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ABSTRACT

Objective: To assess the effectiveness of the selegiline transdermal system (STS) in reversing
HIV-induced metabolic brain injury (as measured by proton magnetic resonance spectroscopy
[MRS]) and in decreasing oxidative stress, measured by CSF protein carbonyl concentration.

Methods: Sixty-two subjects with HIV-associated cognitive impairment were coenrolled in a 24-
week placebo-controlled study (AIDS Clinical Trial Group protocol A5090) and were randomly
assigned to receive STS 3 mg/24 h, STS 6 mg/24 h, or matching placebo. Cognitive performance
was evaluated using the neuropsychological z score (NPZ)-8 and NPZ-6, as well as cognitive
domain scores. Subjects underwent proton MRS at study entry and weeks 12 and 24. CSF pro-
tein carbonyl was measured at baseline and week 24.

Results: A slight increase in N-acetyl aspartate/creatine from baseline to week 24 was found in
the basal ganglia (p � 0.023) and centrum semiovale (p � 0.072) of the placebo group compared
with the STS groups; however, there were no significant changes when the absolute metabolite
concentrations were analyzed. The levels of choline/creatine in the midfrontal cortex were also
significantly higher during the week 12 visit in the combined STS groups. This persisted to the
week 24 visit (p � 0.002). Evaluation of the change in NPZ-8, NPZ-6, and cognitive domain
scores from baseline to weeks 12 and 24 revealed no significant differences between treatment
arms. Protein carbonyl analysis revealed no significant changes among the groups.

Conclusion: In this 24-week study, the selegiline transdermal system (STS) had no effect on either
magnetic resonance spectroscopy (MRS) metabolites or oxidative stress, as measured by CSF
protein carbonyl concentration. The lack of effect on these biomarkers is also reflected in the lack
of cognitive improvement in the STS groups compared to placebo.

Level of evidence: This study provides Class II evidence that STS had no effect on either MRS
metabolites or oxidative stress, as measured by CSF protein carbonyl concentration over a period
of 24 weeks. Neurology® 2009;73:1975–1981

GLOSSARY
ADC � dementia complex; Cho � choline; Cr � creatine; DNPH � 2,4-dinitrophenylhydrazine; FOV � field of view; Glx �
glutamate/glutamine; HAART � highly active antiretroviral therapy; MI � myoinositol; MRS � magnetic resonance spectros-
copy; NAA � N-acetylaspartate; NEX � number of excitations; NPZ � neuropsychological z score; PBS � phosphate-
buffered saline; SNR � signal-to-noise ratio; STS � selegiline transdermal system; TE � echo time; TR � repetition time.

Proinflammatory products and reactive oxygen species secreted by infected or activated microglia
and macrophages have been implicated in the pathogenesis of HIV-associated neurologic disorders.1

Additionally, elevated markers of oxidative stress have been reported in the CSF of subjects with
HIV-associated cognitive impairment.2-5 Despite highly active antiretroviral therapy (HAART),
levels of oxidative stress can remain elevated in HIV-infected subjects with cognitive impairment,3

and HAART alone does not fully prevent the occurrence of cognitive impairment.6 Antioxidant
intervention may provide a useful adjunctive therapy to HAART in the treatment of HIV-
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associated cognitive impairment. The AIDS
Clinical Trial Group has conducted a phase 2,
placebo-controlled, double-blind study of the
selegiline transdermal system (STS) in the treat-
ment of HIV-associated cognitive impairment
(study A5090).7 Selegiline is a monoamine oxi-
dase B inhibitor capable of decreasing oxygen-
free radicals, increasing the formation of the
antioxidant enzymes superoxide dismutase and
catalase, and providing additional neuroprotec-
tion by enhancing the synthesis of neurotrophic
factors.8-13 Results of 2 prior placebo-controlled
pilot studies of oral selegiline and STS in sub-
jects with HIV-associated cognitive impairment
suggested improvement in several tests of psy-
chomotor speed.14,15

A5090 results demonstrated no significant
benefit in either cognitive or functional out-
come in subjects treated with selegiline com-
pared with those who received placebo.7

However, it is possible that the exposure to
STS in A5090 was too short to translate in a
measurable cognitive or functional effect. The
open-label extension of A509016 did not fully
address this issue. We have conducted a sub-
study of A5090 using magnetic resonance
spectroscopy (MRS) and CSF protein car-
bonyl concentration as biomarkers of CNS
injury, which we hypothesized would be able
to measure response to selegiline before ob-
servable clinical or functional changes.

METHODS Standard protocol approvals, registra-
tions, and patient consents. The study was reviewed and
approved by the institutional review board at each participating
institution. All subjects signed a written informed consent before
enrollment. This study was registered with clinicaltrials.gov un-
der identifier NCT00027040.

Subjects. One hundred twenty-eight HIV-infected subjects
with cognitive impairment were enrolled in A5090 and were
randomly assigned to receive STS 3 mg/24 h, STS 6 mg/24 h, or
matching placebo for 24 weeks.7 Randomization was stratified
by plasma HIV viral load (undetectable, �200 copies/mL, vs
detectable, �200 copies/mL) and clinical stage of the AIDS de-
mentia complex (ADC; 0.5 vs 1.0 or higher). Sixty-two subjects
were coenrolled in this substudy at sites with MRS expertise.
Cognitive impairment was defined as performance at least 1 SD
below the mean on 2 or more independent neuropsychological
tests, or at least 2 SDs below the mean on 1 neuropsychological
test using a standard neuropsychological battery. Cognitive per-
formance was evaluated using the NPZ-8 (average z score of 8
neuropsychological tests) and NPZ-6 (average z-score of 6 neu-
ropsychological tests), as well as cognitive domain scores (average
z score of neuropsychological tests corresponding to cognitive
domain).

Imaging. MRI was performed at study entry and weeks 12 and
24 on commercial GE Signa (Harvey, IL) 1.5-T scanners. Sagit-
tal T1-weighted images were collected with the following param-
eters: 5-mm slice thickness, echo time (TE)/repetition time
(TR) � 20/600, field of view (FOV) � 24 cm, and matrix
size � 256 � 256, and number of excitations (NEX) � 1. Axial
fast spin echo images were collected according to the following
parameters: 5-mm slice thickness, TE1/TE2/TR � 30/80/
2,500, FOV � 24 cm, matrix size � 245 � 192, echo train
length � 8, bandwidth � 32 KHz, and NEX � 1.

Single-voxel proton spectra were acquired from 3 regions of
interest using the commercially available GE PROBE-P PRESS
sequence. Voxels 20 � 20 mm2 (slice thickness � 15 mm) were
prescribed graphically from axial MR images in the midline of
the frontal lobes (gray matter), right (or left) midfrontal centrum
semiovale (white matter), and right (or left) basal ganglia (deep
gray matter). Shimming was performed on each voxel using the
automated FID-based algorithm from GE. Water suppressed
spectra were collected according to the following parameters:
TE/TR � 35/3,000, bandwidth � 2,500 Hz, 128 averages, and
NEX � 8. Additionally, single-scan, fully relaxed water spectra
were collected from each voxel with 8 different echo times.
LCModel spectral analysis software17 was used to calculate the
metabolite ratios of N-acetylaspartate (NAA) to creatine (Cr),
choline (Cho) to Cr, myoinositol (MI) to Cr, and the combined
peak of glutamate/glutamine (Glx) to Cr. Absolute quantitation
of these metabolites was performed using the technique de-
scribed by Kreis et al.18 and yielded metabolite concentrations
corrected for the percentage of CSF in each voxel.

CSF protein carbonyl. CSF was obtained at baseline and
week 24. The level of protein oxidation was determined by an
Oxidized Protein Detection Kit (Oxyblot, Chemicon, Te-
mecula, CA). Equal amounts of protein (1 �g) from each CSF
sample were loaded on the blot, and the intensity of the bands
was quantitated by densitometry. Samples were incubated for 20
minutes with 6% (wt/vol) sodium dodecyl sulfate and 2,4-
dinitrophenylhydrazine (DNPH) in 10% (vol/vol) trifluoroace-
tic acid, vortexing every 5 minutes, and then neutralized in
Oxyblot neutralization solution. Samples were transferred to ni-
trocellulose membrane by slot-blotting technique. After the
transfer, membranes were blocked with 5% (wt/vol) skim milk
(in phosphate-buffered saline [PBS] with 0.1% (vol/vol) Tween-
20) overnight at 2° to 8°C. The nitrocellulose membrane was
exposed to a primary rabbit anti-DNPH protein antibody from
Chemicon Oxyblot (1:150 working dilution) for 1 hour, and
then to a secondary antibody (anti-rabbit immunoglobulin G
coupled to horseradish peroxidase, Sigma, St. Louis, MO]) di-
luted in the blocking solution 1:5,000 for 60 minutes at room
temperature. Membranes were washed after every step in wash-
ing buffer (PBS with 0.1% Tween-20). The nitrocellulose mem-
brane was then developed by an EHP plus kit (GE Healthcare)
and exposed to film, until the bands of oxidized proteins ap-
peared. Blots were analyzed using BioRad (Hercules, CA) Quan-
tity One software.

Statistical analysis. Power calculations were based on our
previous cross-sectional work19 and longitudinal work.20 As-
sumptions were based on the correlation of successive MRS eval-
uations obtained on the same individuals. Under most scenarios,
we determined that with a minimum of 48 subjects, there would
be adequate power (i.e., �80%) to detect similar differences be-
tween baseline and week 24 as we had seen cross-sectionally in
the study by Chang et al.19 between neurologically impaired and
nonimpaired HIV-infected patient groups.
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Comparisons of continuous measures between groups were per-
formed using the Kruskal-Wallis test, and comparisons of frequen-
cies between groups were performed using the Fisher exact test.

To evaluate changes in MRS metabolite ratios over time, analy-
sis of covariance models were applied to the 2 postbaseline MRS
evaluations adjusted for baseline metabolite ratio levels using Box-
Cox transformed measures for the longitudinal models of the me-
tabolite levels. An autoregressive order 1, variance/covariance matrix
was used to model the covariance structure of the model. In all
resulting comparisons, the 2 selegiline arms have been pooled be-
cause there was never a significant difference observed between the
3-mg/24 h and 6-mg/24 h doses. Similar models were applied to
assess absolute MRS metabolite changes over time.

Comparisons of the median protein carbonyl concentrations
between groups were performed using the Kruskal-Wallis test.

RESULTS The 62 subjects enrolled in this substudy
were predominantly male (87%) and African Ameri-
can (55%) (table 1). The median age at baseline was
46 years, with a median education level of 12.5 years.
The 3 treatment groups did not differ significantly at
baseline with respect to these demographic character-
istics, ADC stage, HIV viral load, CD4� count,
NPZ scores (table 1), or cognitive domain scores
(data not shown). No significant differences in pro-
ton MRS metabolite ratios were detected between

treatment arms at baseline, with the exception of
Glx/Cr in the centrum semiovale (table e-1 on the
Neurology® Web site at www.neurology.org).

As observed in the parent study, evaluation of the
change in NPZ-8 and NPZ-6 scores (figure 1), as
well as cognitive domain scores (data not shown)
from baseline to weeks 12 and 24 revealed no signif-
icant differences between treatment arms.

Changes in MRS metabolite ratios from baseline
to weeks 12 and 24 are reported in table e-2. There
was a slight increase in NAA/Cr in the basal ganglia
(figure 2A) and in the centrum semiovale (figure 2B)
of the placebo group compared with the STS groups
(basal ganglia, p � 0.023; centrum semiovale, p �

0.072), although the change in the absolute concen-
tration on NAA was not significant. The combined
STS groups also demonstrated higher levels of
Cho/Cr (figure 2C) in the midfrontal cortex (p �

0.002) when compared with the placebo group after
adjusting for baseline levels of the metabolite. This
difference in Cho was still present when the concen-
tration of Cho was analyzed, although the signifi-
cance was reduced (p � 0.046). As shown in table

Table 1 Baseline demographics and clinical characteristics

STS 3 mg/24 h
(n � 19)

STS 6 mg/24 h
(n � 18)

Placebo
(n � 25) p Value*

Age, median (IQR), y 45 (41 to 50) 45 (43 to 50) 47 (44 to 52) 0.474

Men/women 17/2 15/3 22/3 0.801

White/black/Hispanic 9/10/0 7/10/1 8/14/3 0.614

Years of education, median (IQR) 12 (12 to 14) 13 (10 to 14) 12 (11 to 14) 0.755

CD4� count, median (IQR), mm3 361 (276 to 703) 366 (260 to 744) 384 (263 to 765) 0.878

Plasma HIV RNA, median (IQR),
copies/mL

�50 (�50 to 108) �50 (�50 to 2,913) �50 (�50 to 700) 0.252

% <50 copies/mL 69 41 50

% 50–10,000 copies/mL 25 42 28

% >10,000 copies/mL 6 18 23

CSF HIV RNA copies/mL,
median (IQR)

�50 (�50 to �50) �50 (�50 to �50) �50 (�50 to 52) 0.550

% <50 copies/mL 79 77 75 �0.999

% 50–10,000 copies/mL 21 23 25

% of subjects on antiretroviral
therapy

94.7 88.9 92 0.857

Weight, median (IQR), lb 153.35 (120.0 to 181.5) 135.50 (80.4 to 158.0) 153.7 (94.0 to 171.0) 0.399

CES-D score, median (IQR) 23.0 (18.0 to 34.0) 17.5 (13.0 to 21.0) 14.0 (9.0 to 25.0) 0.089

Karnofsky Scale Score > 80, % 63.2 66.7 75.8 0.038

(WAIS-R) Vocabulary Scale Score 10 (9 to 12) 8 (7 to 11) 9 (7 to 11) 0.133

AIDS dementia complex stage
0.5/1/2

8/9/2 6/10/2 11/13/1 0.301

NPZ-6, median (IQR) �1.09 (�1.86 to �0.45) �0.85 (�1.29 to �0.47) �1.15 (�1.59 to �0.63) 0.615

NPZ-8, median (IQR) �0.91 (�1.75 to �0.55) �0.78 (�1.19 to �0.47) �0.76 (�1.42 to �0.51) 0.403

*Frequencies compared by Fisher exact test; continuous factors compared by Kruskal-Wallis test.
STS � selegiline transdermal system; IQR � interquartile range; CES-D � Center for Epidemiologic Studies Depression
Scale; WAIS-R � Wechsler Adult Intelligence Scale–Revised; NPZ � neuropsychological z score.
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e-2, no other comparison results were significantly
different among the groups. Analyses using absolute
metabolite concentrations (data not shown) were
similar to using their ratio to Cr, with the exception
of those reported above.

Protein carbonyl concentration in CSF (available
in 47 subjects) decreased from baseline to week 24 in
both placebo and STS groups; however, there was no
significant difference among the groups (table 2).
Only a small subset of subjects had both protein car-
bonyl CSF concentrations and MRS data available at
baseline (8 were on placebo, and 11 were on STS).
There were no significant correlations between pro-
tein carbonyl concentrations and MRS measures.
Lower baseline protein carbonyl concentrations were

associated with a greater increase in NAA/Cr in the
centrum semiovale at weeks 12 and 24 (p � 0.005).
A trend was also observed between higher concentra-
tions of protein carbonyl at baseline and a greater
increase of MI/Cr in the basal ganglia at weeks 12
and 24 (p � 0.063).

DISCUSSION The use of the selegiline transdermal
system (STS) in this cohort of HIV-infected individuals
with cognitive impairment was not associated with ei-
ther improvement in brain metabolites (as measured by
MRS) or decreases in oxidative stress levels (as measured
by CSF protein carbonyl concentrations) when com-
pared with placebo. These results are complementary to
the lack of cognitive improvement in the STS groups
compared with placebo observed in this substudy and
the larger parent study.7 The trend toward a decrease in
NAA/Cr in the basal ganglia and centrum semiovale
and increase in Cho/Cr in the frontal cortex in the STS
groups compared with the placebo group raises addi-
tional questions regarding the neuroprotective role of
STS in HIV-infected individuals. Although most in
vitro and animal investigations have suggested that sele-
giline is neuroprotective,21 including some models of
HIV-associated neurotoxicity,2,22 there have been re-
ports in the simian immunodeficiency model that sele-
giline may worsen CNS pathology, possibly mediated
by the resulting increase in dopaminergic activity.23,24

To our knowledge, the combination of MRS and
protein carbonyl as the outcome of a clinical trial has
not been reported before. MRS is a noninvasive tech-
nique that allows in vivo assessment of brain metab-
olites, including NAA (a marker of neuronal
integrity), Cho (a marker of membrane damage), and
MI (an osmolyte and astrocyte marker elevated in
inflammatory and neoplastic disorders).25 Several
studies indicate that MRS provides a sensitive and
robust in vivo method to monitor the pattern and
course of CNS injury in HIV infection.26-30 Particu-
larly relevant to the use of MRS as a biomarker is the
evidence that increases in NAA/Cr concentration
and decreases in MI/Cr concentration occur in re-
sponse to antiretroviral therapy and are associated
with improved cognitive performance.26,31 Further-
more, MRS sensitivity in monitoring CNS injury is
underscored by its ability to detect changes even be-
fore clinical manifestations of diseases.28,32,33 The use-
fulness of MRS in measuring CNS injury has been
demonstrated in several other neurodegenerative dis-
eases, including Parkinson disease,34 multiple system
atrophy,35 multiple sclerosis,36 Huntington disease,32

and cortical dementias,33 as well as in toxic or neo-
plastic CNS injury.25

The MRS protocol used in this study reflected the
imaging capability of the sites involved at the time of

Figure 1 Changes in NPZ scores by treatment arm

(A) Neuropsychological z score (NPZ)-6. (B) NPZ-8.

1978 Neurology 73 December 8, 2009



the study. Having 3-T data might have been benefi-
cial, but there were not enough 3-T systems available
when the study was designed. Furthermore, although
higher field strength probably would have afforded
some increases in the signal-to-noise ratio (SNR)
compared with 1.5 T, gains in SNR do not necessar-
ily translate into improvements in metabolite ratio
reliability. For example, whole-brain NAA levels
were not more reproducible at 3.0 T compared with
1.5 T.37 Finally, we used a single-voxel approach to
maximize the detection of changes in brain regions
known to be affected by HIV neuropathology.

The second biomarker, protein carbonyl, is a
marker of protein oxidation and has been used to
assess the impact of oxidative stress in aging and
neurodegeneration.38-41 Furthermore, recent animal
studies suggest that protein carbonyl concentrations
may be responsive to antioxidant treatment.41 We
have previously shown that CSF concentration of
protein carbonyl is increased in HIV-infected indi-
viduals with cognitive impairment compared with
HIV-infected subjects without cognitive impairment
and compared with HIV-negative controls.2 It
should be emphasized that CSF represents a limited
window for assessing oxidative stress in the brain;
however, it constitutes the closest compartment to
the brain that we can easily and safely access.

We hypothesized that protein carbonyl concentra-
tion would have an inverse correlation with NAA/Cr
and a positive correlation with Cho/Cr and MI/Cr, but
we did not find significant correlations at baseline.
However, lower CSF protein carbonyl concentration at
baseline was associated with subsequent significant in-
crease of NAA/Cr in the frontal white matter. One pos-
sible interpretation of this finding is that changes in
levels of oxidative stress predate changes measured via
MRS. Unfortunately, only a small number of subjects
had both MRS and CSF protein carbonyl measured,
because the MRS and lumbar puncture were optional
in the parent study, thereby limiting the power of assess-
ing the relationship between CSF protein carbonyl and
MRS-measured metabolites.

Overall, the concordance between the lack of clinical
response and lack of improvement in MRS-measured
brain metabolites in this study and the concordance be-
tween trends in cognitive improvement and significant
increases in NAA/Cr in 2 previous clinical trials in
HIV-associated cognitive impairment20,42 reinforce the
usefulness of MRS as a biomarker in HIV-associated
cognitive impairment. The responsiveness of CSF pro-
tein carbonyl concentrations in predicting clinical out-
comes merits further evaluation.

We are cognizant that a larger sample size would
have provided greater power in assessing the effect of
selegiline on brain metabolites and protein carbonyl.

Figure 2 Means � 2 SDs of metabolite ratios with between-group differences
in change from baseline to week 24

(A and B) Slight increases in N-acetylaspartate (NAA)/creatine (Cr) in the basal ganglia and
in the centrum semiovale of the placebo group compared with the selegiline transdermal
system (STS) groups (p � 0.023 and p � 0.072, respectively). Change in the absolute con-
centration of NAA was not significant. (C) Combined STS groups had higher levels of choline
(Cho)/Cr in the midfrontal cortex (p � 0.002) compared with the placebo group after adjust-
ing for baseline levels of the metabolite. A smaller difference in Cho (p � 0.046) was
present when the absolute concentration of Cho was analyzed.
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However, based on the results of this study that found
no improvement in brain metabolites or in markers of
oxidative stress and combined with the lack of clinical
improvement observed in the larger parent study,7 we
conclude that there are no strong bases for future devel-
opment of STS as a neuroprotective compound for the
treatment of HIV-associated cognitive impairment.
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