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The ATP-dependent protein chaperone heat-shock protein

70 (Hsp70) displays broad anti-aggregation functions and

has a critical function in preventing protein misfolding

pathologies. According to in vitro and in vivo models of

Parkinson’s disease (PD), loss of Hsp70 activity is associated

with neurodegeneration and the formation of amyloid de-

posits of a-synuclein (aSyn), which constitute the intraneur-

onal inclusions in PD patients known as Lewy bodies. Here,

we show that Hsp70 depletion can be a direct result of the

presence of aggregation-prone polypeptides. We show a

nucleotide-dependent interaction between Hsp70 and

aSyn, which leads to the aggregation of Hsp70, in the

presence of ADP along with aSyn. Such a co-aggregation

phenomenon can be prevented in vitro by the co-chaperone

Hip (ST13), and the hypothesis that it might do so also

in vivo is supported by studies of a Caenorhabditis elegans

model of aSyn aggregation. Our findings indicate that a

decreased expression of Hip could facilitate depletion of

Hsp70 by amyloidogenic polypeptides, impairing chaperone

proteostasis and stimulating neurodegeneration.
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Introduction

Protein conformational diseases include a range of degenerative

disorders in which specific peptides or proteins misfold and

aberrantly self-assemble, often in the form of amyloid fibrils,

which can be deposited in a variety of tissues, the process of

which may lead to toxicity and cell death. These disorders,

among others, include Alzheimer’s (AD), Parkinson’s (PD)

and Huntington’s diseases (HD) (Chiti and Dobson, 2006;

Luheshi et al, 2008). One of the most studied amyloid-forming

proteins involved in neurodegeneration is a-synuclein (aSyn),

the aggregation of which is linked to the pathogenesis of

PD. Indeed, aSyn is the major component of Lewy bodies,

the protein-rich aggregates found post-mortem in the brains

of patients suffering from PD or a number of related

diseases.

The pathological conversion of misfolded proteins into

cytotoxic species is modulated by interactions with several

proteins, among them are molecular chaperones (Dobson,

2003; Stefani and Dobson, 2003; Young et al, 2004; Balch

et al, 2008), which are now recognized as key players in the

avoidance of misfolding and hence in protein homeostasis

(Dobson, 2003; Young et al, 2004; Balch et al, 2008). A very

important class of chaperones is the family of stress-inducible

70 kDa heat-shock proteins (Hsp70s), which have a critical

function in a range of cellular processes including the folding

of newly synthesized proteins (Frydman et al, 1994) and the

rescue of misfolded proteins (Gragerov et al, 1992; Mogk

et al, 1999), hence avoiding the potentially harmful effects of

the aggregation of the latter species (Hartl, 1996). Hsp70

proteins are composed of an N-terminal ATPase domain

and a C-terminal substrate-binding domain (SBD), connected

by a short linker region (Mayer and Bukau, 2005). Within the

SBD, the substrate-binding pocket recognizes unstructured

segments in polypeptides (Bukau and Horwich, 1998; Mayer

et al, 2001) and the current view is that Hsp70 prevents

misfolding by binding to certain patterns of hydrophobic and

positively charged amino acids in the polypeptide substrate

(Rudiger et al, 1997a, b; Maeda et al, 2007). The ATPase cycle

of Hsp70 involves alternation between an ATP-bound or

‘open’ state, which has lower affinity for substrates, and an

ADP-bound or ‘closed’ state with higher affinity (Mayer and

Bukau, 2005). This alternation appears to be achieved by a

structural ‘coupling’ between the ATPase domain and the

SBD, driven by an allosteric mechanism that is not yet fully

understood (Saibil, 2008). The ATPase cycle is typically

modulated by several co-chaperones, most notably Hsp40,

resulting in an increase in ATPase activity (Minami et al,

1996; Bukau and Horwich, 1998). Other co-chaperones in-

clude Bag-1, which functions as a nucleotide-exchange factor

(Takayama and Reed, 2001), Hop, which interacts with Hsp70

to enhance certain functions (Scheufler et al, 2000), and Hip

(or ST13), which binds to the ATPase domain of the chaper-

one in its ADP-bound state and appears to increase the half-

life of substrate complexes (Hohfeld et al, 1995).
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There seems to be a strong link between problems in the

regulation of chaperone function and the panoply of confor-

mational diseases and amyloidoses (Dobson, 2003; Macario

and De Macario, 2007). For example, patients with PD show

highly perturbed expression of Hsp70 in the substantia nigra,

which is the site of neurodegeneration in this condition

(Grunblatt et al, 2001; Hauser et al, 2005). Indeed, Hsp70

has been found in deposits in the brain of AD patients, in

polyglutamine aggregates of sufferers of HD, and in Lewy

bodies from PD patients (Muchowski and Wacker, 2005).

Furthermore, in PD fly models (Auluck et al, 2002) and in

human neuroglioma cells (Klucken et al, 2004; Zhou et al,

2004), over-expression of Hsp70 has been found to reduce

significantly the toxicity linked to aSyn. Also, it is particularly

interesting that the co-chaperone Hip is consistently present

at lower levels in the blood of PD patients relative to healthy

controls, even at the early stages of the disease (Scherzer

et al, 2007).

Despite the compelling in vivo evidence of the implications

of Hsp70 in disease, in vitro studies of the molecular

mechanisms of the Hsp70-mediated inhibition of amyloid

formation are relatively sparse. For example, the nature

of the misfolded species recognized by Hsp70 and of the

complexes formed during amyloid aggregation of polypep-

tides, are not yet known. Equally important is the need to

understand the ways in which nucleotides control the

interactions with amyloidogenic protein substrates and the

potentially important functions by co-chaperones in assisting

Hsp70 in its amyloid-inhibiting functions. In this work,

we consider the impact of different nucleotide conditions

and of co-chaperones on the anti-aggregation activity of

Hsp70. Using aSyn as the substrate, we have probed

substrate–chaperone interactions for Hsp70 as a function

of the nucleotide state of the chaperone and the different

species of aSyn attained along the aggregation pathways.

By using fluorescence and NMR spectroscopy, we have

characterized a structurally compact ADP-Hsp70/aSyn

complex that may promote the co-aggregation of Hsp70

and may therefore lead to chaperone depletion. We further

identify an important function for the co-chaperone Hip

in sustaining the Hsp70-mediated anti-amyloid activity,

both in vitro and in vivo, the latter studies by means of a

Caenorhabditis elegans model of aSyn aggregation, and

speculate that this specific co-chaperone could have

an important function in the onset and progression

of PD.

Results

The dependence of the solubility and anti-amyloid

activity of Hsp70 on binding of nucleotides

To study the effects of ATP on the anti-aggregation activity of

Hsp70, a series of in vitro aggregation experiments were set

up in which aSyn amyloid formation was monitored by

thioflavin T (ThT) fluorescence (Figure 1A). The presence

of nucleotide-free chaperone at even a 1:10 molar ratio

(Hsp70:aSyn) dramatically inhibited amyloid formation, an

observation in agreement with our earlier work (Dedmon

et al, 2005). Interestingly, however, addition of 2 mM ATP

(using an ATP-regeneration system, see Materials and meth-

ods) to the solution containing Hsp70 was found to inhibit

aSyn aggregation initially, but at longer times an increase in

ThT fluorescence is evident, indicating the onset of aggrega-

tion. Analysis of the kinetics of aSyn aggregation in the

presence of various molar ratios of Hsp70 (Figure 1B;

Supplementary Figure 1) shows that, in the presence of

ATP, both the lag phase and half-time for aggregation increase

as the concentration of Hsp70 is increased. The rate of

aggregation was also found to be affected by the presence

of Hsp70, being reduced by ca. 60–70%, although in a

concentration-independent manner (Supplementary Figure

1). Transmission electron microscopy (TEM) was used to

assess the morphology of the species formed during

the aggregation reaction (Figure 1D), and revealed that

the presence of nucleotide-free Hsp70 strongly abrogates

fibril formation and produces exclusively small amorphous

aggregates that do not enhance the fluorescence of ThT

(Dedmon et al, 2005). Conversely, addition of Hsp70 together

with ATP was found to result in the formation of fibrillar

species, which are indistinguishable from amyloid fibril

controls.

Although an Hsp70–nucleotide mixture clearly reduces

aggregation, we sought to investigate the origins of the

apparent loss with time of chaperone activity of nucleotide-

loaded Hsp70. We initially compared the quantity of protein

in solution at the beginning and end points of a typical

aggregation reaction. Quantitative SDS–PAGE analysis

(Figure 1C; Supplementary Figure 2B) of soluble and inso-

luble fractions generated by low-speed centrifugation showed

that a very substantial proportion (B80%) of Hsp70 is

present in the insoluble fraction but only when ATP and

aSyn are both present. This surprising result suggests that

the observed surge of ThT fluorescence in the presence of

Hsp70 and ATP after ca. 30 h is likely to be a consequence of

aSyn-mediated depletion of Hsp70 in a nucleotide-dependent

manner.

To define the contribution of the different nucleotide-

bound states along the ATPase cycle to this phenomenon,

we conducted aggregation experiments in the absence or

presence of ATP, ADP or ATPgS, a non-hydrolyzable analogue

of ATP. ATP binds to Hsp70 and its hydrolysis stimulates the

cycling between conformations with low affinity (ATP-

bound) and high affinity (ADP-bound) for substrates.

Addition of ADP is therefore expected to stabilize the high

affinity state, and ATPgS to maintain Hsp70 in its low affinity

conformation (Mayer and Bukau, 2005). The rise in ThT

fluorescence indicates, however, that addition of all three

types of nucleotide-loaded Hsp70, but especially ATP and

ADP, ultimately results in the formation of aSyn amyloid

fibrils (Figure 1E). In addition to this conclusion, analysis by

SDS–PAGE of the soluble and insoluble fractions correspond-

ing to the end of the aggregation reaction (Figure 1F;

Supplementary Figure 2C) shows that, while Hsp70 remains

in solution in the absence of nucleotides, the addition of

nucleotides, and ADP in particular, promotes the partitioning

of Hsp70 into the aggregated fraction.

We next probed the specificity of the Hsp70/aSyn interac-

tion by assaying the same samples in the presence of the

peptide NR (NH2-NRLLLTG-COOH), that is expected to com-

pete with aSyn for the substrate-binding pocket of Hsp70

(Gragerov et al, 1994; Rudiger et al, 1997a). The reduction in

the level of ThT fluorescence signal at the endpoint of the

assay, and an increase in the solubility of the chaperone

during the aggregation process, showed clearly that the NR
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peptide strongly perturbed the Hsp70/aSyn interactions in

the presence of nucleotide (Figure 1E and F; Supplementary

Figure 2C). This competitive effect was much more pro-

nounced for Hsp70-ADP than for the other nucleotide-loaded

states, a result indicative of interactions between aSyn and

the substrate-binding pocket of the chaperone. Under nucleo-

tide-free conditions, on the other hand, the anti-amyloido-

genic activity of Hsp70 does not appear to rely on binding to

the canonical substrate-binding pocket as under these cir-

cumstances the addition of the NR peptide does not influence

significantly the efficacy of nucleotide-free Hsp70 in inhibit-

ing fibril formation (Figure 1E and F).
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The effect of Hsp70 on the morphology and cytotoxicity

of aSyn aggregates

The currently accepted view is that the process of aggregation

of aSyn involves the population of oligomeric intermediates

that cause cellular damage (Lashuel et al, 2002; Danzer

et al, 2007), which is likely to be a generic feature of such

amyloid-related species (Demuro et al, 2005; Chiti and

Dobson, 2006; Lashuel and Lansbury, 2006; Danzer et al,

2007). The nucleotide-dependent anti-aggregation properties

of Hsp70 are likely to be reflected in the assembly of different

intermediates along the route towards fibril formation. To

characterize the properties of species formed during the

aggregation of aSyn, we have studied the morphology and

monitored the cytotoxicity of the protein adducts formed at

early and late stages of the aggregation process under differ-

ent conditions. Of particular interest is the observation that

early aSyn aggregates formed in the presence of Hsp70 and

ATP are protofibrillar in nature, whereas only spherical

oligomeric species can be observed when the nucleotide-

free chaperone is present (Figure 2A and B).

We also assayed the toxicity of the soluble oligomeric pre-

fibrillar adducts formed under a variety of conditions by

adding these species, separated by centrifugation from larger

aggregates, to human neuroblastoma SH-SY5Y cells in culture

Figure 2 Effect of Hsp70 on the morphology and cytotoxicity of aSyn aggregating species throughout the reaction. (A) Fibril formation by aSyn
was monitored by ThT fluorescence. Samples correspond to untreated or Hsp70-treated aSyn at a 1:10 ratio, in the absence or presence of ATP.
Samples labels in (B). A negative control with added ovalbumin was used. AU, arbitrary units. (B) TEM analysis of samples corresponding to
24 and 64 h of the aggregation reaction. A negative control with ovalbumin was also included. Scale bar, 500 nm. (C) The toxicity levels of the
soluble species from samples corresponding to the different conditions and time points of the reaction were determined by LDH release
measurement (left axes) using human SH-SY5Y cells. Samples correspond to untreated aSyn (white bars) or aSyn treated with 1:10 Hsp70:aSyn
(black bars), either in the absence (left panel) or presence (right panel) of ATP. The bars represent the intrinsic toxicity, that is the net toxicity
(with background toxicity levels subtracted) normalized to the aSyn concentration. In all cases, values represent the average results of
duplicate experiments. Connected circles represent the Hsp70 soluble levels at each time point (right axis).

Figure 1 Effect of nucleotides and a competing peptide on the modulation of aSyn aggregation by Hsp70. (A) Aggregation experiments
of aSyn in the absence or presence of a 1:10 molar ratio of Hsp70 without (left) or with the addition (right) of 2 mM ATP (and an
ATP-regeneration system). Fibril formation was monitored by ThT fluorescence. Solid lines correspond to fitted data according to a nucleation-
polymerization model and crosses represent the maximum and minimum values measured at each time point. (B) Concentration dependence
of the Hsp70-ATP anti-amyloidogenic effect. Samples correspond to aSyn alone or with a 1:40, 1:10, 1:8 or 1:4 molar ratio of Hsp70:aSyn, in
the presence of 2 mM ATP (and an ATP-regenerating system). Solid lines correspond to fitted data according to a nucleation-polymerization
model. (C) Densitometric analysis of Hsp70 and aSyn protein bands resolved in an SDS–PAGE corresponding to samples of the soluble fraction
at the end of an aggregation reaction, relative to the initial concentration. Where indicated, samples contained a 1:10 molar ratio Hsp70:aSyn
(see gel picture in Supplementary Figure 2B). (D) Representative TEM images of aSyn aggregates corresponding to the final time point of an
aggregation experiment. Samples correspond to untreated aSyn (left), or aSyn treated with a 1:10 Hsp70 ratio either in the absence of added
nucleotide (centre) or in the presence of ATP (right). Scale bar: 500 nm. (E) Bar diagram representing the relative ThT levels reached at the end
of the aggregation reaction. Hsp70 at a 1:10 ratio, and ATP, ADP or ATPgS were included in the reaction mixture where indicated. The NR
peptide was included where indicated at a 1:15 molar ratio (Hsp70:NR). Error bars denote one s.d. from the mean, calculated from three
independent experiments. (F) Densitometric analysis of Hsp70 and aSyn protein bands from an SDS–PAGE gel analysis of samples
corresponding to the soluble fraction at the end of the aggregation reaction shown in (E), relative to the initial protein concentration (see
gel pictures in Supplementary Figure 2C).
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and measuring the release of the enzyme lactate dehydro-

genase (LDH) (Figure 2C), which is commonly used as an

indicator of cell death. Treatment with Hsp70 alone was

observed to reduce cell death only for samples containing

soluble intermediates formed very early (8 h) and very late

(64 h) in the aggregation process (ca. 40% and ca. 50%

decrease in LDH release, respectively), probably caused by

a change in the nature of the soluble aggregates present

during the course of aggregation. The addition of ATP to

the Hsp70-treated sample, however, caused a strong and

sustained reduction of toxicity during the lag phase of aggre-

gation (p24 h) (virtually up to 100% suppression), but much

later in the aggregation reaction (X48 h) toxicity was again

observed to develop. By examining quantitatively the content

of soluble Hsp70 at each time point, we can conclude that the

capacity of Hsp70 to suppress the toxicity of the oligomeric

aggregates of aSyn under the different conditions examined

in this study is strongly correlated with its ability to remain in

solution and depends on whether nucleotides are present.

Structural features of the interaction between

Hsp70 and aSyn

We have shown that nucleotides have profound effects on the

anti-amyloidogenic activity of Hsp70 and, in addition, can

promote its co-aggregation with aSyn. Next, we looked in

detail at the interactions between these two proteins as a

function of the nucleotide state of Hsp70. The existence of

interactions between Hsp70 and aSyn has been suggested

earlier from experiments with cell extracts (Zhou et al, 2004)

and with live cells (Klucken et al, 2006), as well as from

studies in vitro using purified proteins (Dedmon et al, 2005;

Huang et al, 2006). No interaction of Hsp70 with monomeric

aSyn has been reported earlier; however, we here show that

such interactions exist by means of band-shift assays and

fluorescence spectroscopy (Supplementary data and

Supplementary Figure 3A and B). Indeed, we also found

evidence of a variety of different complexes being formed

along the aggregation pathway of aSyn (Supplementary data

and Supplementary Figure 3C and D). The binding affinity of

monomeric aSyn for Hsp70 was estimated to lie within the

low micromolar range (Supplementary Figure 3B) and to be

somewhat higher in the presence of ADP than in the absence

of nucleotides (B1.5-fold), in line with reports on other

proteins and model peptides (Palleros et al, 1993; Gao et al,

1995; Greene et al, 1995).

To probe the nature of the various complexes formed

between different forms of aSyn and Hsp70, we devised a

FRET-based spectroscopic strategy. The two naturally occur-

ring tryptophan residues in Hsp70, Trp90 in the ATPase

domain and Trp593 in the SBD, were used as donors, and

IAEDANS (5-((2-[(iodoacetyl)amino]ethyl)amino)naphtha-

lene-1-sulfonic acid), a widely used dye with a Förster radius

(R0) of 22 Å (Matsumoto and Hammes, 1975; Jeganathan

et al, 2006), as an acceptor. In each case, IAEDANS was

attached to aSyn through one of four single-cysteine replace-

ments created in the protein (Gln24Cys, Gln62Cys,

Asn103Cys and Asn122Cys) (Figure 3A) and FRET experi-

ments were carried out with purified fractions of both mono-

meric and oligomeric forms of aSyn (Supplementary Figure

3F). For monomeric aSyn-24-AEDANS, large changes (4-fold

increase) in FRET efficiency were observed upon addition of

nucleotides (Figure 3B), whereas the highest FRET signal was

observed when the high or low affinity states in Hsp70 were

stabilized with ADP or ATPgS, respectively (Figure 3B;

Supplementary Figure 3F). For oligomeric aSyn-24-

AEDANS, by contrast, the FRET efficiency was found to be

largely nucleotide independent. For aSyn-103-AEDANS, we

observed that the FRETefficiency was greatest for the nucleo-

tide-free state of Hsp70, with no significant difference be-

tween the monomeric and oligomeric forms of aSyn

(Figure 3B).

A Trp90Phe mutant bearing a unique Trp residue located in

the SBD (see Supplementary data) was also generated to

enable FRET measurements with isolated donor/acceptor

pairs. Given that the ADP-state of Hsp70 seems to be a key

determinant of the substrate-mediated co-aggregation of the

chaperone (Figure 1E and F; Supplementary Figure 2C), we

explored its interaction with aSyn in further detail. A large

increase in FRET efficiency towards aSyn-AEDANS was ob-

served for the ADP-loaded Trp90Phe mutant compared with

that seen with the wild-type chaperone (Figure 3C), indicat-

ing that these FRET measurements essentially report on the

binding of aSyn to the SBD of Hsp70. Indeed, the NR peptide

was found to compete with aSyn-24-AEDANS for binding to

Trp90Phe-Hsp70, as the FRET efficiency decreased up to

B25% at a 10-fold molar excess (Figure 3D). Notably,

unlabelled aSyn reduced the transfer efficiency by almost

50% under the same conditions, suggesting that monomeric

aSyn interacts with Hsp70 with a higher apparent affinity

than does the NR peptide. Importantly, independent confir-

mation of the complex formation in the presence of nucleo-

tide was obtained by heteronuclear NMR spectroscopy

(Supplementary data and Supplementary Figure 5). Indeed,

by using 13C-detected 13CO-15N (CON) correlation experi-

ments on 13C-15N-labelled aSyn (Hsu, 2009), we found

that the addition of Hsp70 and ADP perturbed resonances

specifically at the N-terminus and NAC region of aSyn

(Supplementary Figure 5A and B).

Mapping the recognition site for Hsp70 on aSyn

We have used an algorithm (Rudiger et al, 1997b) to predict

the regions of aSyn where binding to Hsp70 is likely to be

strongest. Two segments show relatively high scores: residues

32–43 and residues 71–82. The predicted free energies of

binding (DDG) are �9.7 and �4.3 kJ/mol, respectively

(Supplementary Figure 6A).

FRET studies with labelled variants of an aSyn derivative

lacking the second putative binding segment, termed DNAC

(residues 71–82) (Rivers et al, 2008), show that, as predicted,

this region is involved in the binding process. We found that

the interaction of Hsp70 with the DNAC aSyn-24-AEDANS

mutant is not very different from that of Wt aSyn (Figure 3E).

However, the DNAC aSyn-103-AEDANS species in the pre-

sence of ADP (Figure 3F) shows a dramatic reduction in the

FRET efficiency (ca. 70% lower) when compared with full-

length aSyn, indicating the importance of the NAC region.

Moreover, nucleotide-free Hsp70 shows a slightly higher (ca.

30% greater) FRET with DNAC aSyn-103-AEDANS than with

the full-length protein. Taken together, these results suggest

that both the predicted binding sites are important for the

interaction with Hsp70 in the presence of nucleotide.

Furthermore, the increase in the relative signals observed

under certain nucleotide conditions when removing the NAC

region, suggests a competition between the binding sites, and

Stabilization of the asyn/Hsp70 complex by Hip
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a shift in the binding equilibrium in the absence of one of

these sites.

We note that the second identified segment (residues

71–82) spans a region that is absent in bSyn, a natural

homologue of aSyn but which does not detectably aggregate

under physiological conditions (Supplementary Figure 6A).

FRET experiments carried out with three IAEDANS-labelled

single-cysteine variants of bSyn, moreover, provided

Figure 3 FRET study of Hsp70/aSyn complexes. (A) Left, structural model for Hsp70, depicting the ATPase domain, the substrate-binding
domain and part of the C-terminal helical lid. The two tryptophan residues are highlighted (solid). The structure of human Hsp70 was modelled
by using the Swissmodel web server of Expassy (http://swissmodel.expasy.org/) based on two model templates. Model 1 info: residue range:
1–554 (ATPase and SBD) based on template 1yuw, chain A (2.60 Å) (Hsc70 from Bos Taurus); sequence identity [%]: 89; E value: 0.00e�1.
Model 2 info: residue range: 555–634 (C-terminal tail) based on template 1ud0, chain C (3.45 Å) (Hsc70 from Rattus norvegicus); sequence
identity [%]: 71; E value: 1.20e�25. Models were created for picturing purposes only. Right, four cysteine replacements in aSyn (solid) allowed
targeted attachment to cysteine mutants of the IAEDANS fluorophore, an acceptor of tryptophan fluorescence through FRET (R0¼ 22 Å). (B)
Donor FRET with N-terminally (24C) and C-terminally (103C) tagged aSyn suggests that the modes of binding to Hsp70 differ between the
nucleotide-free and ADP-loaded states of the chaperone, and between monomeric and oligomeric forms of aSyn. (C) The W90F mutation in
Hsp70 allows specific detection of donor FRET with the W593 residue in the SBD of the chaperone. (D) The formation of the aSyn-24C-
AEDANS/W90F Hsp70 complex is perturbed by addition of the NR peptide, showing the involvement of the substrate-binding pocket in the
binding event. Stronger competition is observed on addition of unlabelled aSyn, suggesting the existence of synergistic interactions stabilizing
the aSyn/Hsp70 adduct. (E, F) Relative donor FRET respect to the Wt protein between Hsp70 and the N-terminally tagged aSyn (E, aSyn-24-
AEDANS) or C-terminally tagged aSyn (F, aSyn-103-AEDANS) mutants lacking the hydrophobic region—residues 71–82—(DNAC mutants), in
the absence or presence of ADP.
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evidence for the formation of a complex between bSyn

and Hsp70 and showed the nucleotide dependence of the

interaction involved (Supplementary Figure 6B). When com-

pared with the equivalent experiment with aSyn, a similar

FRET profile was observed for both complexes (see

Figure 3B), except that the C-terminally labelled derivative

(102 in aSyn and 103 in bSyn) showed significantly lower

FRET efficiency for bSyn than for aSyn. This difference is

more pronounced in the absence of nucleotides and likely

reflects the sequence variations at the C-termini of both

proteins as well as it strongly supports the involvement of

the C-terminus of aSyn in the interaction with nucleotide-free

Hsp70. Taken together, these results indicate that ADP-Hsp70

interacts with both predicted regions of aSyn, whereas

nucleotide-free Hsp70 could interact, in addition, with the

C-terminal tail of the protein.

Modulation of the anti-amyloid activity of Hsp70

by co-chaperones

The co-chaperone Hsp40 is generally thought to act together

with Hsp70 and regulate complex formation with client

polypeptides (Minami et al, 1996; Bukau and Horwich,

1998). To explore its effect on the anti-amyloidogenic cap-

abilities of Hsp70, we performed experiments in which Hsp40

was included in solutions of aggregating aSyn and Hsp70.

The addition of Hsp40, however, had no detectable effect on

the conversion of aSyn into fibrils, and did not modify the

chaperone activity of Hsp70, either in the free or in the

nucleotide-bound states (Supplementary Figure 6C).

Recently, the Hsp70-interacting protein Hip (ST13) has

been found to be significantly under-expressed in serum

taken from patients suffering from PD (Scherzer et al,

2007). Hip modulates Hsp70 chaperone activity both in

vitro (Hohfeld et al, 1995) and in vivo (Nollen et al, 2001),

by interacting with the ATPase domain of the chaperone in its

ADP-bound state (Hohfeld et al, 1995). As nothing is yet

known concerning the possible effects of Hip on the anti-

amyloidogenic activity of Hsp70, we have investigated this

interaction further. Remarkably, we observed that the addi-

tion of Hip to Hsp70 in the presence of ATP results in the

complete suppression of the conversion of aSyn into amyloid

species as assayed by ThT fluorescence (Figure 4A). TEM

analysis further shows that the presence of Hip and nucleo-

tide-loaded Hsp70 resulted in the formation of small amor-

phous aggregates without fibrils (Figure 4B). The anti-

amyloidogenic activity of Hip is mediated by Hsp70, because

treatment with Hip alone did not inhibit the formation of

aSyn fibrils. Moreover, Hip-mediated stabilization of Hsp70

Figure 4 Suppression of the amyloid-dependent depletion of Hsp70 by Hip. (A) Bar diagram representing the relative ThT fluorescence levels reached
at the end of the aSyn aggregation reaction. ATP was added to the mixture as indicated. In some samples, Hsp70 and/or Hip were included in the
reaction mixture at a 1:10 molar ratio relative to aSyn. Error bars denote one s.d. from the mean calculated from two independent experiments.
(B) TEM representative images of aSyn aggregates corresponding to the samples analysed in (A), at the end of the reaction. Scale bar: 500nm.
(C) Quantitative determination of soluble protein by densitometric analysis from a SDS–PAGE gel of the soluble fractions, at the end of the aggregation
reaction represented in (A), relative to the initial concentration (see gel picture in Supplementary Figure 6D).
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completely abrogated the chaperone co-aggregation that

occurs in the presence of ATP, and appears to act by

maintaining both aSyn and Hsp70 in solution (Figure 4C;

Supplementary Figure 6D). This data suggests that Hip exerts

a stabilizing effect on Hsp70 that supports chaperone-

mediated inhibition of amyloid formation.

Inactivation of Hip increases a-Syn inclusion formation

in C. elegans in an Hsp70-dependent manner

To establish the relevance of the anti-amyloidogenic function

of the Hsp70/Hip complex in vivo, we have exploited a

C. elegans model of aSyn inclusion formation (van Ham

et al, 2008) and used knock-down techniques to suppress

expression of orthologs of these genes (Figure 5). Depletion

of Hsp70 (C12C8.1) caused a nonsignificant increase in the

number of inclusions (1.4-fold) visible by confocal micro-

scopy, suggesting redundancy in the anti-amyloidogenic

function of chaperones. Conversely, knock-down of hip

(T12D8.8) significantly increased the number of inclusions

(2.3-fold; Pp0.0001), suggesting a central function of Hip in

suppressing aSyn aggregation in vivo (Figure 5A and B). As

Hip acts upstream of Hsp70 in our model, the increase in

aSyn inclusions may well be dependent on the formation of

an Hsp70/Hip complex. Indeed, the double knock-down

Dhsp70/hip reduced the number of inclusions by almost

60% (Pp0.01) compared with the single knock-down Dhip

(Figure 5A and B), reaching a level similar to the knock-down

Dhsp70 (a 10% increase, P40.05). The results have showed

strong genetic evidence of interactions between Hip and

Hsp70 such that the effects observed due to the absence of

Hip largely depend on the presence of Hsp70 (Figure 5C).

Discussion

Although considerable efforts have been made to try to under-

stand how Hsp70 prevents the misfolding and aggregation

of proteins in the cell (Mayer and Bukau, 2005), much less

emphasis has been placed on the mechanism underlying its

modulatory activity in the context of amyloid formation and

disease. In the case of an ATP-dependent chaperone, it is of

particular significance to unravel regulatory effects associated

with conformationally dynamic states. Here, we describe bio-

chemical and biophysical experiments that demonstrate that

the ability of Hsp70 to inhibit the aggregation of aSyn depends

on factors such as nucleotide binding and the presence of the

Hip co-chaperone, for which we provide additional evidence

from an in vivo model of aSyn aggregation. These factors

appear to modulate the outcome of the protein misfolding

and aggregation process, hence precluding the formation of

toxic oligomeric species, rather than inhibiting the elongation of

mature amyloid fibrils that are likely to be much less harmful.

Earlier studies have shown that Hsp70 could inhibit the

formation of aSyn amyloid fibrils in the absence of ATP by

interacting with oligomeric aSyn and stimulating the forma-

tion of amorphous aggregates (Dedmon et al, 2005; Huang

et al, 2006). The results we present here show that in the

presence of physiological concentrations of ATP, Hsp70 sig-

nificantly increases the lag phase associated with aSyn

Figure 5 Increased aSyn inclusion formation in C. elegans follows inactivation of Hip in an Hsp70-dependent manner. (A) Confocal images
showing the head regions of aSyn-YFP transgenic animals fed on bacteria expressing L4440 (empty vector) or RNAi targeting hsp70 (C12C8.1),
hip (T12D8.8) or a combination of hsp70 and hip. Inclusion formation was quantified in age-synchronized young adult animals after growing
on RNAi bacteria for two generations. (B) Quantification of the number of inclusions between the tip of the nose and the second pharyngeal
bulb. Values indicated are mean numbers of inclusions, error bars represent the standard errors of the mean values (s.e.m.) [n¼ 15 (L4440),
n¼ 14 (hsp-70), n¼ 19 (hip-1), n¼ 16 (hsp-70 þ hip-1)]. ***Pp0.0001, **Pp0.01 (Student’s t-test). (C) Genetic model for the function of hsp-
70 and hip-1 in inclusion formation representing the effect of Hip on the modulation of aSyn aggregation by Hsp70, in a PD scenario.
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aggregation, such that amyloid fibrils still appear but typi-

cally much more slowly than when otherwise be the case

(Figure 1). This finding is consistent with in vivo observa-

tions where over-expression of Hsp70 was found to reduce

aSyn toxicity, but did not prevent the accumulation of

amyloid aggregates in tissue (Auluck et al, 2002). We find

the inhibitory effect of Hsp70 in the presence of ATP to be

dependent on the Hsp70/aSyn ratio, and have observed that a

combination of both aSyn and ATP, or its hydrolytic product

ADP, causes Hsp70 itself to aggregate, regardless of the

presence of Hsp40. These observations are in line with earlier

findings related to HD, in which treatment of amyloidogenic

huntingtin with Hsc70-Hsp40 and ATP disfavoured the popu-

lation of oligomeric species and resulted in the accumulation

of amyloid fibrils (Muchowski et al, 2000; Wacker et al,

2004). Moreover, the finding that Hsp70 has a tendency to

aggregate in the presence of aSyn and ATP (or ADP) provides

the basis for the well-established co-localization of Hsp70 and

aSyn in Lewy bodies (Lee and Lee, 2002; Muchowski and

Wacker, 2005). The depletion of functional chaperones and

co-chaperones would heavily impair the ability of proteins to

resist aggregation and to maintain protein homeostasis, phe-

nomena that are thought to lie at the foundations of amyloid

diseases (Dobson, 2003; Balch et al, 2008).

An interesting mechanistic observation from the current

studies is that the addition of the competing peptide substrate

NR does not detectably disrupt the efficacy of Hsp70 to act as

a chaperone towards aSyn in the nucleotide-free state, and

still allows the inhibition of amyloid formation by Hsp70. In

the nucleotide-loaded state, however, the NR peptide reduces

the extent of the co-aggregation of Hsp70 with aSyn

(Figure 1), probably by competing with the protein for the

substrate-binding pocket (Figure 3). These results suggest

strongly the existence of distinct modes of binding for aSyn to

nucleotide-loaded or nucleotide-free Hsp70, i.e. canonical

and non-canonical binding modes, which are likely to deter-

mine the result of the aggregation reaction (Figure 6). FRET

and NMR spectroscopy have enabled us to discover that

Hsp70 does indeed recognize and bind to aSyn monomers

as well as oligomers through at least three different types of

interactions (Figure 3; Supplementary Figures 3–5). In the

ADP-loaded state, aSyn monomers are located closer to the

substrate-binding pocket of Hsp70, an interaction mediated

by two regions, present in the N-terminal and NAC region of

aSyn. We propose that this compact nucleotide-Hsp70/mono-

meric aSyn complex is critical in delaying the onset of fibril

formation, but could also be responsible for the co-aggregation

of Hsp70 and aSyn. A recent study mapped the region recog-

nized on aSyn by Hsp70 as the broad segment between residues

21 and 110 (Luk et al, 2008). We have refined this region and

located two stretches of amino acids with the highest prob-

ability of binding (residues 32–43 and 71–83) and then show

that Hsp70 binds to the latter site, the stretch of hydrophobic

residues that readily forms amyloid fibrils in vitro, and is

generally assumed to be involved in initiating the conversion

of aSyn into amyloid fibrils (Biere et al, 2000; Giasson et al,

2001). Moreover, binding to the N-terminal region of aSyn is

supported by a comparative study of bSyn, in which we pro-

vide evidence of a complex formed with Hsp70, dispelling the

general assumption that such an interaction is unlikely to occur.

Although likely to be less physiologically relevant, we have

found that nucleotide-free Hsp70 also interacts with mono-

meric aSyn through which appears to be a non-canonical

mode of interaction. This leads to the stabilization of soluble

amorphous aggregates and hence inhibits fibril formation.

These results are in line with the proposition (Gao et al, 1995)

that when the nucleotide is absent from the nucleotide-

binding site of Hsc70—the constitutively expressed analogue

Figure 6 Proposed model for Hsp70-mediated modulation of aSyn aggregation. As Hsp70 cycles through the different nucleotide states
sampling different conformations, it is able to inhibit aSyn aggregation by maintaining aSyn in a soluble conformation with low cytotoxicity
(centre of cartoon). Depending on the nucleotide environment, there are different scenarios: (I) nucleotide-free Hsp70/aSyn forms a loose
complex, which does not affect the solubility of Hsp70, and gives rise to disordered, soluble aSyn oligomers of moderate toxicity (left); (II) the
compact ADP-Hsp70/aSyn complex, on the other hand, may lead to the co-aggregation of Hsp70 with aSyn, depleting the chaperone from
solution, and allowing aSyn fibrils to form rapidly, a process that populates intermediates with high cytotoxicity (right). The co-chaperone Hip,
on binding to the ATPase domain of Hsp70 in the ADP-state, could stabilize the ADP-Hsp70 complex and maintain Hsp70 in solution, hence
inhibiting the pathway towards aSyn fibril formation. The denomination of ‘loose’ and ‘compact’ complex originates from the determination
of a set of FRET-derived intermolecular distances for the Hsp70/aSyn interaction in the absence and presence of ADP, respectively (see
Supplementary data and Supplementary Figure 4C).
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of Hsp70—the substrate-binding region interacts more flex-

ibly with a protein substrate. Possibly such transient interac-

tions, recently suggested for the Hsp70/aSyn complex

(Luk et al, 2008), do not compromise the solubility of

Hsp70. With ADP in the nucleotide-binding site, however,

the SBD appears to be much less dynamic, as the residence

time of the substrate in the binding pocket is increased.

Finally, the FRET data suggest that aSyn oligomers are

preferentially bound by nucleotide-free Hsp70, consistent

with the view that N-terminal and central domains of aSyn

are likely to be buried in the aggregated species.

One possible reason why nucleotide-free Hsp70 impairs

the ability of aSyn to form amyloid fibrils could be related

to an off-pathway nature of the intermediate species

stabilized by the formation of the Hsp70/aSyn complex. Indeed,

we observed non-fibrillar oligomers to be predominantly popu-

lated at early incubation time points in the presence of nucleo-

tide-free chaperone, whereas short protofibrils of aSyn were

found to co-aggregate with Hsp70 in the presence of ATP.

Studies of the effects of such soluble pre-fibrillar aggregates on

a human neuronal cell line have shown that protofibrils initially

formed by treatment with Hsp70 and ATP are less toxic than the

oligomers stabilized by nucleotide-free Hsp70 (Figure 2). This

protective effect of Hsp70 in a medium with ATP, however,

disappears during the course of the elongation phase of fibril

formation in parallel with the depletion of soluble Hsp70. A shift

in population towards highly toxic soluble aSyn species at later

points in the aggregation reaction suggests that Hsp70 is co-

aggregating with less toxic aSyn species.

Biologically, Hsp70 does not function independently as many

co-chaperones and auxiliary factors are involved in regulating its

cellular functions in the cell. In this regard, it is extremely

interesting that the Hsp70-interacting protein Hip (ST13) has

recently been found to be consistently under-expressed in PD

patients even in the early stages of the disease (Scherzer et al,

2007), a conclusion that suggests a coupling between both

proteins in disease progression or initiation. We have found

strong evidence in this study for a dramatic effect of Hip on

the availability of functionally competent Hsp70 in the presence

of aggregating aSyn. Hip is in fact capable of suppressing the co-

aggregation of Hsp70 with aSyn, and hence the extent of amyloid

fibril formation observed in the presence of nucleotides is

virtually completely suppressed in the presence of Hip

(Figure 4). Moreover, our results with an in vivo aSyn aggrega-

tion model of C. elegans strongly support the hypothesis derived

from the in vitro experiments, indicating that Hip is indeed

required for suppression of aSyn inclusion formation in an

Hsp70-dependent manner (Figure 5). In line with this important

finding, a recent study of a polyQ model of HD found that Hip

assists Hsp70 in the anti-aggregation activity of Hsp70 (Howarth

et al, 2009). The observation in our C. elegans model that the

absence of Hip alone could give rise to more inclusions than

when both Hip and Hsp70 are absent is consistent with a

scenario in which there is a redundancy of chaperone pathways,

likely mediated by the constitutive presence of Hsc70 and other

chaperones such as Hsp90 (Uryu et al, 2006). Interestingly, Hip

has been shown to interact with Hsp70 by binding to its ATPase

domain specifically in the ADP-bound state, both in vitro and in

vivo, without affecting its ATPase activity (Hohfeld et al, 1995;

Nollen et al, 2001). A possible explanation for its stabilizing effect

on the ADP-Hsp70/aSyn complex in solution is that the binding

of Hip could shield hydrophobic regions in the ATPase domain of

Hsp70 that become exposed in the ADP-bound complex with

aSyn (Figure 6). Alternatively, we speculate that binding of Hip

to the ATPase domain could induce a structural change in the

SBD, favouring a conformation of Hsp70 similar to that popu-

lated in the nucleotide-free state, which we have shown does not

promote the co-aggregation of Hsp70 and aSyn. This situation

could be reminiscent of that proposed for the Hsp70 escorting

protein (Hep) when bound to the nucleotide-free state of mito-

chondrial Hsp70 (mtHsp70), which inhibits self-aggregation of

mtHsp70, both in vitro and in vivo (Sichting et al, 2005).

In summary, three central conclusions from this study

appear to be of broad importance in the quest to unravel

the highly complex function of chaperone availability and

proteostasis in amyloid diseases. The first is the observation

that the ATP cycle modulates the ability of Hsp70 to inhibit

fibril formation by amyloid-forming proteins, shedding light

on the mechanism by which ATP-dependent chaperones act

in the context of misfolding diseases. The second important

finding is that ADP-bound Hsp70 has a very high propensity

to co-aggregate with aSyn, suggesting that chaperone deple-

tion favoured under certain conditions could be an important

feature in the onset and progression of amyloid disorders.

Finally, we have identified a functional role of Hip, an

auxiliary factor for Hsp70, in preventing the co-aggregation

of Hsp70 with aSyn, thereby reducing the toxicity of amyloi-

dogenesis. Maintaining the cellular level of Hip may be one

solution for intervening the onset and development of PD.

Materials and methods

Further details of the Materials and methods are provided in
Supplementary data.

Materials
ATP, ADP and ThT were purchased from Sigma. Adenosine-50-O-
(3-thio triphosphate) (ATPgS, 490% purity, HPLC-purified) was
purchased from Roche. The NR peptide (H2N-NRLLLTG-COOH) was
synthesized and purified (495% purity) by Genemed Synthesis Inc.
(USA). IAEDANS and 5-(dimethylamino)naphthalene-1-sulfonyl-
methyl sulfoxide (DANSYL-MTS) were obtained from Invitrogen
and Toronto Research, respectively.

Protein expression and purification
Human cytoplasmic Hsp70 (Hsp70 1A, gi:194248072) was ex-
pressed, purified and characterized as described in Supplementary
data. Recombinant human Hsp40 and purified rat Hip were
obtained from Stressgen (#SPP-400 and SPP-767, respectively).
The wild-type human aSyn (gi:80475099) or bSyn (gi:12804099)
genes were inserted in pT7-7 and pRK172 vectors, respectively, and
subsequently expressed and purified as described earlier (Rivers
et al, 2008). Protein purity exceeded 95% as determined by SDS–
PAGE, and the aSyn concentration was determined from the
absorbance measurements at 275 nm using an extinction coefficient
of 5400 M�1cm�1.

aSyn aggregation experiments
Solutions for aggregation experiments contained 70 mM aSyn alone
or together with 7mM Hsp70 (except where a ratio other than 1:10 is
indicated) in 50 mM Tris (pH 7.4), 50 mM KCl, 2 mM MgCl2,
0.35 mM SDS and 0.02% NaN3. Where indicated, samples
contained and ATP-regeneration system: 0.2 units/ml pyruvate
kinase and 5 mM phosphoenol pyruvate, in the absence or presence
of 2 mM ATP (or ADP or ATPgS). Alternatively, reactions were
carried out in the presence of 5 mM nucleotide in the absence of an
ATP-regeneration system. Formation of fibrils by a-Syn was
monitored by measuring ThT fluorescence and fitting to the kinetics
followed a nucleation polimerization model as described elsewhere
(Rivers et al, 2008). For kinetic aggregation studies using SDS,
either two or three replicas were used for each set of conditions. In
these samples, 20 mM ThT was included before initiating the
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aggregation reaction. Aggregation was induced by heating the
samples in a 96-well plate to 371C while shaking, and readings were
taken every B7 min in a FluoStar OPTIMA spectrophotometer with
excitation and emission windows at 440±10 and 480±10 nm,
respectively, and an averaging time of 20 s. For kinetic studies in the
absence of SDS, aggregation was induced by magnetic stirring at
371C, and ThT was measured in a Cary Eclipse spectrofluorimeter
with an excitation wavelength of 440 nm (slit-width 5 nm) and an
emission scan from 450 to 600 nm (slit-width 5 nm). It might be
relevant to note that this Hsp70-ATP-dependent, aSyn fibril
formation was not related to the presence or absence of SDS in
the reaction mixture (Supplementary Figure 2A).

SDS–PAGE analysis
Samples were analysed by SDS–PAGE using 4–12% Bis-Tris
NuPAGE gels (Invitrogen) in MES buffer under reducing conditions.
Gels were stained using Coomassie brilliant blue dye. Densitometry
analysis was performed on scanned gels (Supplementary Figures 2
and 6) using the Image J (NIH) software.

Cytotoxicity assays
Samples for cytotoxicity assays were taken from aggregation assays
performed in the absence of ThT. Aliquots were removed at 0, 4, 8,
24, 42 and 64 h time periods and subjected to electron microscopy,
ex situ measurement of ThT fluorescence intensity, and the
remaining stored at �801C for cytotoxicity studies. Where required,
samples were centrifuged at 16 000� g for 10 min to separate the
aggregates into insoluble and soluble fractions. The retention of
aggregate morphology after freeze/thawing was confirmed by
electron microscopy (not shown). LDH was measured on SH-
SY5Y cells as a way of parametrizing the differential toxicity of
aggregated samples on the viability, as described in Supplementary
data.

Protein labelling and purification of oligomers
Labelling of aSyn and bSyn cysteine mutants with IAEDANS or
DANSYL-MTS was performed as follows: 1–5 mg of lyophilized Cys-
containing proteins were dissolved in PBS and 5 mM DTT was
added to ensure complete reduction of the sole cysteine residue.
DTTwas removed by gel filtration in PD10 columns (GE Healthcare)
and a five-fold molar excess of the dye (dissolved in DMSO) was
then added immediately. Conjugation of the dye was optimized by
overnight incubation at 41C in the dark. Excess dye was removed by
performing an added gel filtration step using PD10 columns
(Sepharose G-25). The eluted proteins were subjected to size
exclusion in an analytical Superdex 75 column (GE Healthcare) to
separate oligomeric and monomeric species. Proteins were con-
centrated by centrifugal devices (10 kDa cut-off for monomer and
100 kDa for oligomers) and stored at �801C. Labelling efficiency
was typically found to be between 60 and 95%.

Fluorescence spectroscopy
For FRET experiments, the tryptophan residues of Hsp70 acted as
donors and AEDANS as acceptors (Jeganathan et al, 2006), using
AEDANS-labelled aSyn or bSyn cysteine-mutants. In all the
experiments, FRETwas determined as donor desensitization, except
for the case of the aggregation experiments, where amyloid-
dependent insolubility of Hsp70 precluded the accurate determina-
tion of donor quenching. In this case, the acceptor sensitization
method was used. For determinations of the relative affinity of the
aSyn/Hsp70 complex, aSyn cysteine mutants labelled with the
DANSYL fluorophore were used.

Transmission electron microscopy
Samples were prepared from 10ml aliquots of aggregation reactions
using negative staining by 2% (w/v) uranyl acetate on Formvar/
carbon-coated copper grids (Agar Scientific). Images were obtained

at � 25 000 magnification using a Phillips CEM100 transmission
electron microscope.

C. elegans strain and RNAi
The transgenic aSyn strain used for RNAi experiments, OW40
(OW40 zgIs15[P(unc-54)::a-synuclein::YFP(xScaI)N2(xPvuII)] was
created by microinjection and integrated by g-irradiation. Synchro-
nized larvae were fed on bacterial strains expressing double-
stranded RNA as described earlier (van Ham et al, 2008). An RNAi
clone targeting hsp-70 (C12C8.1) was obtained from the Ahringer
bacterial RNAi library. We constructed an RNAi clone targeting
hip-1 (T12D8.8) by cloning an B1000 bp DNA fragment (generated by
PCR amplification with primers: T12D8.8_F: 50-CTAAGCTAGCGAA
AATGGACCACGTCGC ATTG-30 and T12D8.8_R: 50-GATACTCGAGAC
TTGTCTTGTCGCGAAGCA-30 into L4440. Worms were grown on the
different RNAi clones and allowed to have progeny. L4 progeny
(second generation) was transferred to new RNAi agar plates and
inclusions were quantified in age-synchronized adults. All gene
targets of the positive-RNAi used for feeding were verified by
sequencing of the insert of the RNAi plasmids.

Solamere confocal laser scanning microscopy
Transgenic animals were mounted on glass microscope slides on
2% agarose pads containing 40 mM NaN3 as an anaesthetic.
Animals were imaged using a Solamere Nipkow confocal live cell
imaging system (Solamere, USA) based on a Leica DM IRE2 inverted
confocal microscope with a 40� oil immersion objective (HCX PL
APO CS). Images shown are 2D maximal projections of z-stacks and
were captured using In Vivo3 Software (Mediacybernetics, USA).
For quantification of the number of inclusions, all distinct foci
between the nose and second pharyngeal bulb were counted.
Measurements on inclusions were performed using ImageJ soft-
ware. Statistical significance was determined using Student’s t-tests.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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