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Structural magnetic resonance imaging data from 308 twins, 64
singleton siblings of twins, and 228 singletons were analyzed using
structural equation modeling and selected multivariate methods to
identify genetically mediated intracortical associations. Principal
components analyses (PCA) of the genetic correlation matrix indi-
cated a single factor accounting for over 60% of the genetic
variability in cortical thickness. When covaried for mean global
cortical thickness, PCA, cluster analyses, and graph models
identified genetically mediated fronto-parietal and occipital net-
works. Graph theoretical models suggest that the observed
genetically mediated relationships follow small world architectural
rules. These findings are largely concordant with other multivariate
studies of brain structure and function, the twin literature, and
current understanding on the role of genes in cortical neuro-
development.
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Introduction

Neuroimaging studies of twins have just started to discern the

relative effects of genes and environment on brain anatomy.

Heritabilities (i.e., the proportion of phenotypic variance due to

genetic sources) differ by age and region, but for volumes of

total brain or large brain subdivisions such as frontal, parietal,

and temporal lobes reported values are usually around 0.80

(Baare et al. 2001; Geschwind et al. 2002; Wallace et al. 2006);

for smaller structures the highest heritability measures are

approximately 0.50 (Wright et al. 2002), but the accuracy of

these estimates is somewhat limited by small samples. A

previous study of regional heritability of cortical thickness in

a population of 600 healthy children and adolescents found

values ranging to approximately 0.60 (Lenroot et al. 2007).

Multivariate analyses provide a means to address the degree

to which the heritabilities of different structures are influenced

by the same genetic factors. Shared genetic factors may reflect

overlapping ontogeny, neural function, or postnatal develop-

ment. A greater understanding of these shared genetic factors

may facilitate gene discovery by suggesting novel endopheno-

typic constructs and provide insights into the nature of indi-

vidual differences in neuroanatomy. To date, there have been

very few genetically informative studies to investigate brain

structure using multivariate tools, and none in large typical

populations at high levels of spatial resolution.

In this study, we apply multivariate techniques to explore

the role of genes in cortical patterning. Structural equation

modeling was used to estimate the genetic contributions to

individual differences in cortical thickness of 54 cerebral par-

cellations in a population of 600 pediatric subjects in an

extended twin design. Gyral levels of cortical parcellation were

chosen for the present study as perhaps being closer to func-

tionally discrete anatomical subunits than lobar level analyses

but less prohibitive in terms of computational demands and

difficulty of interpretation than individual voxels. We then

applied 3 distinct multivariate techniques (clustering, principal

components analysis [PCA], and graph theory) to determine if

phenotypic variance in different cortical regions is driven by

common genetic factors.

Methods

Participants
Participants were recruited as part of an ongoing longitudinal study of

pediatric brain development at the Child Psychiatry branch of the

National Institutes of Mental Health (NIMH). Recruitment was

performed via local and national advertisements and participants were

screened via an initial telephone interview, parent, and teacher rating

versions of the Child Behavior Checklist (Achenbach and Ruffle 2000),

and physical and neurological assessment. General exclusion criteria

included psychiatric diagnosis in the subject or a 1st degree relative

and head injury or other conditions that might have affected gross brain

development. Exclusion criteria related to pregnancy and birth events

specifically included gestational age of <30 weeks; very low birth

weight ( <3 lbs 4 oz.), any known exposure to psychotropic medi-

cations during pregnancy, and significant perinatal complications.

Twin zygosity was determined by DNA analysis of buccal cheek

swabs using 9--21 unlinked short tandem repeat loci for a minimum

certainty of 99%, by BRT Laboratories, Inc. (Baltimore, MD). Twins were

included in the analysis only if quantifiable magnetic resonance imaging

(MRI) scans free from motion or other artifact were obtained on both

twins at the same age. Written assent from the child and written

consent from a parent were obtained for all participants. The study

protocol was approved by the institutional review board of the NIMH.

The resultant sample consisted of 600 children (mean age 11.1, SD

3.4, range 5.4--18.7), including 214 monozygotic (MZ) and 94 dizygotic

(DZ) twins, 64 singleton siblings of twins (1--2 per family), 116

members of entirely singleton families (2--5 members per family), and

112 unrelated singletons. The distribution of subjects and basic

demographic information are given in Table 1.

Image Acquisition
All subjects were scanned on the same GE 1.5-Tesla Signa scanner using

the same 3-dimensional spoiled gradient recalled echo in the steady

state imaging protocol (axial slice thickness = 1.5 mm, time to echo = 5 ms,

repetition time = 24 ms, flip angle = 45�, acquisition matrix = 192 3 256,

number of excitations = 1, and field of view = 24 cm). A clinical

neuroradiologist evaluated all scans and no gross abnormalities were

reported.

Image Processing
The native MRI scans 1st were registered into standardized stereotaxic

space using a linear transformation (Collins et al. 1994) and sub-

sequently corrected for nonuniformity artifacts (Sled et al. 1998). The

registered and corrected volumes were segmented into white matter,
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gray matter, cerebrospinal fluid, and background using a neural net

classifier (Zijdenbos et al. 2002). The white and gray matter surfaces are

then fitted using deformable models resulting in 2 surfaces with 81920

polygons each (MacDonald et al. 2000). The white and gray matter

surfaces are resampled into native space and computed tomography

(CT) was then computed in native space. Each subject’s cortical

thickness map was then blurred using a 30-mm surface based blurring

kernel, which respects anatomical boundaries (Lerch and Evans 2005).

The cortical regions are the same as thosedescribedbyHeet al. (2007).

A probabilistic atlas was used to assign cortical points to specific

neuroanatomic regions (Collins et al. 1999). Mean CT was calculated for

each of 54 cortical subregions (Table 2), which roughly corresponded to

cerebral gyri andwere based on the sulcal definitions ofOno et al. (1990).

Statistical Analysis
The resultant datawere iterativelypassed fromthe statistical programming

environment R (Ihaka and Gentleman 1996; R Development Core Team

2005) to Mx (Neale et al. 2002), a matrix-based structural equation

modeling package (Neale and Cardon 1992). Univariate variance de-

composition was accomplished using an extended twin design of the

classical ACE model, which increases the statistical power to detect

genetic effects on phenotypes (Posthuma et al. 2000). Models included

a simultaneous means regression to adjust for sex, nonlinear age effects,

and interactions between age and sex. In these models, the differences in

the correlation between MZ twins, DZ twins, and related singletons

enabled the parsing of the observed variance in the observed cortical

thickness measured into variance of genetic (a2), nongenetic familial (c2),

and unique environmental (e2) origin. It is important to note that these

statistics represent the proportion of the variance in the population

attributable to these factors, rather than the fraction of an individual’s

phenotype caused by genetic or nongenetic effects. Thus, these measures

have the same limitations as other summary statistics (e.g., means).

Optimization was performed using maximum likelihood (ML) (Edwards

1972), which produces unbiased estimates of model parameters. ML

also allows for straightforward hypothesis testing, because the removal

of parameters of interest from the original model produces nested

submodels in which the difference in ML asymptotically follows a v2

distribution, with degrees of freedom equal to the difference in the

number of free parameters (Neale and Cardon 1992). For each

neuroanatomic region, we tested for the significance of both genetic

and shared environmental effects.

Multivariate Modeling
In order to analyze the pattern of genetic relationships between

neuroanatomic structures, we employed a modified version of the

multistep multivariate analyses reported by Wright et al. (Wright et al.

2002). First, we constructed extended twin versions of bivariate

ACE Cholesky decompositions for each pair of neuroanatomic variables

(Fig. 1). In addition to adjusting for age and sex, mean global CT

was included as a regressor. Cholesky decomposition factors any

symmetric positive definite matrix into a lower triangular matrix

postmultiplied by its transpose (Neale and Cardon 1992). This ap-

proach places few a priori constraints on the data but allows for the

covariance between 2 phenotypes to be decomposed into covariance

resulting from either genetic or nongenetic sources. The genetic

correlation between any 2 structures was then calculated by stan-

dardizing their genetic covariance matrix. The genetic correlation is

defined as

rx ;y =
Axyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAx 3Ay Þ
p

Table 1
Demographic characteristics of the sample

MZ twins DZ twins Sibs of twins Singletons Total sample

N (% of total) 214 (35.7) 94 (15.7) 64 (10.7) 228 (38.0) 600
Age
Mean (SD): 11.03 (3.16) 11.20 (3.80) 11.62 (3.53) 10.92 (3.48) 11.08 (3.43)
Range: 5.37--18.72 5.55--19.34 4.99--19.11 5.16--18.88 4.99--19.34

Sex (% of subsample)
Male 117 (55) 53 (56) 31 (48) 132 (58) 332 (55)
Female 97 (45) 41 (44) 33 (52) 96 (42) 268 (45)

Race (% of subsample)
Caucasian 202 (94) 92 (98) 63 (98) 172 (75) 529 (88)
African-American 6 (3) 0 (0) 0 (0) 36 (16) 42 (7)
Asian-American 2 (\1) 0 (0) 0 (0) 8 (4) 10 (2)
Hispanic 4 (2) 2 (2) 1 (2) 11 (5) 18 (3)
Unspecified 0 (0) 0 (0) 0 (0) 1 (\1) 1 (\1)

Handedness (% of subsample)
Right 189 (88) 78 (83) 56 (88) 199 (87) 513 (86)
Mixed 19 (9) 11 (12) 7 (11) 21 (9) 36 (6)
Left 18 (8) 9 (10) 10 (16) 32 (14) 37 (6)
Undetermined 6 (3) 2 (2) 4 (6) 2 (\1) 14 (2)

SES
Mean (SD) 43.49 (18.40) 42.92 (13.87) 40.11 (16.89) 40.70 (20.57) 41.99 (18.49)
Range 20--89 20--70 20--77 20--95 20--95

Table 2
Cortical ROIs in the present study and abbreviations used in subsequent tables and figures

Structure name Left abbreviation Right abbreviation

Superior frontal gyrus SFG-L SFG-R
Middle frontal gyrus MFG-L MFG-R
Inferior frontal gyrus IFG-L IFG-R
Precentral gyrus PreCG-L PreCG-R
Lateral orbitofrontal gyrus LFOrbG-L LFOrbG-R
Medial orbitofrontal gyrus MFOrbG-L MFOrbG-R
Cingulate cortex Cingulate-L Cingulate-R
Medial frontal gyrus MedialFG-L MedialFG-R
Superior parietal gyrus SupParGy-L SupParGy-R
Supramarginal gyrus SMG-L SMG-R
Angular gyrus AngularGy-L AngularGy-R
Precuneus Precuneus-L Precuneus-R
Postcentral gyrus PostCenGy-L PostCenGy-R
Superior temporal gyrus STG-L STG-R
Middle temporal gyrus MTG-L MTG-R
Inferior temporal gyrus ITG-L ITG-R
Uncus Uncus-L Uncus-R
Medial occipitotemporal gyrus MediooccipitemporalGy-L MediooccipitemporalGy-R
Lateral occipitotemporal gyrus LateraloccipitemporalGy-L LateraloccipitemporalGy-R
Parahippocampal gyrus ParahippocampalGy-L ParahippocampalGy-R
Occipital pole OccipitalPole-L OccipitalPole-R
Superior occipital gyrus SupOccGy-L SupOccGy-R
Middle occipital gyrus MidOccGy-L MidOccGy-R
Inferior occipital gyrus InfOccGy-L InfOccGy-R
Cuneus Cuneus-L Cuneus-R
Lingual gyrus LingualGy-L LingualGy-R
Insula Insula-L Insula-R
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where Axy is the genetic covariance between structures x and y, and Ax

and Ay represent the heritability of x and y (Falconer and Mackay 1996).

The sequential bivariate analyses of 2862 pairwise models populated

a 54 3 54 genetic correlation matrix; despite the redundancy, calcu-

lations both above and below the diagonal were performed in order

to ensure that the optimizer had converged to the proper solution.

We then applied 3 multivariate techniques to the subsequent genetic

correlation matrix: cluster analysis, PCA, and graph theoretical

modeling (details to follow). We used multiple analytic methods for

several reasons. First, as the multivariate literature is sparse but employs

all of these techniques, using several methods facilitates comparisons

with other studies. PCA, for example, is used by the only other extant

high-resolution multivariate imaging study on genetically informative

data, whereas clustering and graph modeling is commonly employed in

the animal literature. Second, all methods have their strengths and

weaknesses; in situations in which all methods agree, we will have

more confidence that the results are biological rather than statistical

artifact. Third, different methods often provide some information not

available via other techniques. Graph theoretical models, for example,

provide unique information on the connectivity of individual brain

regions with other structures, as well as summary statistics for the

entire network. In contrast, cluster analysis is uniquely suited for

simultaneous inspection of the results and the raw data. The general

principles for these 3 multivariate strategies are described below.

Cluster Analysis
The correlation matrix was visualized using the heatmap0.2 function in

R (from the gplots package), which also performed hierarchical cluster

analysis using Euclidian distances (Warnes et al. 2006). Hierarchical

clustering is a form of cluster analysis that requires no a priori

specification of the ‘‘known’’ number of clusters present in the data, but

rather generates a hierarchy of relationships based on a distance

function (Hastie et al. 2001). Heatmap0.2 performs agglomerative

clustering, which represents a stepwise ‘‘bottom-up’’ strategy that

recursively groups the most related structures until a single cluster

remains. In addition to reorganizing the data such that ROIs with

similar genetic correlational patterns are spatially proximal in the

matrix, a dendrogram also is produced that shows the level of similarity

between the ROIs; the shorter the path along the dendrogram between

2 ROIs, the more similar their patterns of genetic correlations. Using

this dendrogram, we identified the most prominent high-level clusters

in the data.

Principal Components Analysis
We then completed a PCA on the genetic correlation matrix and

extracted the factors with the 6 highest eigenvalues. PCA is a linear

transformation that attempts to reduce the dimensionality of the data

structure by identifying uncorrelated factors that account for a dispro-

portionate amount of the total variance within the observed measures

(Norman and Streiner 2000; Hastie et al. 2001); in essence PCA rotates

the axes of measurement to optimally align with the dominant axes of

the observed data, with the constraint that all components lie

orthogonal to one another. To facilitate interpretation of the factor

structure, varimax rotation was subsequently applied (Kaiser 1958).

These components describe the predominant relationships between

the observed neuroanatomic regions. As PCA was performed on genetic

correlation matrices, the resultant factor loadings can be interpreted as

correlations between genetic latent factors and regions of interest

(ROIs). Though the sign of an individual factor loading is arbitrary, 2

structures with the same sign for a given factor are expected to have

a positive partial correlation due to the common genetic factor, whereas

structures of opposite sign will have negative partial correlations.

Graph Theory
As an alternate method to characterize relationships between gyral

regions, we constructed simple graph theoretical models using

Bioconductor (Carey et al. 2005), a collection of R packages for the

analysis of genomic data. Graph theory is a branch of discrete

mathematics for the analysis of complex networks, with applications

in telecommunications, social networking, bioinformatics, and molec-

ular biology, among others. Recently, there has been increasing interest

in using graph theory in systems biological analyses of the most

complex network known, that is, the brain, with applications ranging

from examining neuronal circuitry to understanding structural and

functional connectivity between large neuroanatomic regions (Sporns

et al. 2004). Prior phenotypic analyses using graph theory have

suggested that the brain may possess ‘‘small world’’ properties (Achard

et al. 2006), defined as neural networks with a combination of dense

local interconnectivity (i.e., clustering) and short average path lengths

(Watts and Strogatz 1998) between regions. It has been proposed that

this architecture is ideal for functional specialization and integration

within the brain (Sporns et al. 2004).

The 2 fundamental components of these models are nodes, which

represent units in a large system (e.g., computers, proteins, neurons, or

gyri), and edges, which represent the connections between them. To

identify important edges within our data, we selected significant

positive correlations at an a = 0.05. Significant edges were identified by

comparing the fit of an AE Cholesky decomposition with a submodel in

which the path allowing for genetic covariance (a2 in Fig. 1) was

removed. From this graph, we calculated statistics that evaluate

properties of the network, namely the characteristic path length (L)

and the clustering coefficient (C) (Watts and Strogatz 1998). The path

length simply refers to the average shortest distance between a node

and other nodes in the system; the clustering coefficient of a node is

the average number of edges connecting a node’s neighbors, relative to

the total number possible. Small world networks typically have similar L

and higher C statistics relative to random networks (Watts and

Strogatz 1998).

Figure 1. Example of a path diagram describing the bivariate Cholesky decomposition used to estimate genetic correlations between ROIs. The variance in observed variables
(denoted as rectangles) is modeled to be mediated by latent additive genetic (A), shared environmental (C), or unique environmental (E) sources of variance (circles) with latent
variances standardized to unity. The model is identified because the correlation between genetic factors (a) is perfect in MZ twins, but one-half between DZ twins and singleton
siblings. The expected covariances of this model produce 9 simultaneous equations from which the values of the 9 free parameters (a, c, e) can be estimated. In this example, 2
related family members (S1 and S2) are shown. For families with more than 2 individuals, this model is easily expanded, with families of size k generating (2k)2 informative
variance/covariance relationships. Unrelated individuals provide useful information for the estimation of ROI variances as well as the within-person phenotypic covariance.
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Within the present data, values of L and C for the system as a whole

were calculated by taking mean values for all nodes in the graph. We

compared these calculations with those from 1000 simulated random

networks, each with the same number of nodes and edges as the real

data. In the simulations, for each of i edges, 2 nodes were identified by

sampling from a pool of 54 nodes (with replacement) with uniform

probability, with the constraints that an edge could not connect a node

to itself, nor could edges be redundant. Visualization of graphs was

performed using modifications of functions in the GeneTS package

(Schafer and Strimmer 2005).

Absolute Measures
Prior multivariate research has shown a strong global genetic factor

ubiquitously influencing brain volumes (Schmitt et al. 2007). Thus, we

also were interested in understanding how the strength of genetic

correlations between CT ROIs would change without the mean global

CT covariate. To address this question, we recalculated the genetic

correlation matrix after removing the effects of global CT on mean CT

of individual gyri. Subsequently, PCA on this matrix was performed

identically to the analysis described above.

Results

Variance Component Analyses

Variance decomposition demonstrated substantial heterogene-

ity in heritability between cortical regions. Table 3 presents

both parameter estimates and tests of the statistical significance

of genetic and shared environmental effects to the variation in

each region. In general, genetic effects were strongest in

frontal lobes, with temporal, parietal, and occipital variance

progressively less influenced by genes. The specific regions

with the highest heritability included the superior and inferior

frontal gyri, the pre- and postcentral gyri, left medial frontal

gyrus, left supramarginal gyrus, the left inferior temporal gyrus,

and the left occipital pole. Global trends can be seen in Figure

2, which projects point estimates on the brain surface. In

contrast to genetic factors, the familial environment appeared

to have virtually no role in the observed variability in CT.

Although the genetic effects on most of structures were

statistically significant at an a of 0.05, no shared environmental

factors were significant at this level, and the c
2 ML estimate for

nearly every structure was zero.

Multivariate Relationships

A color map of the genetic correlation matrix is shown in

Figure 3. Genetic correlations between the measured cortical

structures ranged from –0.67 to 0.76. Left/right gyral homologs

were more likely to be positively correlated genetically, as

were regions in spatial proximity though this trend was not

uniformly observed. The neuroanatomic relationships are

apparent in the dendrogram that accompanies the correlation

matrix (reproduced on both axes), which displays the results of

hierarchical cluster analyses. Two major blocks were identified

via cluster analysis: a temporo-occipital cluster and a fronto-

parietal cluster. Within these clusters, approximately 5 blocks

of related structures emerged: temporal/insular/left lateral

orbitofrontal, cingulate/orbitofrontal, occipital/occipitotempo-

ral, frontal (excluding orbitofrontal gyri), and parietal (in-

cluding precuneus, primary somatosensory cortex bilaterally,

and left parahippocampal and lingual gyrus). Positive genetic

correlations were largely clustered within these blocks, but

there also were several strong correlations between blocks,

such as between superior/middle frontal structures and both

primary somatosensory cortex and superior parietal lobe.

Structures on the inferior of the brain were dispersed between

the parietal and occipital blocks and had correlational patterns

similar to those of the occipitotemporal structures. Other

prominent between-block correlations included between the

frontal block and superior parietal lobe, frontal lobe, and

cingulate cortices, and between orbitofrontal, cingulate, and

middle/inferior temporal structures.

Principal Components Analysis

The 1st 6 components of the PCA explained over half (58%) of

the total genetic variance in all 54 measures, with each factor

explaining about 10% of the observed variability. The compo-

nent loadings are projected onto the brain in Figure 4, which

visualizes the most important factors for explaining genetically

mediated individual differences in cortical thickness. Like

cluster analysis, the genetic factors identified via PCA largely

associated regions in spatial proximity. The 1st and most

prominent component strongly loaded on frontal and superior

parietal structures (1). The 2nd factor loaded predominantly

on the lateral surface of the occipital lobe, with high nega-

tive loadings in left orbitofrontal gyrus and cingulate gyrus

bilaterally (2). The remaining 4 factors explained genetic

correlations between ventral occipitotemporal and medial

occipital regions (3), gyri of the frontal lobe (excluding orbito-

frontal gyrus, 4) temporo-insular and orbititofrontal/cingulate

structures (5), and parietal lobe structures and right para-

hippocampal gyrus (6).

Graph Theory

Using statistically significant genetic correlations as a threshold

for edge placement, we identified 185 edges connecting the 54

neuroanatomic structures. The degree, clustering coefficient,

and average path length for included ROIs are given in the

Supplementary Data (Table 1S). The distribution of edges was

not uniform; regions with the highest number of edges (i.e., the

degree of the node) were the superior and middle frontal gyri,

pre- and postcentral gyri, superior parietal gyrus, and the

occipital pole. The clustering coefficient and characteristic

path length were similarly heterogeneous for different struc-

tures, with ranges from 0.17 to 1.0 and 2.3 to 3.7, respectively.

The characteristic path length for the entire observed system

was 2.8, which was marginally (1.2 times) larger than that in

simulation of random networks (mean L = 2.3, SD = 0.03). In

contrast, the clustering coefficient for the entire system was

0.50, 4.2 times higher the average value for the simulated

networks with randomly assigned edges (mean C = 0.12, SD =
0.03). Figure 5A displays this graphically. The tight local

clustering of the data relative to random networks is apparent

in Figure 5B,C; in the observed data, most edges from a given

node connect to other nodes nearby in the network, with

occasional connections to distant nodes. Like PCA and cluster

analyses, the graph theoretical approach found strong relation-

ships within fronto-parietal and occipital subnetworks

(Fig. 5D).

Absolute Measures

When we repeated the analysis without a global covariate, all

structures had strong positive correlations. PCA identified

a single genetic factor that could explain over 60% of genetic

variability with the 2nd factor explaining more than 10 times
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less of the total variance (see the Supplementary Data, Fig. 1S).

Most structures in the brain showed high loadings on this

single factor.

Discussion

Univariate Analyses

The results from univariate analysis found substantial differ-

ences in CT heritability throughout the cerebral thickness,

with the most heritable structures having about half of their

variability explained by additive genetic effects. The most

heritable areas were within frontal, somatosensory, supra-

marginal, or superior temporal regions. In general, gyri in the

posterior and inferior cerebrum had lower heritability meas-

ures. These findings are largely consistent with the few prior

studies at or above the level of resolution of the present study,

with the exception that the heritability of cortical thickness

appears to be smaller in magnitude when compared with

measures of gray matter density (Thompson et al. 2001; Wright

et al. 2002). The heritability estimates for cerebral gyri reported

here are quite similar to univariate analyses of 40962 cortical

points in the same sample (Lenroot et al., 2007). This analysis

found significant heritability predominantly in frontal, inferior

somatosensory, and left supramarginal regions and low

heritability in most posterior and inferior structures, although

Table 3
ML parameter estimates and P values from hypothesis testing of univariate ACE models

Variance components (95% CI) Hypothesis test

P valuesa

a2 c2 e2 A C A and C

SFG-R 0.45 (0.20, 0.60) 0.00 (0.00, 0.15) 0.55 (0.40, 0.72) 0.004 1.000 0.00
SFG-L 0.51 (0.24, 0.64) 0.00 (0.00, 0.17) 0.49 (0.36, 0.65) 0.002 1.000 0.00
MFG-R 0.43 (0.21, 0.59) 0.00 (0.00, 0.10) 0.57 (0.41, 0.76) 0.002 1.000 0.00
MFG-L 0.38 (0.05, 0.52) 0.00 (0.00, 0.21) 0.62 (0.48, 0.80) 0.027 1.000 0.00
IFG-R 0.52 (0.32, 0.66) 0.00 (0.00, 0.09) 0.48 (0.34, 0.67) 0.000 1.000 0.00
IFG-L 0.44 (0.15, 0.58) 0.00 (0.00, 0.19) 0.56 (0.42, 0.73) 0.007 1.000 0.00
PreCG-R 0.43 (0.20, 0.58) 0.00 (0.00, 0.13) 0.57 (0.42, 0.75) 0.004 1.000 0.00
PreCG-L 0.52 (0.27, 0.65) 0.00 (0.00, 0.15) 0.48 (0.35, 0.65) 0.001 1.000 0.00
LFOrbG-R 0.38 (0.12, 0.54) 0.00 (0.00, 0.15) 0.62 (0.46, 0.81) 0.010 1.000 0.00
LFOrbG-L 0.34 (0.03, 0.49) 0.00 (0.00, 0.19) 0.66 (0.51, 0.84) 0.037 1.000 0.00
MForbG-R 0.22 (0.00, 0.38) 0.00 (0.00, 0.17) 0.78 (0.62, 0.96) 0.099 1.000 0.05
MForbG-L 0.27 (0.00, 0.43) 0.00 (0.00, 0.21) 0.73 (0.57, 0.91) 0.087 1.000 0.01
Cingulate-R 0.36 (0.16, 0.53) 0.00 (0.00, 0.09) 0.64 (0.47, 0.83) 0.003 1.000 0.00
Cingulate-L 0.40 (0.18, 0.56) 0.00 (0.00, 0.10) 0.60 (0.44, 0.80) 0.003 1.000 0.00
MedialFG-R 0.38 (0.10, 0.54) 0.00 (0.00, 0.17) 0.62 (0.46, 0.80) 0.016 1.000 0.00
MedialFG-L 0.50 (0.27, 0.64) 0.00 (0.00, 0.13) 0.50 (0.31, 0.68) 0.001 1.000 0.00
SupParGy-R 0.44 (0.20, 0.59) 0.00 (0.00, 0.13) 0.56 (0.41, 0.76) 0.004 1.000 0.00
SupParGy-L 0.30 (0.04, 0.47) 0.00 (0.00, 0.15) 0.70 (0.54, 0.89) 0.032 1.000 0.01
SMG-R 0.39 (0.00, 0.53) 0.00 (0.00, 0.28) 0.61 (0.47, 0.79) 0.056 1.000 0.00
SMG-L 0.51 (0.22, 0.63) 0.00 (0.00, 0.21) 0.49 (0.37, 0.64) 0.003 1.000 0.00
AngularGy-R 0.20 (0.00, 0.39) 0.00 (0.00, 0.18) 0.80 (0.61, 0.99) 0.171 1.000 0.12
AngularGy-L 0.24 (0.00, 0.41) 0.00 (0.00, 0.18) 0.76 (0.59, 0.95) 0.113 1.000 0.04
Precuneus-R 0.19 (0.00, 0.36) 0.00 (0.00, 0.21) 0.81 (0.64, 0.98) 0.227 1.000 0.09
Precuneus-L 0.12 (0.00, 0.28) 0.00 (0.00, 0.16) 0.88 (0.72, 1.00) 0.367 1.000 0.32
PostCenGy-R 0.57 (0.36, 0.68) 0.00 (0.00, 0.13) 0.43 (0.32, 0.58) 0.000 1.000 0.00
PostCenGy-L 0.48 (0.25, 0.61) 0.00 (0.00, 0.14) 0.52 (0.39, 0.68) 0.001 1.000 0.00
STG-R 0.41 (0.13, 0.56) 0.00 (0.00, 0.17) 0.59 (0.44, 0.77) 0.010 1.000 0.00
STG-L 0.40 (0.14, 0.55) 0.00 (0.00, 0.16) 0.60 (0.45, 0.77) 0.007 1.000 0.00
MTG-R 0.33 (0.00, 0.49) 0.00 (0.00, 0.21) 0.67 (0.51, 0.86) 0.047 1.000 0.00
MTG-L 0.39 (0.04, 0.54) 0.00 (0.00, 0.22) 0.61 (0.46, 0.80) 0.031 1.000 0.00
ITG-R 0.38 (0.17, 0.53) 0.00 (0.00, 0.12) 0.62 (0.47, 0.70) 0.003 1.000 0.00
ITG-L 0.47 (0.18, 0.60) 0.00 (0.00, 0.20) 0.53 (0.40, 0.69) 0.004 1.000 0.00
Uncus-R 0.01 (0.00, 0.16) 0.00 (0.00, 0.09) 0.99 (0.84, 1.00) 1.000 1.000 1.00
Uncus-L 0.05 (0.00, 0.24) 0.00 (0.00, 0.10) 0.95 (0.76, 1.00) 0.584 1.000 0.86
MedioOccipitemporalGy-R 0.31 (0.00, 0.47) 0.01 (0.00, 0.30) 0.68 (0.53, 0.87) 0.196 0.938 0.00
MedioOccipitemporalGy-L 0.26 (0.00, 0.42) 0.00 (0.00, 0.22) 0.74 (0.59, 0.92) 0.128 1.000 0.01
LateralOccipitotrmporalGy-R 0.33 (0.00, 0.48) 0.00 (0.00, 0.22) 0.67 (0.52, 0.85) 0.052 1.000 0.00
LateralOccipitotrmporalGy-L 0.28 (0.00, 0.44) 0.00 (0.00, 0.20) 0.72 (0.56, 0.90) 0.074 1.000 0.01
ParahippocampalGy-R 0.06 (0.00, 0.24) 0.01 (0.00, 0.16) 0.93 (0.76, 1.00) 0.808 0.929 0.61
ParahippocampalGy-L 0.10 (0.00, 0.33) 0.06 (0.00, 0.25) 0.84 (0.67, 0.98) 0.651 0.705 0.07
OccipitalPole-R 0.30 (0.00, 0.50) 0.05 (0.00, 0.32) 0.65 (0.50, 0.84) 0.183 0.764 0.00
OccipitalPole-L 0.47 (0.09, 0.60) 0.00 (0.00, 0.27) 0.53 (0.40, 0.70) 0.018 1.000 0.00
SupOccGy-R 0.37 (0.01, 0.52) 0.00 (0.00, 0.24) 0.63 (0.48, 0.81) 0.045 1.000 0.00
SupOccGy-L 0.31 (0.00, 0.48) 0.00 (0.00, 0.30) 0.69 (0.52, 0.91) 0.216 1.000 0.01
MidOccGy-R 0.26 (0.00, 0.43) 0.00 (0.00, 0.22) 0.74 (0.57, 0.94) 0.136 1.000 0.02
MidOccGy-L 0.33 (0.04, 0.51) 0.00 (0.00, 0.16) 0.67 (0.49, 0.87) 0.032 1.000 0.01
InfOccGy-R 0.23 (0.00, 0.40) 0.00 (0.00, 0.21) 0.77 (0.60, 0.96) 0.193 1.000 0.04
InfOccGy-L 0.12 (0.00, 0.49) 0.21 (0.00, 0.39) 0.67 (0.50, 0.83) 0.580 0.200 0.00
Cuneus-R 0.35 (0.02, 0.50) 0.00 (0.00, 0.22) 0.65 (0.50, 0.83) 0.039 1.000 0.00
Cuneus-L 0.15 (0.00, 0.32) 0.00 (0.00, 0.19) 0.85 (0.68, 1.00) 0.307 1.000 0.25
LingualGyrus-R 0.01 (0.00, 0.33) 0.13 (0.00, 0.25) 0.86 (0.67, 0.98) 1.000 0.349 0.06
LingualGyrus-L 0.22 (0.00, 0.39) 0.00 (0.00, 0.24) 0.78 (0.61, 0.97) 0.325 1.000 0.06
Insula-R 0.30 (0.00, 0.46) 0.00 (0.00, 0.20) 0.70 (0.54, 0.88) 0.059 1.000 0.01
Insula-L 0.26 (0.00, 0.43) 0.00 (0.00, 0.20) 0.74 (0.57, 0.95) 0.120 1.000 0.03

aP values test the hypotheses of no genetic (A), shared environmental (C), or familial (A and C) effects on phenotypic variance. Statistically significant effects (at an a 5 0.05) are shown in boldface.
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the statistics reported here blur some fine brain structure that

is apparent at higher resolution.

Multivariate Analyses

All 3 multivariate analyses found strong genetically mediated

relationships between the frontal lobe and superior parietal

cortex, as well as between ROIs in the occipital lobe and other

gyri involved in visual processing. The superior fronto-parietal

network included regions involved in motoric responses and

spatial attention (Mesulam 2000a). Other important compo-

nents included 2 factors primarily representing structures

involved in visual processing (1 including the occipital pole,

surrounding occipital gyri, and cingulate cortex, and the 2nd

influencing medial and ventral occipital lobe and occipitotem-

poral gyri), a purely ‘‘executive’’ frontal factor, a ‘‘paralimbic’’

temporo-insular factor, and a component influencing inferior

parietal association cortex (Mesulam 1985). Thus, ROIs

associated via multivariate analyses tended to have anatomic

and/or functional connectivity with each other, which is

concordant with prior anatomic studies which show that

paralimbic and heteromodal cortical areas have well-developed

intraregional connectivity (Mesulam 1985). Cluster analyses,

graph models, and PCA all largely reproduced lobar segmen-

tation patterns using the genetic correlations alone, suggesting

that genetic variation in cortical thickness may in part be

controlled regionally.

There were, however, some important differences between

statistical methods; discrepancies between cluster analyses and

PCA are at least partially due to the discrete nature of

clustering versus the more continuous approach in PCA; in

other words, whereas an ROI may belong to only 1 cluster, it

can have strong PCA loadings on multiple components. In

general, PCA also identified more subtle regional effects than

cluster analyses, such as divisions between superior versus

inferior parietal lobe or lateral versus medioventral occipital

lobe, despite these structures being in close spatial proximity

and thought to have related (albeit distinct) functionality. A

more subtle examination of the cluster analyses (see Fig. 3)

indicates that many subclusters often further subdivide to

generate patterns of relatedness that are closer to those

observed via PCA (e.g., clusters 5a and 5b). Thus, these

multivariate techniques often represent alternative perspec-

tives on the same reality.

Only a few imaging studies have investigated multivariate

relationships in genetically informative samples (Pennington

et al. 2000; Wright et al. 2002; Schmitt et al. 2007). Of these, by

far the most methodologically similar to the present study was

that of Wright et al. on 10 MZ and 10 DZ pairs, on which many

of our own methods were based. Their analyses found that 2

principal components could account for 24% of the total

genetic variance in 92 regions, which they interpreted as

representing a fronto-parietal-limbic system and a supraregional

network involved in audition. The structures influenced by

the 2nd factor primarily were located in temporal lobe,

dorsolateral prefrontal and orbitofrontal cortex, insula, and

extracortical regions. The factor loadings were quite low for

both factors (|loadings| < 0.25). Potential reasons for the

discrepancies between the 2 studies are numerous, including

1) differing phenotypes both in measure (volume versus

cortical thickness) and parcellation scheme, 2) the bivariate

model used by Wright constrained genetic correlations to be

positive, whereas the present study allowed for negative values,

3) the former study used twins only, whereas the latter

included information from related family members, 4) an adult

versus pediatric sample, and 5) a 15-fold difference in sample

size with associated differences in power. It is reassuring, how-

ever, that the components reported byWright resemble 2 of the

components reported here (components 1 and 5 from Fig. 4).

Although multivariate anatomic studies in humans are, at

present, quite sparse, there are several examples of multivariate

Figure 2. Visualization of variance components analysis for 54 measures of cortical thickness. The ML estimates for heritability (a2) and the unique environmental variance (e2)
reported in Table 1 are rendered onto the brain surface. Because the estimates for familial variance approach zero for most structures, these are not shown.
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analyses in the literature on nonhuman primates as well as

multivariate functional studies on humans (Bassett and

Bullmore 2006). Considering several differences in methodol-

ogy as well as interspecies neuroanatomical differences, the

correlational patterns that we observed are broadly similar to

those produced in functional analyses of primate cortical

connectivity using the large public database CoCoMac (Col-

lections of Connectivity on the Macaque) (Young 1993;

Stephan et al. 2000). By using several different multivariate

techniques, including cluster analysis, multidimensional scaling

(MDS), and graph theoretical models, Stephen et al. examined

functional connectivity via 245 different local cortical applica-

tions of strychnine on 3897 tests of activity throughout the

cortex. These analyses identified 3 major clusters comprising

1) a ‘‘somatomotor’’ cluster including primary motor area,

premotor areas, primary somatosensory cortex, and superior

parietal regions (PEp and PEm), 2) a ‘‘visual’’ cluster including

primary visual cortex, extrastriate visual cortex, temporo-

occipital regions, and medial temporal cortex, and 3) an

‘‘orbito-temporal-insular’’ cortical cluster including frontal

operculum, anterior insula, and ‘‘polar, medial, and allocortical

regions of the temporal lobe.’’ A separate study by Young

(1993) reported similar findings on primate brain structure.

We also observed strong relationships between the frontal

lobe and superior parietal cortex, and genetically mediated

associations between regions involved in vision as well as

Figure 3. Heatmap of the genetic correlations between 54 measures of cortical thickness, with results from a hierarchal cluster analysis displayed on the margins. The distance
along the dendrogram connecting 2 structures is inversely related to the similarity in their genetic correlational patterns. Two major clusters of structures were identified;
a temporo-occipital cluster and a fronto-parietal cluster (lettered A and B, respectively). These clusters in turn divided into roughly 5 subblocks (numbered 1--5); temporal/insular/
left lateral orbitofrontal (1), cingulate/orbitofrontal (2), occipital/occipitotemporal (3), frontal (4), and (predominantly) parietal (3). Two of these subblocks had clear, discrete
subdivisions within them (lettered a, b).
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between temporo-insular and the orbitofrontal regions. These

findings were most evident in PCA, in which somatomotor,

visual, and temporal-insular-orbital components were observed.

Multivariate functional imaging studies on humans find similar

clusters. For example, employing hierarchical cluster analysis

and MDS on resting state functional MRI (fMRI) data, Salvador

identified approximately 6 regional systems corresponding to

the 4 neocortical lobes (with parietal regions and premotor

cortex clustered together, as reported here), medial temporal

lobe, and the subcortical nuclei (Salvador et al. 2005). The

association between parietal and motor cortices, in particular,

appears to be consistent across species and methods. Salvador

additionally observed strong phenotypic relationships between

a given ROI and its contralateral homologues, which also has

Figure 4. Results of PCA. (A) Barplot of factor loadings on the 54 measured regions, with columns representing the 6 most important components in explaining the total genetic
variability in cortical thickness after adjusting for global effects. Because this PCA was performed on a (genetic) correlation matrix, factor loadings can be interpreted as the
correlation between an ROI and a (genetic) component. Division lines between ROIs are provided for orientation purposes only. (B) Alternate representation of the same
information projected on the brain surface.

1744 Multivariate Twin Cortical Thickness Analysis d Schmitt et al.



been observed in anatomic data (He et al. 2007). As we observed

strong interhemispheric genetic correlations between these

regions, our data suggest that the associations between

structural homologues are largely genetically mediated.

Graph theoretical analyses in primates also suggest that the

organization of the brain follows small world architectural

rules, by which interstructural connectivity is dense within

blocks and more sparse between them (Kotter and Sommer

Figure 5. Genetically mediated neuroanatomic networks modeled using graph theory. (A) The distribution of the clustering coefficient for 1000 random networks generated using
permutation of observed data. The clustering coefficient calculated from the observed data is given as an asterisk. (B) An example of a randomly generated graph, whereas (C)
was produced from the observed data. In these graphs, nodes are represented as dots on the periphery of the circle and edges as lines; nodes are placed such that overlap of
edges is minimized. (D) An alternative layout of the observed data; darker edges represent stronger correlations. Note the clustering of most frontal and parietal structures (top),
occipital structures (middle right), and orbitofrontal, temporal, and insular structures (bottom left).
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2000; Sporns et al. 2000; Sporns et al. 2002). It has been

suggested that this type of architecture is an appealing model

of neural function because it allows both for modularization

and efficient integration between functional subregions,

resulting in enhanced computational power and transmission

speeds (Bassett and Bullmore 2006). Despite the fact that struc-

tural organization is an area of great interest to the field of

systems neuroscience, at present there have been few

multivariate structural MRI studies in humans (Crick and Jones

1993; Mesulam 2000b); this fact is somewhat surprising given

the rapid increase in the use of multivariate techniques for the

analysis of data from functional and diffusion tensor imaging

(Ramnani et al. 2004). Though the present study is limited by

several factors when compared with other studies (not the

least of which are level of resolution, implicit rather than

explicit physical distances, and a more simplistic graph

theoretical analysis), the dense clustering observable at the

gyral level also implies a small world architecture. Several fMRI

and DTI studies have reported small world properties in human

neural function and white matter orientation (Sporns et al.

2005; Achard et al. 2006), and a recent study by He et al. (2007)

found small world architecture with structural measures of

cortical thickness and quite similar image processing method-

ology to that of the present study. The high clustering observed

using graph theoretical models on our data also implies small

world architecture; however, because our analyses were based

on genetic, rather than phenotypic correlations, it appears that

genetic factors are involved in the patterning of the human

cortex in this manner.

Finally, it is important to keep in mind that these analyses do

not account for all of the genetic variation in the cerebral

cortex. In particular, the use of a global covariate obscures the

presence of a genetic factor that strongly influences the

thickness of nearly the entire cerebral cortex. These analyses

found that this single factor accounted for over 60% of the total

genetic variance. A prior volumetric study by our group

showed a similar phenomenon in a multivariate study of cere-

brum and 5 other brain structures of diverse ontogenetic

origins (cerebellum, basal ganglia, thalamus, corpus callosum,

and the lateral ventricles) in a genetically informative sample

(Schmitt et al. 2007). Thus, although the present study suggests

that some genetic effects on cortical patterning are regional-

ized, these appear secondary to global effects caused by genetic

factors influencing the entire cerebral cortex. As the genes

influencing individual differences in brain structure are

discovered, it is likely that the genes with the largest effect

size will influence the cortex as a whole, with genes of lesser

effect acting on specific subregions and local networks.
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