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Perceptual Learning of Object Shape

Doruk Gélcii and Charles D. Gilbert
The Rockefeller University, New York, New York 10065

Recognition of objects is accomplished through the use of cues that depend on internal representations of familiar shapes. We used a
paradigm of perceptual learning during visual search to explore what features human observers use to identify objects. Human subjects
were trained to search for a target object embedded in an array of distractors, until their performance improved from near-chance levels
to over 80% of trials in an object-specific manner. We determined the role of specific object components in the recognition of the object
as a whole by measuring the transfer of learning from the trained object to other objects sharing components with it. Depending on the
geometric relationship of the trained object with untrained objects, transfer to untrained objects was observed. Novel objects that shared
a component with the trained object were identified at much higher levels than those that did not, and this could be used as an indicator
of which features of the object were important for recognition. Training on an object also transferred to the components of the object
when these components were embedded in an array of distractors of similar complexity. These results suggest that objects are not
represented in a holistic manner during learning but that their individual components are encoded. Transfer between objects was not
complete and occurred for more than one component, regardless of how well they distinguish the object from distractors. This suggests

that a joint involvement of multiple components was necessary for full performance.

Introduction

To understand the brain’s mechanisms of object recognition, a
key question is what object features are used for recognition, how
these features interact with each other, and how the characteris-
tics of the background influence which features contribute per-
ceptually to object identification. There are two major theories
about how object recognition takes place. Of these, the first is a
holistic model, where the whole object is learned and recognized
as a single independent entity. These models are based on the
hierarchical nature of the visual stream of information processing
and assume that pieces of visual information about an object keep
getting combined as they travel upstream, until the full informa-
tion about the object is assembled together. This information is
compared with a previously stored template of the object. Ac-
cording to some of these models, this process of complexification
culminates with cells in the monkey inferotemporal cortex (IT)
or human lateral occipital cortex (LOC) that are specifically re-
sponsive to images of entire objects. One of the most prominent
criticisms of such holistic models is the potential explosion of the
number of transformational variants that appears to be needed to
account for all the visual variations of all possible objects that are
known by an individual (Gray, 1999; von der Malsburg, 1999).
This is often thought to constitute an implausibly large load on
the available neurological resources. The second type of model
that is offered as an alternative to holistic models is the parts-
based model of object recognition. These models postulate that
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complexification stops at an earlier stage, and instead of having a
single template that stores object information, objects are
coded as a combination of smaller, simpler parts that are largely
viewpoint invariant (Marr and Nishihara, 1978; Marr, 1980;
Hoffman and Richards, 1984; Biederman, 1987). This allows dif-
ferent combinations of a finite number of parts to code for large
numbers of objects and their variations, reducing the required
amount of storage significantly. Computer simulations support
the possibility of a parts-based object recognition mechanism
that makes use of parts of medium complexity as very good indi-
cators of both identity and category of an object (for review, see
Ullman, 2007). There has been significant discussion in the field
about which one of these two kinds of mechanisms is used for
object recognition in the human brain (Biederman and Gerhard-
stein, 1995; Tarr and Biilthoff, 1995).

To obtain a psychophysical measure of what is encoded by the
brain in object recognition, we have used perceptual learning in a
visual search paradigm. Recognition of an object embedded in an
array of distractors can, with practice, improve from chance lev-
els to much more reliable performance (Sigman and Gilbert,
2000). We can measure what is learned by looking at the transfer
of perceptual learning between objects related through shared
parts and thereby determine which of the two models are pre-
dominantly used in the recognition of objects. We used a variety
of different search conditions to simulate and investigate the ef-
fects of the visual characteristics of the environment on the rec-
ognition of an object.

Materials and Methods

Subjects. Fifty-one subjects (34 female, 17 male, 31 of these subjects were
asked to report their handedness; of these, 29 were right-handed and 2
were left-handed) that were adults ranging in age from 18 to 70 partici-
pated (median age = 29). They were recruited according to the regula-
tions set forward by the Rockefeller University Institutional Review
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Board and gave written informed consent. All A
subjects except one (author D.G.) were naive

on the specific task used when they started the

study and had good or corrected vision.

Task. Psychophysical experiments were de-
signed to study the transfer of training between
objects via shared components. Stimuli were
presented on a Sony Trinitron flatscreen CRT
(cathode ray tube) monitor with a refresh rate
of 60 Hz. Objects were created using Inkscape
open source vector editor and displayed using
E-Prime 1.1 (Schneider et al., 2002a,b). Sub-
jects were seated at 180 cm distance from the
monitor. A chin rest was used to stabilize head

position relative to the monitor. C 1
The search task involved a set of arbitrary

shapes consisting of three connected line seg- 6

ments. The size of each object was 0.3° of visual

angle along each of the three component lines. 11

For each study, one object, at a specific orien-

tation, was chosen as a target. In each trial, the 15

object was embedded in an array of distractors,

which bore similarities to the target, in that 20

they consisted of three connected lines, but dif-
fered from the target in their orientation or the
angles between the constituent line segments.
Two variations of the stimulus setup were used
(Fig. 1). The first setup used was a rectangular
5 X 5 grid, with the central position taken by a
fixation point in the form of a white dot. A
single object was presented in each of the other
positions of the grid, for a total of 24 objects in the stimulus. The second
stimulus configuration was a circular grid with the fixation spot placed at
the center so that all objects were equidistant from the fovea. The objects
were placed with equal separation along the circumference of the circle,
at 3° eccentricity, with the meridianal positions on the circle circumfer-
ence left empty. For all objects, the point where the three lines intersected
was placed on the circumference, and the separation distances between
objects was measured from these points. Circular grids with 8 or 12
objects were used in different experiments, with the lower number of
objects intended to reduce task difficulty. The stimulus array was dis-
played as white objects (187 cd/m*) on a black background (34 cd/m?) at
high contrast. It was presented for 300 ms, followed by a 3700 ms blank
period, during which the subjects were asked to report the presence or
absence of the target object within the array (Fig. 2). If the subjects
reported seeing the object, they were also asked to report its location
within the array by entering a number corresponding to the array posi-
tion where they think they have seen the target shape. The responses were
collected using an Ergodex DX-1 Input System. A 1-s-long visual feed-
back was given at the end of each trial. The degree and rate of learning did
not noticeably change between the rectangular and circular grids.

The total number of trials per session ranged from 500 to 1500. Ses-
sions were divided into rounds of 60 trials, and each round divided into
blocks of 10 trials, at the beginning of which the target object was dis-
played in isolation for 3 s to remind the subjects of the target shape. After
this display, there was a 6 s period during which only the fixation point
was present to enable subjects to maintain fixation. Consecutive trials
were separated by a 1500 ms interval (Fig. 2). The subjects were allowed
to rest between rounds and to start each round at a time of their own
choice. Sessions took ~1 h, and the subjects did three to five sessions per
week. Whenever possible, the sessions were scheduled for the same time
of the day to reduce the impact of external factors on performance. We
analyzed the data using a two-tailed, paired Student’s ¢ test when com-
paring performance levels before and after training. Performances are
given as the percentage of correct responses, including the correct loca-
tion, compared with the total number of trials where the target was
present. Since different subjects showed different rates of learning and
different starting performance levels, the plots of changes in performance

Figure 1.
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Stimulus array. The stimuli consisted of arbitrary three-line shapes distributed in either a square 5 X 5 array (4) ora
circulararray of 12 objects (B; target shapes are encircled in red). Subjects were asked to report if they had seen the target shape or
not. In trials where they responded positively, they were also asked to report the location of the target object by entering anumber
corresponding to 1 of 24 positions within the square array (€) and 12 positions within the circular array (D).

over time are shown for individual subjects, with the error bars corre-
sponding to the variation of performance between blocks.

Results

Detectability of target

We conducted a set of experiments with changing stimulus pa-
rameters to determine the parameters best suited for our study.
First, we looked at the properties of distractor shape. For any
perceptual learning to take place, the object needs to be detectable
among the distractors, even if at a low level of performance.
Therefore, we examined how different from the target the dis-
tractors need to be for the target to be detected. For this purpose,
we used multiple copies of the same object as distractors. In the
trials where the target object was present, it was displayed to-
gether with 11 copies of one object in the other positions of the
stimulus array. We used this setup to display the target object
with distractors bearing similarities with the trained object. The
distractors used were similar to the target in one of the following
two ways: either they were a rotated version of the target object; or
they were composed of a modified form of the target, with
changes in the angle between the three line segments of the target.
We found that, for small differences in orientation, naive subjects
were able to discriminate the target object from the distractors
with difficulty and therefore performed at very low levels. For
large orientation differences, the performance was higher. The
performance was also highest when the distractor showed the
greatest geometric differences from the target (Fig. 3).

Next, we tested the effect of changing the number of types of
distractors on target detection by naive subjects. Experimental
conditions with 4, 8, 16, and 33 different distractors were com-
pared. In these experiments, during every stimulus presentation,
the distractors that were to be displayed within the array were
chosen randomly from sets of 4, 8, 16, or 33 objects, depending
on the condition to be tested. The stimulus array remained oth-
erwise exactly the same as the ones previously used. There was a
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Figure2. The stimulus timeline. The cue shape is displayed once every nine trials.

visible overall trend of lower level of performance at conditions
with more distractors. The subjects performed significantly bet-
ter when there were fewer types of distractors (performance with
4 distractors, 37.4 = 12.0%; performance with 33 distractors,
19.4 *= 12.8%; p < 0.0008, two-tailed paired ¢ test, average
of three subjects). This difference was maintained after training
(performance of 85.0 * 2.8% vs 33.0 = 2.8%, respectively; p <
0.05, two-tailed paired  test, one subject).

Pretraining and posttraining performance

For the purpose of the perceptual learning experiments, we chose
aset of targets and distractors that were similar enough in appear-
ance and sufficiently unfamiliar so that the subjects performed at
chance level at the beginning of training. The level of perfor-
mance was measured as the fraction of trials when they detected
the target correctly relative to the total number of trials where the
target was present. Trials were marked as “correct” when the
subjects properly indicated the object location. Thus, trials where
the object was present and was reported as being seen, but whose
location was not correctly indicated, were marked as error trials.
For experiments where indication of object location was not re-
quired, the proportion of correct responses was corrected for false
positives by using the following formula: p* = (p — fp)/(1 — fp),
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Figure3. A, Searchsetupwithasingle type of distractor. The target objectis encircled in red.

B, Performance on target identification when embedded in an array of a single-type of distrac-
tor. The distractors were rotated (underlined red) or modified (underlined blue) versions of the
target, or an unrelated object (underlined green), and are illustrated underneath the relevant
bar in the graph.

where p is the percentage of positive responses, fp is the rate of
false positives (rate of trials where the subject reported seeing
the object when the object was not present), and p’ is the “real”
percentage of correct responses. By repeating the task daily,
subjects’ performance steadily increased over a period of 10-15 d.
Subjects improved from a near chance level of performance be-
fore training (correct detection, 16.1 = 5.4%) to a performance
level of 70—80% correct responses after training, at which point
we stopped training (correct detection, 71.3 % 5.5%; significance
of the change p < 10 ', two-tailed paired  test, average of 38
subjects). This process took 10-15 d (Fig. 4). Longer periods
of training resulted in further improvement above this level
(data not shown).

Effects of position

The performance levels in Figures 3 and 4 reflect averages across
all positions in the array. We wanted to determine the visuotopic
specificity of the learning, in particular whether it occurred glo-
bally across the entirety of the visual field or if it happened over a
sequence of locations. We analyzed the improvement in perfor-
mance on object recognition at each location of the array as the
training progressed (Fig. 5). The target object appeared randomly
and an equal number of times at each location of the array per
session to avoid biasing learning to any specific location. Despite
this, the increase in performance occurred over a sequence of
locations, with the subject initially detecting the target correctly
in a small number of nearby positions and then gradually spread
to the whole array.
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Transfer between objects that share components

One of the central questions concerning the mechanisms of ob-
ject recognition is whether the brain stores information in the
form of whole objects or as parts of objects. Visual psychophysics
can help us determine the answer to this question by showing
what is being learned during the perceptual learning of a novel
object. To accomplish this, we have looked at the transfer of
learning between objects. Based on two prevalent models of ob-
ject recognition, there are two alternative possibilities for how
objects are represented in the brain. If a holistic system of object
recognition were at work, one would expect that the training
would be specific to the trained shape. A parts-based mechanism,
on the other hand, would result in a transfer of training from
trained to untrained objects that share those components that
contribute to the recognition of the trained objects. We, there-
fore, measured performance before training on the object to be
trained as well as on several other objects

that either shared or did not share compo-

nents with the trained object. We then a2 9%

measured the performance of the subjects o o
on recognizing both the trained and un- o Day 1 o
trained objects after the period of training o °
on the target (Fig. 6). There was signifi- °
cant improvement in the recognition of e O
objects that shared components with the o. °
trained target (before training, 27.7 =* Day 5
10.0%; after training, 54.0 = 6.4%; p < o ®
10 72, two-tailed paired ¢ test, average of °o *
eight subjects) while objects that did not
share any components with the trained ° °
target did not show significant improve- o
ment (before training, 28.1 * 8.3; after o Day 9 .
training, 28.7 = 13.1; p > 0.8, two-tailed o °
paired t test). After training, subjects rec- c. e
ognized objects sharing components with e o,
the trained target significantly better than .' .
those that did not (significance p = 10 ™', Day 13
two-tailed paired ¢ test). This effect was . °
seen for a variety of object types, for re- o e
peating the same experiment with more

Figure5.

complex objects yielded similar results
(Fig. 7). We examined the changes in re-
action times occurring with training (Fig.
8). Although reaction times went down
for all objects, the most substantial de-
creases were seen for trained objects and for objects sharing a
component with the trained object (trained objects before train-
ing, 1200 * 300 ms; after training, 820 * 200 ms; p < 10 %
objects sharing components with trained objects, before training,
1140 = 290 ms; after training, 870 = 230 ms; p < 10 ~15). The
changes were more modest for the unrelated object (before train-
ing, 1230 == 390 ms; after training, 1080 = 320 ms; p>9 X 10 *).
This drop held for the correct trials, so it was not a result of
correct trials being responded to faster. For the correct trials, the
decrease in reaction times was much more significant for the
trained object. The fact that reaction times decreased together
with improved performance indicates that our results were not
an artifact of a trade off between accuracy and reaction time.

Transfer from objects to components

If the components were indeed important for the transfer we
observed, then it is likely that training in an object would increase
the subjects’ performance in recognizing objects composed of
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Figure4. A, Targetand distractors used for training. B, Increase in performance at detection
of a target object embedded in an array of distracters of similar shape, through several days of
training. Performances are given as the percentage of correct detection of the target against the
total number of appearances of the target. Dashed line represents chance level. Single subject,
Error bars represent SEs across individual blocks. *p << 0.01;**p << 0.001, compared with the perfor-
mance of the first day.
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Point-by-point learning within the array. The target position was changed from trial to trial, in arandom block design,
for a total of 18 presentations per position. The shading of the squares indicates the level of performance at each day of training.
Although the sequence of target presentation was random, the learning did not emerge evenly at all positions but tended to
develop in a sequence of positions over the training period. Single subject.
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Figure 6.  Performance on recognition of trained (blue) versus untrained shapes that

either shared (red and yellow) or did not share (green) a component with the trained
shape. For the purposes of this illustration, the shared components are highlighted in red.
There was significant improvement in recognizing untrained shapes that shared a com-
ponent with the trained shape but not for shapes with no shared components. One sub-
ject, Error bars represent SEs across subjects. *p << 0.01; **p < 0.001, compared with the
pretraining levels of performance.
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shared (red) or did not share (yellow) a component with the trained shape, for four-line shapes.
For the purposes of this illustration, the shared components are highlighted in red. There was
significant improvement in recognizing untrained shapes that shared a component with the
trained shape but not for shapes without shared components. Here, training and transfer for
four-line shapes followed the same pattern as for three-line shapes. Single subject, Error bars
represent SEs across individual blocks. *p << 0.01; **p << 0.001, compared with the pretraining
levels of performance.

1400
21200 T
g b
21000 *
£ * = Trained Object
: 800 « Untrained Object/ with ¢
£ 600 shared Component
e Untrained Object/ &
& 400 without shared

- Component

: Before Training After Training

Figure8. Average reaction times for the correct trials while looking for trained (blue) object
versus untrained shapes that either shared (red) or did not share (yellow) a component with the
trained shape. For the purposes of this illustration, the shared components are highlighted in
red. There was significantly higher improvement in reaction times both when looking for
trained shapes and for untrained shapes that shared a component with the trained shape than
for shapes with no shared components. *p << 0.0001, compared with the pretraining levels of
reaction times.

only of a single component of the trained object. To test this, we
trained subjects in the recognition of a target object made up of
three lines. Once they reached to ~70% performance, we tested
their ability to recognize two-line components of this object
within arrays of two-line distractors (Fig. 9). We observed that
components of the trained objects were recognized at a higher
performance level (before training, 7.4 * 2.3%; after training,
45.0 £ 6.3%; two-tailed paired ¢ test, two subjects) by the sub-
jects, than two-line objects that were not components of the
trained object.

Similarly, if the components are instrumental in the transfer
of learning between objects, then one would expect that improve-
ment in the ability to recognize a trained simple shape that is a
component of a more complex shape would improve a subject’s
ability to recognize the more complex shape. We have tested this
by training subjects to recognize two-line objects among an array
of objects of similar complexity (Fig. 10). In these experiments,
the distractors were chosen to match the complexity of the target,
e.g., two-line distractors for the trained two-line shape, three-line
distractors for the untrained three-line shape. This ensured that
the targets did not automatically pop-out from the distractors by
making the target/distractor difference too obvious. The degree
of improvement in the components was comparable to that ob-
served when training subjects on the more complex three-line
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Figure 9.  Performance on recognition of trained (blue) shape versus components that
were either part (red and purple) or were not part (green) of the trained shape. For the
purposes of illustration, the components that were part of the trained shape are high-
lighted in red and yellow. There was significant transfer to both components of the shape
but not to the unrelated component. Single subject, Error bars represent SEs across indi-
vidual blocks. *p << 0.01; **p < 0.001, compared with the pretraining levels of
performance.
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Figure 10.  Performance on recognition of trained (blue) component versus untrained

object that contains the trained component (red). For the purposes of illustration, the
component is highlighted in red. There was significant transfer of training from the com-
ponent to the object. Single subject, Error bars represent SEs across individual blocks.
*p < 0.01; **p < 0.001, compared with the pretraining levels of performance.

objects (before training, 21.3 * 4.5; after training, 61.8 + 2.7; p <
10 ™", two-tailed paired t test, single subject). After training was
completed, we looked for improvements in the recognition of
three-line objects. The subjects showed increased performance at
detecting objects that contained the trained components (before
training, 22.2 * 5.1; after training, 41.8 * 6.1; p < 10 7, two-
tailed paired ¢ test) but not at detecting objects without the
trained component (before training, 10.6 *= 3.3; after training,
12.3 = 3.8; p > 0.6, two-tailed paired f test).

Effect of distractor similarity on performance

Objects do not appear in isolation in natural environment but
together with numerous other objects that bear a variety of rela-
tionships to the target object. To investigate the effects of such an
environment on object recognition, we studied how relationships
of the shape of distractors to that of the target influenced recog-
nition. For this experiment, we compared the performance of
subjects to recognize target objects under two different condi-
tions. The first condition was one where none of the distractors
shared components with the target, to simulate a situation where
the object was present in a background that shared no features
with the target. The next condition was one where all distractors



13626 - J. Neurosci., October 28, 2009 - 29(43):13621-13629

A ¢
£ € € v ¢ v

vV e XX

B so
45
40
35
30
25
20
15
10

5

0

Target
Distractors, none share
components with target

Distractors, all share a
component with target

» None share
= All share

% Correct

Semi-trained
Subject

Naive
Subject

Figure 11. A, Target and distractors. In the first condition, none of the distractors shared
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with the target. For the purposes of this illustration, the shared components are highlighted in
red. Each component of the target object appeared in two of the six distractors. B, Performance
on recognition of a target shape when no distractor shared components with it (blue) versus
when all of them did (red). Performances are shown when the subject was untrained (left) and
partially trained (right). The components that the distractors shared with the target are high-
lighted in red. Performance was at chance level for both conditions without training but was
reduced for the condition where the distractors shared components with the target with train-
ing. Single subject, Error bars represent SEs across individual blocks.

shared a component with the target. In each condition, six differ-
ent distractors were used. In the second condition, each of the
three components of the target were shared with two of the dis-
tractors. Under both conditions, naive subjects performed at
chance level with little observable difference. However, subjects
that had some training in searching for the target shape per-
formed much more poorly at detecting this shape when it was
embedded in an array of distractors with shared components
with the target than in an array with no shared components (per-
formance with shared components in distractors, 20.9 = 14.8%;
performance without shared components in distractors, 43.8 =
14.9%; p < 10 ~*, two-tailed paired  test) (Fig. 11, single subject).

Since there was such a significant effect on performance, one
might expect that perceptual learning of the object would be
affected as well. To test how learning is affected by distractors
sharing components with the target, we trained subjects under
the condition where all distractors shared components with the
target object. Even after extended training, none of our subjects
showed appreciable improvement in their levels of recognition.
Since performance in difficult search tasks is proportional to the
number of distractors (Treisman and Gelade, 1980; Bergen and
Julesz, 1983; Steinman, 1987), we reduced task difficulty by re-
ducing the number of shapes present in the array from twelve to
eight. This had the effect of increasing performance in recogniz-
ing the target before training (42.2 = 6.7%, average of five) and
also made it possible for the subject to increase performance as a
result of training. After successful training to a performance of
65% or higher correct detection (72.3 * 6.7%, significance of
change after training p < 10 >, two-tailed paired t test, average
of five), we looked at the transfer of this training to objects shar-
ing components with the trained target. Although the compo-
nents of the trained object were shared with the distractors used
during training, we nevertheless observed a significant transfer to
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red. One component appeared in four of the six distractors, while the other component ap-
peared in the remaining two. B, Performance on recognition of trained (blue) versus untrained
shapes that either shared (red and yellow) or did not share (green) a component with the
trained shape. There was significant improvement in recognizing untrained shapes that shared
either component with the trained shape but not for shapes with no shared components. Single
subject, Error bars represent SEs across individual blocks. *p << 0.01; **p << 0.001, compared
with the pretraining levels of performance.

the objects that shared components with the target (Fig. 12).
Furthermore, transfer was seen both for objects that served as
distractors, as well as to those that did not. As before, no transfer
was observed to a control shape that shared no components with
the trained target (correct detection before training, 30.2 * 5.9;
after training, 41.1 = 8.8%; p > 0.01, two-tailed paired t test).
If components of an object were learned solely on the basis of
how informative they were, then one might expect there to be
significantly more transfer of learning to the more informative
components. We manipulated the “informativeness” of individ-
ual components in distinguishing the trained object from its dis-
tractors by changing how frequently the components appeared
among the distractors and then measuring the influence of the
frequency with which components were shared with the distrac-
tors on transfer of training (Fig. 13). Of the total of six objects
used as distractors, four shared one component with the target,
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and the remaining two shared the other component. As a result,
one component was on the average displayed twice as often as the
other component within the stimuli. We trained our subjects
under this condition until their performance reached an arbitrary
chosen ~70% level (performance before training, 30.8 = 5.0%;
performance after training, 70.7 = 10.2%; p < 0.0058, average of
three subjects). After subjects reached saturation in their perfor-
mance, we measured transfer of detection to other objects shar-
ing either component with the trained object. The average
performances of the subjects were significantly higher for objects
sharing the more commonly occurring component with the
trained target after training but only if the objects were tested
with the same distractors used during training (performance be-
fore training, 24.1 = 11.5%; performance after training with dif-
ferent distractors, 32.3 * 12.6%; with the same distractors,
46.5 = 16.6%; average of three subjects, p > 0.16 and p < 0.023,
respectively, two-tailed paired ¢ test). There was also significant
posttraining transfer of learning to an object that shared the less
commonly occurring component with the trained target when
presented with the distractors used during training (performance
before training, 25.2 = 6.6; performance after training, 41.4 *=
8.0%; p < 0.02, two-tailed paired ¢ test, average of three subjects).
This experiment was also repeated with the frequencies of the
target components among the distractors flipped, i.e., the com-
ponent that appeared in two distractors now appeared in four
and vice versa. After training, there was, again, a high degree of
transfer to objects sharing either component with the target.
The level of transfer to either component did not appear to
depend on the frequency with which the component appeared
in the distractors.

Discussion

We studied what is learned in object recognition by training sub-
jects on a visual search task and looking for transfer to untrained
objects. In this study, we used search as a probe to measure an
object’s recognizability. The search task simulates the constraints
of normal viewing conditions where objects have to be identified
in complex environments. Although rapid recognition of objects
may require specialized strategies, complex objects can be recog-
nized after brief exposures (Thorpe et al., 1996). Our stimuli do
not have some existing information for real objects such as color,
texture, and shading. We confined our shapes to cues based on
linear contour elements, since objects composed only ofline con-
tours (such as black and white drawings) can be recognized.
While our objects do not contain every kind of contour shape,
many objects contain edges and corners of the sort used here.
Identifiable components that could be shared between objects
allowed us to investigate transfer and create a population of
objects with shared features. The experimental paradigm can
be adapted for psychophysical and physiological studies of the
role of other features and of shape representation in the visual
pathway.

Previous research indicates that object recognition is subject
to perceptual learning, the improvement of performance in dis-
criminating a perceptual attribute through repetition. In vision,
individuals can improve their performance for several stimulus
attributes, such as orientation (Vogels and Orban, 1985; Shiu and
Pashler, 1992; Schoups et al., 1995), depth (Fendick and Westheimer,
1983), motion direction (Ball and Sekuler, 1982, 1987), segmen-
tation through texture cues (Karni and Sagi, 1991, 1993), and
visual hyperacuity (Poggio et al., 1992; Fahle and Edelman, 1993;
Kapadia et al., 1995). Perceptual learning is specific to simple
stimulus attributes like location, orientation, eye, or task-relevant
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attributes. Earlier studies emphasize perceptual learning of sim-
ple stimulus attributes; the current study examines the learning of
more complex forms, whereby object recognition becomes more
rapid and is done in parallel with other objects. Sigman and Gilbert
(2000) have shown that perceptual learning of objects is specific
to the learned object. Here, we expand upon these results.

While in our study object learning was comparable with earlier
studies, with steady, location-specific improvement over several
thousand trials, we observed significant exceptions to specificity.
There was significant transfer to objects sharing geometric com-
ponents with the trained object. Since there was no transfer to
unrelated but similar control shapes, the transfer was unlikely to
reflect a nonspecific improvement in task. This suggests that ob-
jects are learned in a parts-based manner. Earlier psychophysical
experiment studies show that components are necessary for ob-
ject recognition, objects can be identified by partial exposure to a
subset of their components, and similar objects can be differen-
tiated through differing parts (Biederman, 1987; Biederman and
Gerhardstein, 1993; Biederman and Bar, 1999, Gosselin and
Schyns, 2001). However, the finding that not all components are
required for identification does not in itself imply a parts-based
representation, only that features may be redundant. Although
evidence exists for holistic representation of certain objects, such
as faces (Young et al., 1987; Tanaka and Farah, 1993; Wang et al.,
1998; Schiltz and Rossion, 2006; Freiwald et al., 2009), this may
result from expertise (Gauthier et al., 2003) or the specialized
requirements for identifying members of a large set with subtle
interindividual differences. We provide additional evidence for
parts-based object representation. In our study, individual com-
ponents were also learned when the whole object is learned. Con-
versely, learning a simple object improved recognition of more
complex objects containing that object as a component. Further-
more, we showed that individual parts can be used to recognize
multiple shapes. These results show that object parts are pro-
cessed as individual units. Performance is also affected by very
small variations in the objects’ shape, which were sufficient to
abolish learning. Therefore, transfer in our setup appears to rely
on the actual components rather than the geometric “distance”
between objects, consistent with a parts-based model of recogni-
tion rather than a holistic mechanism of template matching
through mental transformations or interpolations (Riesenhuber
and Poggio, 2000). The transfer of learning through one shared
component was incomplete, and all components of an object
were learned, indicating the necessity of combinations of compo-
nents for recognition.

Our results resonate with the feature selectivity of neurons in
monkey IT. There, a large fraction of neurons are sensitive to
simplified parts of objects, and objects activate cortical columns
selective for their components (Desimone et al., 1984; Tanaka et
al., 1991; Tsunoda et al., 2001). fMRI studies suggest a similar
organization within the human LOC (Grill-Spector et al., 2001).
The classical view of a cortical hierarchy, with ascending levels
representing increasing complexity, would include a representa-
tion of parts at earlier stages. But the key issue is the level of
complexity at the highest level, where the parts-based represen-
tation would involve distributed activity across multiple col-
umns. Transfer between objects sharing components suggests
that these components become represented in a way that involves
access to the parts at whatever level of the hierarchy they are
represented.

Itis plausible that learning might change the representation of
object parts. Past studies suggest a sharpening of tuning of IT
neurons for diagnostic features upon learning (Sigala, 2004).
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However, learning occurs in a location-specific manner in our
study, which is also consistent with past reports (Crist et al., 1997;
Dill and Fahle, 1997). Location specificity is a property of earlier
areas in the ventral visual stream rather than LOC or IT. There-
fore, a top-down reorganization of the object processing to early
visual cortices is more likely (Sigman and Gilbert, 2000; Sigman
etal., 2005). V1 cells can respond to more complex features than
originally believed (Das and Gilbert, 1999; Posner and Gilbert,
1999; Gilbert et al., 2000, 2001; Li and Gilbert, 2002; Li et al., 2004,
2006, 2008) and have a considerable measure of plasticity in the
receptive field properties (Gilbert and Wiesel, 1992; Obata et al.,
1999; Crist et al., 2001) and the capacity to undergo sprouting
and synaptogenesis (Darian-Smith and Gilbert, 1994; Gilbert et
al., 1996; Stettler et al., 2006; Yamahachi et al., 2008). This plas-
ticity can be used to reorganize elementary feature maps to rep-
resent object parts. One potential advantage of such a shift is an
increased ability to perform rapid, parallel recognition. The rep-
resentation of object features along the visual pathway and how
experience changes it will continue to be elaborated.

Learning in our task requires top-down influences, because
only features of attended objects are learned, as distinct from
learning of unattended attributes (Watanabe et al., 2001; Seitz
and Watanabe, 2003). Feedback was not required, since subjects
that were not given feedback still learned the targets, but feedback
made learning more rapid and robust, consistent with past liter-
ature (Fahle and Edelman, 1993; Herzog and Fahle, 1997, 1999).
Physiological studies show the requirement of cholinergic input
from nucleus basalis, which presumably represents the physio-
logical basis for reward signals (Bakin and Weinberger, 1996;
Kilgard and Merzenich, 1998). Phasic dopamine signals aid
learning as well by signaling mismatches between expected and
reward outcome and by attracting attention to novel, unexpected
visual events (Schultz and Dickinson, 2000; Nakahara et al., 2004;
Dommett et al., 2005; Redgrave et al., 1999, 2008). Even without
explicit feedback, there may be an implicit reward signal when
subjects see the target, enabling learning.

Past studies suggest that objects in a visual search task pop-out
if they differ from the distractors by an elementary feature; the
search is inefficient if they differ by combinations of elementary
features (Treisman and Gelade, 1980). Our study shows that ob-
ject parts can become elementary features through learning. Pos-
sibly, performance in visual search is not a dichotomy of parallel
and serial search but a continuum (Wolfe et al., 1989; Wolfe,
1997; Joseph et al., 1997; Wolfe, 2003). Our observation of a
gradual improvement rather than an abrupt switch from poor to
good performance supports this possibility.

The presence of distractors also affected performance. Smaller
stimulus arrays improved untrained performance, training be-
coming possible in conditions where it was not. This result agrees
with the properties of difficult (serial) search tasks where increas-
ing number of distractors reduces performance (Treisman and
Gelade, 1980; Bergen and Julesz, 1983; Sagi and Julesz, 1985;
Steinman, 1987). The shape of the distractors affected target rec-
ognition as well. According to the fragment-based hierarchy
model of recognition (Ullman, 2007), components are most use-
ful for recognition when they are highly informative, i.e., when
they appear within the object and rarely in the environment.
Using distractors that contain components of the target, we re-
duced the informativeness of those components. This impaired
performance and learning; however, parts were still used for rec-
ognition, since transfer still occurred. No single component iden-
tified the target; therefore, even components occurring more
frequently among the distractors contributed to recognition. It is
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likely that the visual system finds the target by performing an
“and” operation, using multiple components. Our findings show
how familiar shapes, reflecting the regularities of the visual envi-
ronment, become assimilated during perceptual learning and
suggests how these shapes may be represented.
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