was reduced to 11- and 2.7-fold, respectively.

IFNb and MxA mRNA levels were elevated over uninfected

control levels in the brain of 3/11 macaques euthanized at 21 days

p.i. At 42 days p.i., IFNb levels in the brains of 6/9 SIV-infected

macaques were lower than in uninfected animals and in the

remaining animals they were induced 3–4 fold over uninfected

levels. There was no correlation with SIV RNA levels; however,

MxA in the brain of SIV-infected macaques sacrificed at 42 days

p.i also varied widely, but levels were correlated with SIV RNA

levels in the macaques with severe and moderate CNS lesions

(r = 0.90, p,0.001) (Table 3).

IFNb RNA is regulated by sequences in the 39 UTR that

mediate rapid turnover of the RNA [51]. To assess whether IFNb
protein levels in brain correlated directly with SIV RNA levels,

IFNb protein in brain was measured by quantitative Western

analyses (Figure 4). IFNb protein levels increased 1.5- and 4.0-fold

compared to uninfected levels at 4 and 7 p.i.; there were also

increased levels of protein compared to uninfected controls at 10

and 14 days p.i. Both IFNb protein and mRNA levels decreased at

21 days p.i. At 42 days p.i. there was no correlation between SIV

RNA levels and either IFNb mRNA or protein expression

(Figure 4 and Table 3).

TNFa response occurs concomitant with type I IFN responses

and is one of the first responses to viral infection of macrophages.

TFNa is induced, like IFNb, through the intracellular RNA

helicase, RIG-I [52–55]. TNFa mRNA in the brain was increased

at 4 days p.i. (Figure 3), reached the highest level at 10 days p.i., and

then decreased to pre-infection levels by 14 days p.i. This pattern of

change during acute SIV infection in the brain paralleled that

observed for IFNb mRNA. At 42 days p.i., TNFa mRNA levels fell

into two groups: 3/9 macaques had levels of induction greater than

20-fold, while 6/9 had levels of induction 6-fold or lower

(Figure 3C). Unlike IFNb mRNA levels at 42 days p.i, TNFa
mRNA correlated with SIV RNA levels (r = 0.86, p = 0.003).

Figure 3. Quantitation of mRNA in brain of SIV-infected
macaques. A) IFNb; B) MxA; and C) TNFa mRNA was isolated from
brain of uninfected and SIV-infected macaques at terminal time points
(4, 7, 10, 14, 21, or 42 days after inoculation) and mRNA levels
quantitated by quantitative RT-PCR. mRNA levels in the SIV-infected
brain are represented as fold change over the average of three
uninfected brain RNAs, calculated by DDCt. Medians (black bars) for
each experimental group are indicated. For the 42-day group, each
diamond represents one animal, color-coded according to CNS disease
severity (red-severe; blue-moderate; turquoise-mild; green-none), and
the black bars represent the medians for severe/moderate (red dotted
line), and mild/none animals (green dotted line). Outliers whose values
were higher than 5 times the standard deviation for each group were
excluded.
doi:10.1371/journal.pone.0008129.g003

Table 3. Severity of CNS Lesions and SIV RNA in Brain at 42
days P.I.

Animal
Severity of CNS
lesions SIV RNA copy equiv./ug RNA Brain

PQw2 None 49

PLc2 None 2,169

PLi2 None 10,048

PWf2 None 38,600

PEe2 Mild 202,067

PGe2 Mild 238,300

PFc2 Moderate 2,104,000

PRd2 Severe 16,226,667

PLb2 Severe 26,876,667

doi:10.1371/journal.pone.0008129.t003

SIV Infection in Brain
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Relative Expression of C/EBPb-2 and C/EBPb-3 in Brain at
42 Days P.I.

We previously demonstrated that there is induction of C/EBPb-

3—the dominant-negative isoform of C/EBPb—in the brain of

SIV-infected macaques at 7, 10 and 21 days p.i., and that the level

of C/EBPb-3 correlates with the suppression of SIV RNA [14,15].

Here we examined the levels of C/EBPb-2 and C/EBPb-3 in the

brain of the SIV-infected macaques euthanized at 42 days p.i. to

determine whether there was a correlation between the ratio of

C/EBPb-3:C/EBPb-2 and the level of expression of viral RNA.

Since there are no antibodies that distinguish the C/EBPb-2

and C/EBPb-3 isoforms, quantitative Western blot analyses were

performed on brain homogenates from macaques euthanized at 42

days p.i. and the ratio of C/EBPb-3:C/EBPb-2 was measured

(Table 4). There was an inverse correlation (r = 20.78, p = 0.02)

between the ratio of C/EBPb-3:C/EBPb-2 and the level of SIV

RNA in the brain. There was also an inverse correlation with IL6

mRNA levels (r = 20.67, p = 0.05). We observed previously that

higher ratios of C/EBPb-3:C/EBPb-2 correlated with reduction

of SIV replication during acute infection and these results supports

a strong role for the induction of C/EBPb-3 by IFNb and

potentially other IFNb pathways that control SIV replication and

cytokines.

Cytokines mRNA Levels in the Brain
CCL2 and IL6 have been correlated with the development of

CNS disease in HIV. In addition to CCL2 and IL6 mRNA

quantification, we measured mRNA of IL10 and IL12, whose

secretion defines differently activated subsets of macrophages

(Figure 5) [56]. CCL2 mRNA increased at 4 days p.i., peaked at 7

days p.i. and decreased at 10 and 14 days p.i. At 21 days p.i.

CCL2 levels increased in parallel with SIV RNA (Figure 5A).

Similarly, IL6 mRNA was induced, consistent with observations in

CSF that IL6 changes paralleled those of CCL2. IL6 mRNA levels

peaked at 7 days p.i., were at the lowest level of induction at 14

days p.i., and increased at 21 and 42 days p.i. (Figure 5B). IL10

mRNA peaked during acute infection at 4 days p.i. and then

declined to uninfected levels by 7–14 days p.i. (Figure 5C). IL10

mRNA levels were elevated again at 21 days p.i. and by 42 days

p.i. In contrast to the other cytokines examined, IL12 (p40) mRNA

levels were lower than levels in uninfected animals throughout

acute infection, never increasing to levels above those in

uninfected macaques (Figure 5D). The acute infection levels of

IL12 mRNA showed an inverse pattern compared to IL10 mRNA

levels. Thus, all the mRNAs examined, except for IL-12, increased

during acute infection and then declined to uninfected levels in the

brains of the macaques euthanized at 14 days p.i. This appears to

represent a coordinated downregulation of the initial inflamma-

tory cytokine responses that are triggered at 4 days p.i. by virus

infection in macrophages in brain.

Expression of Macrophage, Endothelial Cell and
Astrocyte Inflammatory Proteins during Acute Infection
and Early Disease

To examine the expression of proteins associated with cellular

activation or inflammatory responses during acute infection in

brain macrophages, astrocytes and endothelial cells, sections of

brain (basal ganglia) were stained for CD68 (macrophage

activation marker), MHC Class II (macrophage and endothelial

cell activation marker), and GFAP (astrocyte activation marker).

At 4 days p.i., MHC Class II and CD68 expression increased

in the SIV-infected brain by 2.4- and 7-fold, respectively

(Figures 6A and 6B). Expression rapidly returned to uninfected

levels at 7 and 10 days p.i. While CD68 is found exclusively in

macrophages, MHC Class II is expressed in both macrophages

and endothelial cells. At 4 days p.i., MHC Class II was almost

exclusively expressed in endothelial cells in the SIV-infected

brain (Figure 6), whereas at later time points, it was expressed in

endothelial cells but more prominently in macrophages. GFAP

expression in astrocytes also increased 1.7-fold at 4 days p.i.

(Figure 6C). The expression of all three of these cellular

activation proteins decreased by 10 days p.i. and increased

expression occurred between 14 and 21 days p.i. At these time

points, MHC Class II expression was detected in both

macrophages and endothelial cells. At 42 days p.i., the expression

level of all three cellular activation proteins correlated with the

severity of CNS disease in the brain and with levels of SIV RNA

in brain (MHC CLASS II and CD68 r = 0.95, p,0.001; GFAP

r = 0.74, p = 0.03) (Table 4).

Figure 4. IFNb protein levels in brain of SIV-infected macaques.
Brain homogenates were made from brain from uninfected and SIV-
infected macaques at terminal time points (4, 7, 10, 14, 21, or 42 days
after inoculation) and IFNb protein was quantitated by quantitative
western analyses as described in Methods and Materials. Medians (black
bars) for each experimental group are indicated. For the 42 day group,
each diamond represents one animal, color-coded according to CNS
disease severity (red-severe; blue-moderate; turquoise-mild; green-
none), and the black bars represent the medians for severe/moderate
(red dotted line), and mild/none animals (green dotted line). Protein
band intensities were normalized to GAPDH.
doi:10.1371/journal.pone.0008129.g004

Table 4. SIV RNA and Ratio of C/EBPb-3/C/EBPb-2 in SIV-
infected Macaque Brain at 42 Days P.I.

Animal SIV RNA copy equiv./ug RNA Brain C/EBPb-3/C/EBPb-2

PQw2 49 1.27

PLc2 2,169 1.92

PLi2 10,048 0.76

PWf2 38,600 0.96

PEe2 202,067 0.61

PGe2 238,300 0.71

PFc2 2,104,000 0.80

PRd2 16,226,667 0.63

PLb2 26,876,667 0.49

doi:10.1371/journal.pone.0008129.t004

SIV Infection in Brain
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CNS Lesions in SIV-Infected Macaques at 42 Days P.I.
SIV encephalitis is characterized by numerous perivascular cuffs

of epithelioid macrophages and multinucleated giant cells, as well

as multifocal nests of activated macrophages and astrocytes in the

parenchyma. These lesions are very similar to HIV encephalitis,

except that SIV-infected macaque brains often contains more

lymphocytes; this is probably due to the fact that macaques are

euthanized when they exhibit any clinical signs of disease, so the

CNS is likely examined at an earlier stage of CNS disease

progression [57].

Approximately 55% (5/9) of macaques euthanized at 42 days

p.i. developed neurological disease: 2 macaques were classified

pathologically with mild CNS lesions, 1 with moderate CNS

lesions, and 2 with severe CNS lesions. In our previous studies in

the SIV macaque model, we found that 90% (26/29) of macaques

euthanized at 84 days p.i., developed neurological disease and

41% were classified as severe CNS lesions [58]. For macaques

euthanized at 42 days p.i., there was a significant correlation

between SIV RNA levels and the severity of CNS disease (r = 0.95;

p,0.001). The strong correlation between viral RNA levels in the

brain and the severity of CNS lesions has been reported previously

in this model in SIV-infected macaques euthanized at 84 days p.i.,

but had not been observed as early as 42 days p.i. [43,58]. At 42

days p.i., IL6 and IL10 mRNA levels correlated with CNS lesion

severity (r = 0.71, p = 0.04 and r = 0.69, p = 0.05, respectively).

Discussion

While HIV and SIV infect the brain during acute infection,

there is no evidence of cognitive alterations or ongoing

inflammatory changes in the brain during this early CNS

infection. Other studies have demonstrated SIV infection in the

brain during early infection, as well as the induction of innate

immune responses; however, there are no HIV or SIV studies that

have examined all of these viral and cellular changes in the same

macaques on a longitudinal basis throughout acute infection

[33,59]. This is due, in part, to the variable course of disease in

Figure 5. CCL2, IL6, IL10, and IL12 mRNA in brain of SIV-infected macaques. mRNA was isolated form brain of uninfected and SIV-infected
macaques at terminal time points (4, 7, 10, 14, 21, or 42 days after inoculation). mRNA levels for A) CCL2; B) IL6; C) IL10; and D) IL12 was measured by
quantitative RT-PCR and mRNA levels in the SIV-infected are represented as fold change over the average of the uninfected values, calculated by
DDCt. Medians (black bars) for each experimental group are indicated. For the 42-day group, each diamond represents one animal, color-coded
according to CNS disease severity (red-severe; blue-moderate; turquoise-mild; green-none). The black bars represent the medians for severe/
moderate (red dotted line), and mild/none animals (green dotted line).
doi:10.1371/journal.pone.0008129.g005
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both HIV infected individuals as well as experimentally SIV-

infected macaques that take years to develop AIDS with only a

subset of humans or macaques developing CNS disease. In this

study we have used our consistent and accelerated SIV model, in

which all infected macaques develop AIDS and 90% develop

mild-severe CNS disease by 3 months p.i.; the consistent CNS

disease development makes this model ideal for the study of CNS

lesion development and associated events in the brain. In this

study a total of 55 SIV-infected macaques were euthanized at 4, 7,

10, 14, 21 and 42 days p.i. to examine the viral and cellular

changes that occur from acute infection at 4–10 days p.i. to the

early development of disease between 21 and 42 days p.i.

These studies demonstrate for the first time that a transient but

effective innate immune response in brain effects coordinated

control of both virus replication and the pro-inflammatory

cytokines produced in response to acute infection. We demonstrate

that SIV replication occurs in the brain as early as 4 days p.i.,

predominantly in perivascular macrophages. Virus infection in the

brain at 4 days p.i. was accompanied by IFNb and TNFa
responses; these antiviral responses waned rapidly by 14 days and

there was control of virus replication during this period. IFNb and

MxA mRNAs were upregulated in both the CD14+ and CD11b+
macrophage populations from the brain, while virus replication

was predominantly in the CD14+ macrophages, suggesting that

innate immune responses are more widespread than the SIV

infection in these cells. Thus, both SIV infection and the

accompanying innate immune response in brain and in macro-

phages enriched from brain are detectable as early as 4 days p.i.—

at the same time that virus replication is detected in the peripheral

blood.

In addition, the induction of the cytokines IL6, IL10, and the

chemokine CCL2 occurred during acute infection (Figure 7).

CCL2 is produced in astrocytes in response to HIV and SIV

infection of the CNS [35,60,61]. CCL2 secretion in the brain is

thought to create a gradient that recruits peripheral blood

monocytes and activated and infected lymphocytes into the brain

[62,63]. In addition, production of CCL2 by astrocytes has been

demonstrated in vitro to have neuroprotective effects in astrocytes

and neurons by inhibiting apoptosis [64].

We also observed induction of the dominant-negative isoform of

C/EBPb, C/EBPb-3, which is a key mediator in this cytokine

cascade. The C/CAAT family protein C/EBPb is important in

regulating the expression of cytokines and has been implicated in

anti-inflammatory control by IFNb [26,29,30,40,65,66]. There are

multiple protein isoforms of C/EBPb and these differ in structure

and function. The major isoform translated from the second AUG

in the C/EBPb mRNA (referred to LAP in rodents and C/EBPb-

2 in humans) contains the transcriptional activation domain as well

as the DNA binding domain and activates transcription. The

isoform that is translated from the third AUG in the C/EBPb

Figure 6. Expression of MHC Class II, CD68 and GFAP in brain of SIV-infected macaques. Quantitative immunohistochemistry was used to
measure A) MHC class II; B) CD68; and C) GFAP in brain from SIV-infected macaques at terminal time points (4, 7, 10, 14, 21, or 42 days p.i.). The
quantification of each protein is based on the mean of 20 measures on brain from each macaque. D) MHC class II expression in brain at 4 days p.i. E)
CD68 expression in brain at 4 days p.i.
doi:10.1371/journal.pone.0008129.g006
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mRNA (called LIP in rodents and C/EBPb-3 in humans) contains

only the DNA binding domain and functions in the presence of

LAP or C/EBPb-2 as a dominant-negative transcriptional

repressor [16,67]. The ratio of the two isoforms is important in

regulating transcription of a number of cytokine genes, including

CCL2, IL-6, IL-10 and TNF-a. The C/EBPb-3:C/EBPb-2 ratio

also regulates SIV transcription in vitro in primary macrophages as

well as SIV replication in brain (in which macrophages/microglia

are the primary productively infected cells) [14,25]. In this

previous study, the level of C/EBPb-3 in brain of SIV-infected

macaques increased from 7–21 days and this correlated with the

reduction of SIV mRNA in brain, as well as the level of acetylation

of histone H4 downstream from the SIV transcriptional start site.

Unlike C/EBPb-2, C/EBPb-3 does not recruit histone acetylases

to the promoter and the promoter is deacetylated when C/EBPb-3

is present in the promoter and transcription is suppressed

[14,15,25].

Both IL-10 and IFNb have been demonstrated to induce the

expression of C/EBPb-3, contributing to the induction of this

isoform of C/EBPb in the brain during acute infection [23]. IFNb
and IL10 induction of C/EBPb-3 plays an important role in the

anti-inflammatory control for these two cytokines in macrophages

and it appears that the level of C/EBPb-3 correlate with

expression of virus during acute infection, as well as the level of

virus replication at 42 days p.i. Thus, in this study we have

demonstrated that a cellular transcription factor that is induced by

IFNb and IL-10 is important in the brain for regulating virus

replication and the expression of pro-inflammatory cytokines that

are strongly linked to CNS inflammation and HIV-associated

CNS disease. We have now demonstrated that C/EBPb-3 levels

correlate with not only virus replication in the brain, but the

severity of CNS lesions and expression of inflammatory proteins in

macrophages, endothelial cells and astrocytes, suggesting that this

is an important pathway for controlling the progression of HIV

and SIV CNS damage and disease processes.

An exception to the observed general pattern of cytokine

induction was expression of the pro-inflammatory cytokine IL12,

which was markedly suppressed during all stages of infection. A

recent cohort study demonstrated that IL12 expression was

deficient in chronically infected HIV individuals, although IL12

was induced in the periphery during acute infection [68]. It is clear

from our studies that the inflammatory IL12 response during acute

phase is different between the periphery and the CNS, with

repression of IL12 observed in brain at all time points in our

model. The function of IL12 in peripheral infection is thought to

include stimulation of CD4+ help in the CTL process. [69] This

role is unlikely to be as important in the brain during acute

infection, which is marked by low numbers of brain lymphocytes

and low proportions of CTLs and NKs [70].

The transient expression of CD68 in macrophages, MHC Class

II in endothelial cells and GFAP in astrocytes at 4 days p.i.

demonstrates that cellular pro-inflammatory responses are trig-

gered during acute infection and, like the cytokine and chemokine

responses, rapidly return at 7–10 days p.i. to levels observed in

uninfected macaques. This provides evidence at the cellular level

that the coordinated regulation of pro-inflammatory genes occurs

in endothelial cells, perivascular macrophages and astrocytes. The

decreased expression of MHC Class II expression on endothelial

cells would be expected to decrease the entry of monocytes and

lymphocytes into the CNS and contribute to the control in virus

replication observed.

Our studies further indicate the development of two patterns of

viral replication in brain as early as 21 days p.i.: one characterized

by SIV RNA levels lower than day 10 and 14 p.i. levels and one

characterized by higher levels. Indeed at 42 days p.i. the two levels

of virus replication strongly correlate with the severity of CNS

lesions, as well as CD68, MHC CLASS II and GFAP protein

levels in brain. We also observed a correlation between IL6 and

IL10 levels and CNS lesion development at 42 days p.i..

The coordinated control of virus replication and inflammation

suggests that there are specific—and possibly common—mecha-

nisms in the brain that limit inflammatory processes produced in

response to HIV and SIV infection and provides an explanation

for the lack of neurological deficits and CNS inflammation during

acute HIV infection in the brain. Our data suggest that the level of

C/EBPb-3 in brain plays an important role in regulation, although

there are likely additional pathways that are involved in regulating

the inflammatory responses. If the regulatory mechanisms that

impact both virus replication and pro-inflammatory cascades fail

to control virus replication, virus then induces both IFNb and

TNFa; however, at this stage of the infection (by 21 days p.i.)

adaptive immune responses have been induced and the presence

of the adaptive along with the innate immune responses probably

contribute to the inability of the anti-inflammatory mechanisms to

regulate either virus replication or infection-induced inflammatory

responses.

We have previously demonstrated that treatment with minocy-

cline, an antibiotic that has anti-inflammatory effects in the brain,

can impact the inflammatory response to SIV at 21 days p.i. when

initiated after acute infection [71]. The data reported here,

together with the minocycline studies, suggest that therapeutic

intervention with specific drugs that control HIV infection and/or

the inflammatory responses in the brain could prevent the

cognitive changes and encephalitis that continue to affect HIV-

infected individuals in the HAART era. Further, these studies

indicate that increases in either virus or CCL2 in the CSF clearly

mirror events in the brain and should be monitored in HIV

infected individuals and used to initiate either CNS-penetrating

antiretrovirals or anti-inflammatory therapy capable of crossing

the blood brain barrier.

These studies demonstrate that there are mechanisms in brain

that induce coordinated control of both virus replication and the

inflammatory cytokines produced in response to infection. The

results suggest that the inflammatory responses required to limit

virus replication in the brain must also be tightly controlled so as

Figure 7. Coordinated expression of innate immune genes and
cytokines in brain of SIV-infected macaques during acute
infection in brain. A schematic of median values of mRNA levels for
all cytokines measured by RT-PCR in brain tissue from uninfected and
SIV-infected macaques euthanized at different time points (4, 7, 10, 14
and 21 days p.i.).
doi:10.1371/journal.pone.0008129.g007
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to prevent the development of chronic inflammation that can

trigger neuronal damage and cognitive impairment. A loss of

this inflammation-limiting capacity may contribute to the

progression to encephalitis in late stage disease. The studies

reported here provide the first step in identifying these pathways

and our model will be used to identify additional cellular

signaling pathways that regulate infection and inflammatory

changes in the brain.

Methods and Materials

Viruses and Animal Studies
Forty-four juvenile pigtailed macaques (Macaca nemestrina)

were intravenously inoculated as previously described with SIV/

DeltaB670 (50 AID50) and SIV/17E-Fr (10,000 AID50) [43].

CSF and plasma samples were taken on days 7, 10, 14, 21, 28,

35, 43, 56, 70, 77 and 84 for quantitation of viral RNA, and

ELISA quantitation of monocyte chemoattractant protein

(CCL2) and IL6 [36,37,43]. Macaques were euthanized at 4

(6 macaques), 7 (11 macaques), 10 (12 macaques), 14 (6

macaques), 21 (12 macaques) and 42 (9 macaques) days p.i. in

accordance with federal guidelines and institutional policies. At

euthanasia, macaques were perfused with sterile saline to

remove blood from the vasculature prior to freezing or fixing

tissues.

All animal studies were approved by the Johns Hopkins

University Institutional Animal Care and Use Committee and in

accordance with the recommendations of the Weatherall Report.

Early endpoints are adopted for this study including aggressive

monitoring of bloodwork parameters and humane euthanasia

once progressive disease is noted. All animal housing and care is

conducted according to the Guide for the Care and Use of

Laboratory Animals and the United States Department of

Agriculture Animal Welfare Act. All non-human primates receive

environmental enrichment including manipulanda, foraging, and

opportunity to exhibit species-specific behavior. Animals are pair

or group housed when possible.

Quantitation of SIV Virions in Plasma and CSF
Virus was quantitated in plasma and CSF from 140 ml of

plasma and CSF collected longitudinally as well as at the terminal

time point. Viral RNA was isolated directly from plasma and

CSF using the QIAamp Viral RNA Mini kit (Qiagen), according

to the manufacturer’s protocol. Quantification of virion-associat-

ed RNA was performed by real-time RT-PCR as previously

described [15].

Quantitation of Viral and Cellular Genes in Brain Tissue
Total RNA was isolated from 50 mg of brain tissue (basal

ganglia and parietal cortex) by use of the RNeasy kit (Qiagen), and

treated with two units of Turbo DNase (Ambion) for 30 minutes at

37uC. One microgram of purified RNA was analyzed by real-time

RT-PCR using specific primers and probes for SIV gag [15] and

each of the studied cytokines (Table S1). PCR reactions were

performed in a Chromo4 thermocycler (Biorad) using a Multiplex

PCR Mix (Qiagen). Cellular mRNA levels were normalized by

18S ribosomal RNA levels. Quantitation of gene expression was

performed using the DD Ct method [72].

Quantitation of IFN-ß and C/EBP-ß Proteins
Western blot analysis was performed on lysed punches of brain

tissue (snap-frozen). Briefly, 50 mg of brain tissue was homoge-

nized in RIPA buffer containing protease inhibitors (Sigma).

Proteins (40–80 mg) were separated on 4–12% SDS-polyacryl-

amide gels and transferred onto polyvinylidene difluoride

membranes (PVFD) membranes. Blots were blocked with 0.5%

fetal bovine serum and probed for the respective proteins with

specific primary antibodies, using a Snap ID apparatus (Millipore).

C/EBPb (C-19) and GAPDH antibodies were purchased from

Santa Cruz. Human IFNb antibody was purchased from PBL

InterferonSource (Piscataway, NJ). After incubation with fluores-

cence-conjugated secondary antibodies (GE Healthcare; Invitro-

gen), the membranes were visualized on a Typhoon 9400 scanner

(GE Healthcare). Band intensities were measured and analyzed

using ImageQuant software (GE Healthcare). For the IFNb
western blots, equal protein loading was confirmed by comparison

with the intensity of GAPDH.

Isolation of CD14+ and CD142/CD11b+ Brain Cells
Microglial cells from the subcortical white matter from six

macaques sacrificed at 4 days p.i. were isolated as previously

described [45]. CD14+ cells were selected with specific magnetic

Dynabeads (Invitrogen) according to the manufacturer’s protocol.

After three washes with wash buffer (2% BSA in PBS), the

unselected portion was promptly incubated with CD11b+
Dynabeads (Invitrogen). Both CD14+ and CD142/CD11b+ cell

populations were snap-frozen for future RNA isolation.

Quantitative Immunohistochemical Analysis
Our methods for quantitative immunohistochemical analysis of

CD68, MHC CLASS II and GFAP have been described

previously [15,36,43,70].

Pathological Assessment
All tissues were examined microscopically by two pathologists

(CZ, JM). Sections of frontal and parietal cortex, basal ganglia,

thalamus, midbrain, cerebellum and brain stem were examined

microscopically and scored independently as mild, moderate, or

severe and were each given numerical scores of 1 (mild), 2

(moderate), or 3 (severe) by using a semiquantitative system as

described [43].

Statistical Analysis
A non-parametric method of comparison (Wilcoxon rank-sum

test) was used for comparisons between SIV encephalitis severity

groups of macaques (i.e., none and mild versus moderate and

severe groups). T-tests were not performed since many variables

required mathematical transformations (e.g. Log 10) to meet

normality requirements. Expression of MHC II, CD68, GFAP

and gp41 in the brain were quantitated using 20 separate

measures on each tissue sample; the mean was used for analyses.

Spearman’s rank correlation test was used to determine the

degree of correlation between each measure. Spearman’s is an

analogous non-parametric to be used in place of Pearson’s

estimate if either variable under consideration is found to be

highly skewed. Non-parametric methods are considered to be

conservative; therefore statistically significant results found

when using non-parametric methods are assumed to imply a

lower bound for the p-value. All statistical tests were performed

as two-sided tests.

Supporting Information

Table S1 Primers and probes for SIV gag and cytokines.

Primers and probes used for real-time RT-PCR analysis of SIV

gag and each of the studied cytokines.

Found at: doi:10.1371/journal.pone.0008129.s001 (0.39 MB TIF)
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