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Review

Although leukemia is the most common 
childhood cancer, the only established modi-
fiable risk factor is prenatal or childhood 
exposure to ionizing radiation (Belson et al. 
2007; Doll and Wakeford 1997). Acute lym-
phocytic leukemia (ALL) comprises about 
80% of all childhood leukemia cases, the 
remainder being mainly acute myeloid leuke-
mia (AML) (Borugian et al. 2005). All known 
risk factors, including ionizing radiation, sex, 
race, Down syndrome, and other genetic syn-
dromes, account for < 10% of all childhood 
leukemia cases (Buffler et al. 2005). A nar-
rative review concluded that recent epide-
miologic studies are consistent with those 
reviewed previously (Zahm and Ward 1998) 
and support associations between childhood 
leukemia and parental pesticide exposure 
before and during pregnancy and childhood 
exposure to household insecticides (Infante-
Rivard and Weichenthal 2007). In a recent 
meta-analysis, childhood leukemia was weakly 
associated with preconceptual and overall 
paternal smoking (Lee et al. 2009). Other 
potential risk factors include preconceptual 
paternal occupational exposure to solvents 
(Buckley et al. 1989), motor exhaust fumes 
(Vianna et al. 1984), or electromagnetic fields 
(Feychting et al. 2000; Pearce et al. 2007); 
prenatal maternal alcohol consumption (for 

AML) (Shu et al. 1996); and reduced occur-
rence of common infections during child-
hood (Ma et  al. 2005). Prenatal maternal 
occupational electromagnetic field expo-
sure was linked to childhood leukemia in a 
Canadian case–control study (Infante-Rivard 
and Deadman 2003) but not in two other 
case–control studies (Feychting et al. 2000; 
Sorahan et al. 1999).

Preconceptual paternal occupational 
or environmental exposures have not been 
established as causes of any childhood can-
cer. Although prenatal maternal exposure to 
ionizing radiation can cause childhood leu-
kemia, there is little evidence that precon-
ceptual paternal ionizing radiation exposure 
is a risk factor (Draper et al. 1997; Johnson 
et al. 2008; McLaughlin et al. 1993; United 
Nations Scientific Committee on the Effects 
of Atomic Radiation 2000). Paternal smoking 
has also been linked to increased risks of child-
hood brain cancer and lymphomas (California 
Environmental Protection Agency 2005).

Occupational exposures of reproductive-
age adults to pesticides may substantially 
exceed those from other sources. Serum 
hexachlorobenzene (HCB) levels among 
men occupationally exposed to airborne 
HCB in Spain were 6-fold higher than 
those of unexposed men (Sala et al. 1999). 

Geometric mean peak daily urinary pesticide 
levels in agricultural applicators were nota-
bly higher than those of their spouses [2,4-D 
(2,4‑dichlorophenoxyacetic acid), 61 vs. 1 
ppb; glyphosate, 3 vs. < 0.5 ppb; chlorpyrifos, 
19 vs. 5 ppb] (Mandel et al. 2005). Pregnant 
women employed as farm fieldworkers in 
California had significantly higher prenatal 
urinary organophosphate insecticide metabo-
lite levels compared with pregnant women 
in the general U.S. population; mean total 
dialkyl phosphate urinary metabolite levels in 
these two groups were 113 and 70.5 nmol/L, 
respectively (Bradman et al. 2005).

Although the present study focuses on 
preconceptual paternal and prenatal mater-
nal exposure, children may have relatively 
high exposures to certain pesticides. In the 
1999–2000 cycle of the National Health 
and Nutrition Examination Survey, children 
6–11 years of age had higher levels of uri-
nary 3,5,6-trichloro-2-pyridinol (TCPy, a 
chlorpyrifos metabolite) than did adolescents 
or adults (Barr et al. 2005). Farm children 
in Iowa had higher urinary atrazine levels 
compared with nonfarm children (0.71 vs. 
0.46 µg/L, p < 0.001) (Curwin et al. 2007). 
Among inner-city children 3–6 years of age 
in Minneapolis, the highest measured blood 
levels of heptachlor epoxide, oxychlordane, 
1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene 
(p,p-DDE), and trans-nonachlor approached 
or exceeded the 95th percentile levels of 
older children and adults in national sur-
veys (Sexton et al. 2006). In North Carolina 
and Ohio, preschool children had urinary 
pentachlorophenol (PCP) levels more than 
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Objectives: We conducted a systematic review and meta-analysis of childhood leukemia and parental 
occupational pesticide exposure.

Data sources: Searches of MEDLINE (1950–2009) and other electronic databases yielded 
31 included studies.

Data extraction: Two authors independently abstracted data and assessed the quality of each study.

Data synthesis: Random effects models were used to obtain summary odds ratios (ORs) and 95% 
confidence intervals (CIs). There was no overall association between childhood leukemia and any 
paternal occupational pesticide exposure (OR = 1.09; 95% CI, 0.88–1.34); there were slightly ele-
vated risks in subgroups of studies with low total-quality scores (OR = 1.39; 95% CI, 0.99–1.95), 
ill-defined exposure time windows (OR = 1.36; 95% CI, 1.00–1.85), and exposure information 
collected after offspring leukemia diagnosis (OR = 1.34; 95% CI, 1.05–1.70). Childhood leuke-
mia was associated with prenatal maternal occupational pesticide exposure (OR = 2.09; 95% CI, 
1.51–2.88); this association was slightly stronger for studies with high exposure-measurement-
quality scores (OR = 2.45; 95% CI, 1.68–3.58), higher confounder control scores (OR = 2.38; 95% 
CI, 1.56–3.62), and farm-related exposures (OR = 2.44; 95% CI, 1.53–3.89). Childhood leukemia 
risk was also elevated for prenatal maternal occupational exposure to insecticides (OR = 2.72; 95% 
CI, 1.47–5.04) and herbicides (OR = 3.62; 95% CI, 1.28–10.3).

Conclusions: Childhood leukemia was associated with prenatal maternal occupational pesticide 
exposure in analyses of all studies combined and in several subgroups. Associations with paternal 
occupational pesticide exposure were weaker and less consistent. Research needs include improved 
pesticide exposure indices, continued follow-up of existing cohorts, genetic susceptibility assess-
ment, and basic research on childhood leukemia initiation and progression.
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10-fold those predicted from multimedia 
PCP levels in homes and daycare centers 
(Wilson et al. 2007).

In this systematic review and meta-analysis 
we synthesize currently available epidemiologic 
evidence on the relationships between child-
hood leukemia and paternal or maternal occu-
pational pesticide exposure. A related report 
addresses childhood leukemia and parental 
or childhood residential pesticide exposure 
(Turner et al. 2009).

Materials and Methods
This systematic review and meta-analysis was 
conducted according to a protocol designed 
by two of us (D.T.W. and M.C.T.).

Literature search. The literature search 
and selection processes were conducted simul-
taneously for studies of childhood leukemia 
and parental occupational and parental or 
childhood residential pesticide exposure. The 
search strategy [see Supplemental Material, 
Appendix 1, available online (doi:10.1289/
ehp.0900582.S1 via http://dx.doi.org/)]
was applied to OVID MEDLINE database 
(1950–2009 March week 3) and OVID 
MEDLINE database of in process and other 
nonindexed citations (1950 to March 31 
2009) (Ovid 2009) and then adapted to 
search the OVID EMBASE (1980–2009 
week 13) (Ovid 2009), TOXNET (U.S. 
National Library of Medicine 2009), 
OpenSigle (2009), and ProQuest Digital 
Dissertations and Theses (2009). We used 
the following MeSH (medical subject head-
ing) terms and key words:

•	Exposure: exp Environmental Exposure/, exp 
Environmental Pollutants/, exp Pest Control/, 
exp Pesticides/, pesticid$.tw, herbicid$.tw, 
insecticid$.tw, fungicid$.tw

•	Population: exp Child/, exp Adolescent/, exp 
Infant/, child$.tw, adolescen$.tw, infant?.tw, 
newborn?.tw, youth.tw, teenage$.tw

•	Outcome: exp Hematologic Neoplasms/, 
exp Leukemia/, leuk?emia$.tw.

Search terms were grouped according to 
the Boolean operators “OR” and “AND.” We 
screened all titles and abstracts to determine 
their suitability and then applied inclusion/
exclusion criteria to the complete articles 
and resolved discrepancies by consensus. We 
attempted to contact the corresponding 
author of reports that did not include confi-
dence intervals (CIs) or other essential infor-
mation. We also searched the reference lists of 
all included studies.

Inclusion and exclusion criteria. Inclusion 
criteria were a) original epidemiologic research 
on childhood leukemia, b) use of an analytic 
design (case–control or cohort), and c) avail-
ability of at least one index of paternal or 
maternal occupational pesticide exposure. 
Studies that included a history of occupation 
in farming or other jobs with likely pesticide 
exposure and those with self-reported or docu-
mented information on occupational pesticide 
exposure were included. Reports were excluded 
if only ecologic data were collected and ana-
lyzed, or if more recent/relevant reports of the 
same study were available; case reports and 
cluster investigations were also excluded. No 
language criteria restrictions were applied. A 
flowchart of the selection process is provided 
in Figure 1.

Data abstraction. D.T.W. and M.C.T. 
independently extracted key data from all 
included studies using a data abstraction form 
piloted before the present study was under-
taken. Data categories comprised referenc-
ing, study design, subject selection, exposure 
assessment, statistical analysis, and results. For 
each included study, we identified a single 
exposure index per parent and pesticide cat-
egory (unspecified, insecticides, herbicides, 
fungicides). In 15 of 27 included studies, 
paternal occupational pesticide exposure dur-
ing the period up to 2 years before concep-
tion was well defined; maternal occupational 
pesticide exposure during pregnancy was well 
defined in 15 of 16 included studies [Table 1; 
also see Supplemental Material, Appendix 4 
(doi:10.1289/ehp.0900582.S1)]. For studies 
reporting more than one risk estimate rel-
evant to a given meta-analysis, a single odds 
ratio (OR) was selected based on a) specificity 
of the exposure index (e.g., a self-reported 
occupational pesticide exposure was preferred 
to job title alone and b) intensity or duration 
of exposure (e.g., an index based on frequency 
or duration of use was used instead of one 

based on ever vs. never exposed). Although 
analysis of exposure duration or intensity 
reduces the numbers of exposed subjects in 
the highest exposure category (compared 
with analyses of ever/never exposed), only 
three studies had such data, and the num-
bers of highly exposed case parents included 
11 mothers and 27 fathers (Buckley et al. 
1989), 5 fathers (Heacock et al. 2000), and 
2 mothers (Steinbuch 1994) [for key charac
teristics of these and other included stud-
ies, see Supplemental Material, Appendix 2 
(doi:10.1289/ehp.0900582.S1)].

Quality assessment. We modified the 
assessment tool of Downs and Black (1998), 
a checklist for assessing the methodological 
quality of health care interventions, by adding 
three new assessment factors focusing on the 
quality of exposure assessment (robustness of 
exposure measurement, variability of exposure 
intensity or duration, and specificity) and the 
ability to identify exposure windows (pre
conception, pregnancy, childhood). Because 
this tool was developed mainly for randomized 
clinical trials, we developed ad hoc guidelines 
to apply the 15 quality rating factors to obser-
vational studies [see Supplemental Material, 
Appendix 3 (doi:10.1289/ehp.0900582.S1)]. 
D.T.W. and M.C.T. independently scored 
the studies without blinding to authorship or 
publication status of the original studies and 
resolved any scoring differences by consensus. 
The maximum total possible quality score 
was 20; the assigned scores ranged from 4 to 
17, with a median of 12. Median scores for 
total quality and its components were based 
on all studies.

Analysis. We conducted meta-analyses 
using the software package Comprehensive 
Meta Analysis version 2 (Biostat, Inc. 2007). 
Random-effects summary ORs and 95% CIs 
were estimated to provide an indicator of the 
overall strength of associations between pesti-
cide exposure indices and childhood leukemia. 
We assessed heterogeneity across individual 
studies using Cochran’s Q-test. Subgroup anal-
yses assessed summary ORs stratified by total 
quality score, the four quality-score compo-
nents (external validity, control of bias, expo-
sure assessment, and control of confounding), 
exposure time window definition (well- or 
ill-defined preconceptual paternal or prenatal 
maternal exposure), timing of report of occu-
pational exposure (exposure reported before 
vs. after offspring leukemia diagnosis), place 
of occupational exposure (farm, nonfarm, 
mixed, or unknown), cell type (ALL, AML, or 
unspecified acute leukemia), type of pesticide 
(unspecified pesticides, insecticides, herbicides, 
or fungicides), date of study report (pre-1990, 
≥ 1990), and study design (population-based 
case–control, hospital-based case–control, or 
cohort). Critical exposure time windows were 
defined as pregnancy for mothers and up to Figure 1. Literature search results.

Records indentified from database searches and
hand searching of reference lists (n = 1,775)

Records retrieved for application of
inclusion/exclusion criteria (n = 111)

Records excluded (n = 1,664)
 • Duplicate (n = 380)
 • Irrelevant (n = 1,178)
 • Review article (n = 93)
 • Adult study (n = 6)
 • Ecologic study (n = 5)
 • Case study (n = 2) 

Records excluded (n = 76)
 • Irrelevant (n = 36)
 • Correspondence/editorial (n = 14)
 • Multiple publication (n = 10)
 • Adult study (n = 4)
 • Review article (n = 3)
 • Residential exposure only (n = 8)
 • Assessed exposure to pesticides 
   or cleaning agents combined (1) 

Included studies in systematic review (n = 35)
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2 years before conception for fathers. Some 
studies of paternal pesticide exposure only 
assessed exposure during pregnancy or paternal 
occupation at birth; we deemed these to be 
reasonable proxies for preconceptual exposure, 
assuming that paternal occupations likely did 
not change from preconception to pregnancy 
(23 of the 27 paternal occupations were in 
farming). Analysis of the quality component 
for bias control was limited to paternal expo-
sure because no studies of maternal exposure 
had median or higher scores. Publication bias 
was assessed on the assumption that smaller 
studies are more likely to be published if they 
suggest elevated risks. We used Begg and 
Mazumdar’s test based on the rank correlation 
(as gauged by Kendall’s tau statistic) between 
standardized effect sizes and their variances to 
assess this potential source of bias (Begg and 

Mazumdar 1994). Asymmetry caused by pub-
lication bias is expected to produce higher stan-
dard errors for smaller studies with larger effects 
(producing a larger Kendall’s tau Z-score).

Results
Study identification. The results of the search 
strategy and study selection process are 
detailed in Figure 1. From a total of 1,775 
studies identified, 111 were retained from the 
primary screening of abstracts; most excluded 
studies were irrelevant (n = 1,178), duplicates 
(n = 380), or review articles (n = 93). After 
the secondary screening of full reports, a total 
of 35 studies were deemed eligible.

Study characteristics. We included 31 of 
the 35 eligible studies in the meta-analyses: 
26 case–control studies and 5 cohort studies 
[see citations in Table 1 and study summaries 

in Supplemental Material, Appendix 2 
(doi:10.1289/ehp.0900582.S1)]. Among the 
four excluded studies, three did not present 
ORs and CIs or sufficient data to enable their 
calculation (nor were we able to obtain these 
from the corresponding author) (Buckley 
et al. 1994; Gold et al. 1982; Hemminki et al. 
1981). The other excluded study reported an 
exceptionally strong association between child-
hood ALL and pesticide exposure (crude OR = 
126.4; 95% CI, 22.2–2,657; calculated from 
data in the report and assuming one exposed 
control father rather than none as reported) 
(Zorlu et al. 2002). This study did not distin-
guish occupational versus residential pesticide 
exposure.

Four of the included studies had data 
for maternal exposure only, and 16 stud-
ies had data for paternal exposure only. We 

Table 1. Pesticide exposure by parent, exposure definition, source, and exposure window rating.

Reference Parent Pesticide exposure definition
Exposure 
source

Exposure 
ratinga

Fabia and Thuy 1974 (Fabi74) P Occupation in farming Birth records 1
van Steensel-Moll et al. 1985 (vanS85) P Occupational pesticide exposure during pregnancy Selfb 1

M Same Self 1
Lowengart et al. 1987 (Low87) P Occupation in farming 1 year before conception to 1 year before diagnosis Self 2
Shu et al. 1988 (Shu88) P Occupation in farming during pregnancy Self 1

P Same Self 1
Laval and Tuyns 1988 (Lava88) Pc Occupational pesticide exposure, timing not stated Self 2
Buckley et al. 1989 (Buck89) P Occupational pesticide exposure 1 year before birth to diagnosis Self 2

M Same Self 2
Danila 1989 (Dani89) P Agricultural pesticide use since 16 years of age Self 2

M Prenatal agricultural pesticide use Self 1
Gardner et al. 1990 (Gard90) P Occupation in farming Birth records 1
Magnani et al. 1990 (Magn90) P Occupation in farming before child’s birth Self 2
Infante-Rivard et al. 1991 (Infa91) M Occupational pesticide exposure during pregnancy Self 1
Kishi et al. 1993 (Kish93) P Occupational pesticide exposure during pregnancy Self 1

M Same Self 1
Roman et al. 1993 (Roma93) P Occupation in farming Birth records 1
Steinbuch 1994 (Stein94) M Occupational pesticide exposure during pregnancy Self 1
Kristensen et al. 1996 (Kris96) P Occupation as farmer and information on pesticide purchases Census 2
Meinert et al. 1996 (Mein96) P Occupational pesticide exposure during year before conception Self 1

M Occupational pesticide exposure during pregnancy Self 1
Infante-Rivard and Sinnett 1999  
  (Inf&Sin99)

P Preconceptual occupational pesticide exposure, duration not given Self 2

Heacock et al. 2000 (Heac00) P Cumulative chlorophenate exposure hours Employee 
records

2

Meinert et al. 2000 (Mein00) P Occupational pesticide exposure during year before conception Self 1
M Occupational pesticide exposure during pregnancy Self 1

Wen et al. 2000 (Wen00) P Occupational herbicide exposure up to ≥ 15 years before conception Self 2
Feychting et al. 2001 (Feyc01) P Job title with likely pesticide exposure 2–26 months before child’s birth Census 1
Alexander et al. 2001 (Alex01) M Occupational pesticide exposure during pregnancy Self 1
McKinney et al. 2003 (McKi03) P Agricultural chemical use during 1 year before child’s birth Self 1

M Same Self 1
Rodvall et al. 2003 (Rodv03) P Pesticide applicator up to 29 years before child’s birth License 2
Dell 2004 (Dell04) P Occupational pesticide exposure during 2 years before conception Self 1
Flower et al. 2004 (Flow04) P Farm pesticide applicator during wide preconceptual period License 2
Abadi-Korek et al. 2006 (Abad06) P Occupational pesticide exposure before date of diagnosis Self 2
Menegaux et al. 2006 (Mene06) M Occupational pesticide exposure during pregnancy Self 1
Pearce et al. 2006 (Pear06) P Occupation in farming Birth records 1
Monge et al. 2007 (Mong07) P Occupational pesticide exposure during year before conception Self 1

M Occupational pesticide exposure during pregnancy Self 1
Rudant et al. 2007 (Ruda07) P Occupation in farming during pregnancy Self 1

M Occupational pesticide exposure during pregnancy Self 1
Perez-Saldivar et al. 2008 (Pere08) P Occupational pesticide exposure during 2 years before conception Self 1

Abbreviations: M, maternal; P, paternal.
aRatings: 1, reported to be exposed during 2 years before conception (for fathers) or pregnancy (for mothers) or such exposure was reasonably inferable; 2, ill-defined exposure time 
window. bReported by given parent or spouse. cStudy reported paternal or maternal occupational pesticide exposure, assumed here to be mainly paternal.
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conducted meta-analyses of 27 studies with 
any paternal occupational pesticide exposure 
with a total of 30 ORs because three studies 
reported data separately for ALL and AML. 
For any prenatal maternal occupational pes-
ticide exposure, we analyzed 14 studies with a 
total of 16 ORs because two studies reported 
data separately for ALL and AML.

Parental occupational pesticide expo-
sure indices reported by individual studies 
are shown in Table 1 [see also Supplemental 
Material, Appendix 4 (doi:10.1289/ehp.​
0900582.S1)]. Paternal occupational pesti-
cide exposure information was collected from 
fathers or proxies after offspring were diag-
nosed with leukemia in 18 case–control stud-
ies, and before offspring leukemia diagnosis in 
9 studies, the sources being paternal occupation 
on birth records in four case–control studies 
and census, employer, or pesticide applicator 
records in five cohort studies. Preconceptual 
paternal occupational pesticide exposure was 
well defined or reasonably inferable in 15 stud-
ies and ill defined in the remaining 12 stud-
ies [Table 1; see also Supplemental Material, 
Appendix 4 (doi:10.1289/ehp.0900582.S1)]. 
Paternal occupational exposure to unspecified 
pesticides was usually based on employment 
in farming or job titles where pesticide expo-
sure commonly occurs. Exposure to specific or 
broad classes of pesticides was limited to five 
studies with relevant data collection and results 
(Danila 1989; Heacock et al. 2000; Infante-
Rivard and Sinnett 1999; Monge et al. 2007; 
Wen et al. 2000). 

Maternal occupational pesticide exposure 
during pregnancy was well defined in 15 stud-
ies and ill defined in 1 study.

Quality assessment. The quality factor scores 
for included studies are in the Supplemental 
Material  [Appendix 5 (doi: ​10.1289/​
ehp.0900582.S1)]. Compared with lower rank-
ing studies, those with median or higher total 
quality scores tended to have higher scores 
for factors related to exposure measurement 
and bias control (Appendix 5). All five cohort  
studies had median or higher quality scores.

Publication bias. We attempted to identify 
all relevant original studies, including thesis 
dissertations, in any language (one report was 

translated from Japanese) (Kishi et al. 1993). 
Inverse funnel plots of the main findings from 
studies of any paternal and maternal pesticide 
exposure and childhood leukemia risk revealed 
no clear evidence of publication bias; Kendall’s 
tau Z-scores and one-tailed p-values for pater-
nal and maternal exposure, respectively, were 
0.45, p = 0.33, and 0.18, p = 0.43 (Table 2).

Data synthesis. Paternal occupational 
pesticide exposure. Results for the 27 stud-
ies of any paternal occupational pesticide 
exposure are shown in Figure 2, arrayed 
by year of publication; 30 ORs are shown 
because three studies reported data for ALL 
and AML separately. Childhood leukemia 
was not associated with paternal occupational 
exposure to any pesticides (i.e., exposure to 
specified or unspecified types of pesticides) 
(random effects summary OR = 1.09; 95% 
CI, 0.88–1.34) or unspecified pesticides (ran-
dom effects summary OR = 1.04; 95% CI, 
0.83–1.31) (Table 2). For both analyses, there 
was evidence of heterogeneity. There was a 
weak inverse association of borderline statisti-
cal significance between the year of publica-
tion and ORs of individual studies [e.g., for 
any paternal occupational pesticide exposure, 
meta-regression slope = –0.012 (weighted 
average change in OR per year), p = 0.09].

There was an association of borderline sta-
tistical significance between childhood leuke-
mia and any paternal occupational pesticide 
exposure among studies with below-median 
total quality scores (summary OR = 1.39; 
95% CI, 0.99–1.95) but not in those with 
higher scores (summary OR = 0.93; 95% CI, 
0.71–1.21) (Table 3). In analyses of the four 
quality-score components (external validity, 
control of bias, exposure measurement, and 
control of confounding), there was an inverse 
association between childhood leukemia and 
any paternal occupational pesticide exposure 
among studies with median or higher bias 
control scores (summary OR = 0.73; 95% 
CI, 0.53–0.99) and a positive association in 
studies with median or higher pesticide expo-
sure measurement scores (summary OR = 
1.37; 95% CI, 1.00–1.89). Childhood leuke-
mia was associated with any paternal occupa-
tional pesticide exposure among studies with 

ill-defined preconceptual exposure windows 
(summary OR = 1.36; 95% CI, 1.00–1.85) 
but not those with well-defined windows 
(summary OR = 0.89; 95% CI, 0.67–1.19).

There was no association between any 
paternal occupational pesticide exposure and 
unspecified acute leukemia (summary OR = 
0.99; 95% CI, 0.74–1.33) or AML (summary 
OR = 1.12; 95% CI, 0.60–2.13); the sum-
mary OR for ALL was elevated but was not 
statistically significant (summary OR = 1.30; 
95% CI, 0.86–1.94). Childhood leukemia 
and any paternal occupational pesticide expo-
sure were associated in studies in which expo-
sure information was collected after diagnosis 
of offspring leukemia (summary OR = 1.34; 
95% CI, 1.05–1.70) but not when pesticide 
exposure information was collected before off-
spring leukemia diagnosis (OR = 0.73; 95% 
CI, 0.54–1.00). Childhood leukemia risk 
was not elevated in studies of paternal farm-
related pesticide exposure (summary OR = 
1.04; 95% CI, 0.82–1.32) and was statistically 
nonsignificantly elevated in studies of nonfarm 
workplace exposure (summary OR = 1.41; 
95% CI, 0.66–3.00) and mixed or unknown 
workplace exposure (summary OR = 1.30; 
95% CI, 0.65–2.60). Childhood leukemia 
was not associated with any paternal occupa-
tional pesticide exposure in pre-1990 or more 
recent studies [summary ORs, 1.23 (95% CI, 
0.76–2.00) and 1.06 (95% CI, 0.83–1.35), 
respectively] in population-based or hospital-
based case–control studies [summary ORs, 
1.17 (95% CI, 0.87–1.58) and 1.11 (95% CI, 
0.72–1.69), respectively], or in cohort studies 
(summary OR = 0.88; 95% CI, 0.55–1.40) 
(Table 3). There were elevated childhood leu-
kemia risks for paternal occupational exposure 
to the broad pesticide classes of insecticides 
(summary OR = 1.43; 95% CI, 1.06–1.92), 
herbicides (summary OR = 1.25; 95% CI, 
0.94–1.66), and fungicides (summary OR = 
1.66; 95% CI, 0.87–3.17) (Table 3).

Prenatal maternal occupational pesticide 
exposure. Childhood leukemia was associ-
ated with prenatal maternal occupational 
exposure to any pesticides (summary OR = 
2.09; 95% CI, 1.51–2.88) and unspecified 
pesticides (summary OR = 2.16; 95% CI, 
1.51–3.08), with no evidence of significant 
heterogeneity (e.g., for any pesticide exposure, 
Q = 19.6, p = 0.19) (Table 2). There was no 
association between year of publication and 
ORs of individual studies (regression slope 
= –0.013, p = 0.48). Results for each of the 
studies are shown in Figure 3, sorted by year 
of publication. The strength of the association 
was somewhat weaker among studies with 
median or higher total quality scores (sum-
mary OR = 1.86; 95% CI, 1.11–3.14) and 
those with high confounding scores (sum-
mary OR = 2.38; 95% CI, 1.56–3.62) com-
pared with those with lower scores (Table 4). 

Table 2. Random effects summary ORs for childhood leukemia in relation to parental occupational pesti-
cide exposure.

Exposure (no. of risk estimates)a
Summary 

OR (95% CI)
Heterogeneity 

Q-value

Publication bias 
(Kendall’s tau 

Z-score)
Meta-regression 

slopeb

Paternal occupational exposure
  Any pesticide exposurec (n = 30) 1.09 (0.88–1.34) 81.0, p < 0.001 0.45, p = 0.33 –0.012, p = 0.09
  Unspecified pesticides onlyd (n = 26) 1.04 (0.83–1.31) 76.9, p < 0.001 0.51, p = 0.31 –0.011, p = 0.13
Prenatal maternal occupational exposure
  Any pesticide exposure (n = 16) 2.09 (1.51–2.88) 19.6, p = 0.19 0.18, p = 0.43 –0.013, p = 0.48
  Unspecified pesticides only (n = 14) 2.16 (1.51–3.08) 19.2, p = 0.12 0.05, p = 0.48 –0.016, p = 0.41
aNumber of ORs summarized (one per study unless a study reported data separately for ALL and for AML). bRegression 
of OR versus calendar year: weighted average change in OR per year. cExposed to specified or unspecified types of 
pesticides. dExcludes studies that reported only exposure to specific types of pesticides.
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In analyses of quality-score components, the 
summary ORs in studies with below-median 
scores for external validity and confounding 
control were similar to those for studies with 
higher scores (Table 4). The association was 
stronger in studies with median or higher 
exposure measurement scores (summary OR 
= 2.45; 95% CI, 1.68–3.58) compared with 
those with lower scores (summary OR = 1.44; 
95% CI, 0.83–2.51). All studies of prenatal 
maternal occupational pesticide exposure had 
below-median bias control scores.

After excluding one study with an ill-
defined prenatal exposure window, the asso-
ciation between maternal exposure to any 
pesticides during pregnancy and childhood leu-
kemia was little changed (summary OR = 2.06; 
95% CI, 1.47–2.90). The association was some-
what stronger for both ALL (summary OR = 
2.64; 95% CI, 1.40–5.00) and AML (summary 
OR = 2.64; 95% CI, 1.48–4.71), compared 
with unspecified acute leukemia (summary OR 
= 1.59; 95% CI, 1.02–2.47). The association 
between childhood leukemia and any prenatal 
maternal occupational pesticide exposure was 
somewhat stronger in studies of farm-related 
exposures (summary OR = 2.44; 95% CI, 
1.53–3.89) compared with studies of mixed or 
unknown pesticide exposure place (summary 
OR = 1.81; 95% CI, 1.17–2.81). Summary 
ORs were similar for pre-1990 compared with 

more recently reported studies of prenatal 
maternal occupational pesticide exposure and 
childhood leukemia (Table 4). On removal 
of the only hospital-based case–control study, 
the summary OR for any prenatal maternal 
occupational pesticide exposure was virtually 
unchanged. All of the studies of prenatal mater-
nal occupational pesticide exposure collected 
exposure information after offspring leukemia 
diagnosis. Childhood leukemia was also associ-
ated with prenatal maternal occupational expo-
sure to the broad pesticide classes of insecticides 
(summary OR = 2.72; 95% CI, 1.47–5.04) 
and herbicides (summary OR = 3.62; 95% CI, 
1.28–10.3), but these estimates are based on 
few studies (Table 4).

Discussion
After a systematic retrieval and screening of 
the literature on the relationships between 
parental occupational pesticide exposure 
and childhood leukemia, we evaluated the 
overall evidence using a quantitative meta-
analytic approach. Childhood leukemia was 
not associated with any paternal occupational 
pesticide exposure in our analyses of all rel-
evant studies or in subgroups of studies with 
median or higher total quality or bias control 
scores, well-defined or reasonably inferable 
preconceptual exposure windows, exposure 
information collected before offspring leu-
kemia diagnosis, farm-related exposure, data 

for the major leukemia subtypes, population-
based case–control or cohort design, or a 
publication date of 1990 or later. Childhood 
leukemia was associated with paternal occupa-
tional exposure to insecticides and herbicides, 
but none of the few relevant studies assessed 
exposure–risk gradients.

Childhood leukemia was associated with 
prenatal maternal occupational pesticide 
exposure with no evidence of statistically sig-
nificant heterogeneity or publication bias. The 
association was somewhat stronger among 
studies with higher exposure measurement 
quality scores and those with farm-related pes-
ticide exposure. Summary ORs were similar 
for studies of ALL and AML and for pre-1990 
or more recent studies. There were moderately 
strong associations between childhood leuke-
mia and prenatal maternal occupational expo-
sure to insecticides or herbicides based on the 
few available studies. All of the eligible studies 
of prenatal maternal occupational pesticide 
exposure were based on information collected 
after offspring leukemia diagnosis. There 
were too few relevant studies for meaningful 
analyses of maternal occupational exposure to 
fungicides or for exposure of either parent to 
individual pesticides.

Interpretation of our meta-analyses is con-
strained by limitations in the original studies, 
particularly exposure assessment and poten-
tial sources of bias. We attempted to address 

Figure 2. Random effect ORs for childhood leukemia 
in relation to paternal occupational exposure to any 
or unspecified pesticides. See Table 1 for list of 
studies. Some studies reported data separately for 
AML and ALL.
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Table 3. Random effects summary ORs for childhood leukemia in relation to paternal occupational pesticide 
exposure: subgroup analyses.

Exposure (no. of risk estimates)a Summary OR (95% CI) Heterogeneity Q-value
Total quality score < median (14) 1.39 (0.99–1.95) 19.3, p = 0.11
Total quality score ≥ median (16) 0.93 (0.71–1.21) 53.4, p < 0.001
External validity score < median (12) 1.06 (0.75–1.51) 42.0, p < 0.001
External validity score ≥ median (18) 1.10 (0.84–1.43) 33.7, p = 0.009
Bias score < median (20) 1.33 (1.05–1.69) 35.6, p = 0.012
Bias score ≥ median (10) 0.73 (0.53–0.99) 23.8, p = 0.005
Exposure measurement score < median (19) 0.92 (0.71–1.19) 46.5, p < 0.001
Exposure measurement score ≥ median (11) 1.36 (1.00–1.89) 20.0, p = 0.03
Confounding score < median (14) 1.17 (0.84–1.63) 24.7, p = 0.03
Confounding score ≥ median (16) 1.03 (0.77–1.38) 54.9, p < 0.001
Ill-defined exposure window (12) 1.37 (1.00–1.85) 21.1, p = 0.10
Well-defined exposure windowb (15) 0.89 (0.67–1.19) 52.1, p < 0.001
Unspecified acute leukemia (18) 0.99 (0.74–1.33) 32.4, p = 0.01
ALL (8) 1.30 (0.86–1.94) 36.0, p < 0.001
AML (4) 1.12 (0.60–2.13) 12.5, p = 0.006
Exposure reported after diagnosis (19) 1.34 (1.05–1.70) 35.6, p = 0.008
Exposure reported before diagnosis (11) 0.73 (0.54–1.00) 24.1, p = 0.007
Exposure in farming (23) 1.04 (0.82–1.32) 73.6, p < 0.001
Nonfarm exposure (4) 1.41 (0.66–3.00) 1.2, p = 0.76
Mixed or unknown exposure place (3) 1.30 (0.65–2.67) 4.5, p = 0.11
Pre-1990 (7) 1.23 (0.76–2.00) 13.6, p = 0.04
≥ 1990 (23) 1.06 (0.83–1.35) 67.3, p < 0.001
Population-based case–control studies (14) 1.17 (0.87–1.58) 30.7, p = 0.004
Hospital-based case–control studies (10) 1.11 (0.72–1.69) 49.7, p < 0.001
Cohort studies (6) 0.88 (0.55–1.40) 4.9, p = 0.43
Insecticides (3) 1.43 (1.06–1.92) 0.33, p = 0.85
Herbicides (5) 1.25 (0.94–1.66) 1.9, p = 0.75
Fungicides (4) 1.66 (0.87–3.17) 4.64, p = 0.20
aNumber of ORs summarized (one per study unless a study reported data for ALL and AML separately). bOr reasonably 
inferable.
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these issues by conducting a comprehensive 
literature search (to reduce publication bias) 
and independent data extraction and study 
quality assessment by two persons. We also 
conducted meta-analyses stratified by par-
ent exposed, study quality scores (total and 
major components), exposure window def-
inition, leukemia subtype, exposure index, 
farm versus other workplace exposure, study 
design, publication period, and broad pes-
ticide class. We assessed study quality with 
a modified Downs and Black tool (Downs 
and Black 1998) [see Supplemental Material, 
Appendix 3 (doi:10.1289/ehp.0900582.S1)]. 
The main limitations incurred during qual-
ity assessment were incomplete descriptions 
of study methods and findings in reports of 
original research, lack of a direct method to 
assess recall bias, and the largely unknown 
etiology of childhood leukemia, reducing 
our ability to assess the control of potential 
confounders. Studies with median or greater 
quality scores generally had better exposure 
assessment and control of potential sources 
of bias compared with lower ranking studies. 
Few eligible studies collected exposure infor-
mation for specific or toxicologically related 
pesticides. Only three studies collected and 
assessed exposure frequency or intensity infor-
mation, and little is known about the etiology 
of childhood leukemia, apart from ionizing 
radiation. Accordingly, our results should be 
interpreted cautiously.

Potential sources of bias in observational 
epidemiologic studies are well described 
elsewhere (Rothman and Greenland 1998). 
Although case–control studies dependent on 
parental recall of potentially hazardous expo-
sures may be subject to recall bias, nondif-
ferential misclassification of exposure status 
may be a bigger problem (Infante-Rivard 
and Jacques 2000). The latter source of bias 

tends to reduce the chance of detecting a true 
association between a potential causal factor 
and an adverse health outcome. In a large 
case–control study, pesticide exposure was 
the only self-reported paternal occupational 
exposure associated with childhood AML; 
this association persisted when paternal occu-
pational pesticide exposure was inferred from 
a job–exposure matrix (Buckley et al. 1989). 
Such findings argue against a major bias aris-
ing from self-reported occupational pesticide 
exposure information. In controlled biomoni-
toring field studies of farmers, self-reported 
pesticide exposure information was a fairly 
good predictor of body burden, if subjects 
noncompliant for urine collection or report-
ing incomplete or inconsistent pesticide use 
information were removed from analysis 
(Scher et al. 2008). However, other controlled 
field studies of farm children and farmers 
revealed poor correlations between biomoni-
toring and self-reported pesticide exposure 
data (Arbuckle et al. 2004; Perry et al. 2006).

Previous reviewers concluded that there 
were fairly consistent associations between 
childhood leukemia and parental occupational 
or residential pesticide exposure (Daniels et al. 
1997; Zahm and Ward 1998). Recent review-
ers noted that associations were strongest for 
parental pesticide exposure before and dur-
ing pregnancy and for childhood exposure 
to household insecticides (Buffler et al. 2005; 
Infante-Rivard and Weichenthal 2007) and 
that prenatal maternal pesticide exposure may 
be more important than paternal exposure 
(Brown 2006). A recent meta-analysis of 
seven case–control studies of adult leukemia 
and occupational pesticide exposure published 
during 1990–2005 showed a summary OR of 
1.35 (95% CI, 0.91–2.0) (Merhi et al. 2007). 
A meta-analysis of 17 studies of adult myeloid 
leukemia and occupational pesticide exposure 

published during 1979–2005 revealed a 
slightly elevated risk (summary OR = 1.21; 
95% CI, 0.99–1.48) (Van Maele-Fabry et al. 
2007); their subgroup analyses showed stron-
ger associations in the five studies of pesticide 
applicators (summary OR = 2.14; 95% CI, 
1.39–3.31) and the two studies of manufac-
turing workers (summary OR = 6.32; 95% 
CI, 1.90–21.0). Although these studies sug-
gest a role for pesticides in adult leukemia, 
their relevance to childhood leukemia is not 
clear because the mechanisms may differ.

Childhood leukemia is associated with 
genetic polymorphisms in genes encoding 
enzymes or other proteins involved in DNA 
repair, membrane transport, cell cycle regula-
tion, and phase I and II metabolism of chemi-
cal toxicants (Kim et al. 2006). As noted in a 
recent review (Anderson 2008), associations 
between childhood hematopoietic cancers 
and genetic polymorphisms in genes encod-
ing phase I and II enzymes are consistent with 
potential chemical causes of these cancers. 
For instance, a large Quebec case-only analy-
sis reported relatively large interaction ORs 
between childhood leukemia and CYP1A1m1 
and CYP1a1m2 variants and prenatal mater-
nal or childhood pesticide exposure (Infante-
Rivard et al. 1999).

Most childhood leukemia cases have 
gross chromosomal abnormalities, includ-
ing translocations caused by faulty repair of 
double-strand DNA breaks. Double-stranded 
DNA breaks may be caused directly by ion-
izing radiation and certain mutagenic chemi-
cals or indirectly by modulation of type II 
topoisomerase enzymes. Analysis of routinely 
collected neonatal blood samples revealed 
leukemia clones with specific chromosomal 
translocations in children who later developed 
ALL, suggesting that many such cases origi-
nate in utero (Gale et al. 1997). About half of 

Figure 3. Random effect ORs for childhood leuke-
mia in relation to maternal occupational exposure 
to any or unspecified pesticides. See Table 1 for 
list of studies. Some studies reported data sepa-
rately for AML and ALL.
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Study name ORs and 95% CIs Table 4. Random effects summary ORs for childhood leukemia in relation to prenatal maternal occupa-
tional exposure: subgroup analyses.

Exposure (no. of risk estimates) Summary OR (95% CI) Heterogeneity Q-value
Total quality score < median (12) 2.25 (1.49–3.42) 13.3, p = 0.27
Total quality score ≥ median (4) 1.86 (1.11–3.14) 5.0, p = 0.17
External validity score < median (7) 1.99 (1.12–3.51) 10.7, p = 0.10
External validity score ≥ median (9) 2.18 (1.43–3.31) 9.0, p = 0.34
Exposure measurement score < median (7) 1.44 (0.83–2.51) 5.6, p = 0.47
Exposure measurement score ≥ median (9) 2.45 (1.68–3.58) 11.9, p = 0.16
Confounding score < median (7) 1.71 (0.99–2.96) 8.9, p = 0.18
Confounding score ≥ median (9) 2.38 (1.56–3.62) 10.3, p = 0.24
Well-defineda exposure window (15) 2.06 (1.47–2.90) 19.2, p = 0.16
Unspecified acute leukemia (7) 1.59 (1.02–2.47) 11.0, p = 0.09
ALL (5) 2.64 (1.40–5.00) 1.8, p = 0.77
AML (4) 2.64 (1.48–4.71) 2.8, p = 0.42
Exposed on farm (9) 2.44 (1.53–3.89) 8.7, p = 0.37
Mixed or unknown exposure place (7) 1.81 (1.17–2.81) 9.2, p = 0.16
Pre-1990 (5) 2.12 (1.05–4.25) 4.0, p = 0.40
≥ 1990 (11) 2.10 (1.44–3.08) 15.5, p = 0.11
Population-based case–control studies (15) 2.10 (1.50–2.94) 19.6, p = 0.14
Insecticides (6) 2.72 (1.47–5.04) 6.2, p = 0.29
Herbicides (2) 3.62 (1.28–10.3) 0.8, p = 0.37
aOr reasonably inferable.
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all childhood leukemia cases occur by 3 years 
of age, and most cases probably have a clonal 
origin, developing from a single abnormal 
precursor cell over a period of several months 
(Ford et al. 1998; Ma et al. 1999; Mori et al. 
2002; Taub and Ge 2004). In a small study 
of infants born in an agricultural region with 
high pesticide use in the Philippines, the 
prevalence of the t(8;21) translocation in cord 
blood samples was 20.5% among those with 
detectable meconium levels of the methylcar-
bamate insecticide propoxur, compared with 
10% among infants with undetectable levels 
(crude OR = 2.32; 95% CI, 0.30–57.4; cal-
culated from data given in the report) (Lafiura 
et  al. 2007). It appears that preleukemic 
clones can persist during childhood and that 
only a minority progress to leukemia, suggest-
ing that postnatal exposures could influence 
progression (Maia et al. 2004).

The biological plausibility of potential 
causal relationships between cancer and pesti-
cide exposure is supported by reviews of avail-
able evidence, mainly from animal studies. The 
U.S. Environmental Protection Agency (EPA) 
and other national and international bodies 
have identified about 165 pesticidal active 
ingredients as known, probable, or possible 
human carcinogens, some of which have been 
banned or restricted (Goldman 1998). The 
15 most intensely used pesticides in the United 
States during 2001, based on the amount 
of active ingredient sold (U.S. EPA 2004), 
include three probable human carcinogens 
(alachlor, metam sodium, and chlorothalonil) 
and five possible human carcinogens (aceto
chlor, malathion, metolachlor, pendimetha-
lin, and trifluralin) (U.S. EPA 2007). Among 
60 pesticides still used in Canada but banned 
in one or more Organisation for Economic 
Co-operation and Development member 
countries because of health and environmental 
concerns (David Suzuki Foundation 2006), 
the insecticides carbaryl and propoxur and 
the fungicides captan, mancozeb, maneb, and 
metiram are recognized as probable human 
carcinogens (U.S. EPA 2007).

In experimental animals, exposure of preg-
nant females to carcinogens can produce can-
cer in offspring (Autrup 1993). Lymphomas 
in mice were induced by transplacental expo-
sure to the fungicides carbendazim or dodecyl
quanidine acetate together with sodium nitrite 
(Borzsonyi et al. 1976, 1978). Among men, 
lymphocyte or sperm DNA damage detect-
able using the comet assay has been associated 
with background exposure to chlorpyrifos or 
carbaryl (Meeker et al. 2004), with occupa-
tional exposure to carbofuran (Zeljezic et al. 
2007) or multiple pesticides (Liu et al. 2006), 
and with occupations in pesticide production 
(Bhalli et al. 2006) and farming (Naravaneni 
and Jamil 2007). Male mice preconceptually 
exposed to ionizing radiation had increased 

sperm DNA strand breaks, and their offspring 
demonstrated an increased risk of hemato
poietic cancers (Hoyes et al. 2001). These 
studies suggest potential mechanisms for rela-
tionships between childhood hematopoietic 
cancers and prenatal maternal or preconcep-
tual paternal pesticide exposures.

Conclusion
Based on the present meta-analysis of original 
epidemiologic studies of childhood leukemia 
and parental occupational pesticide expo-
sure, we concluded that there was no overall 
association between childhood leukemia and 
any paternal occupational pesticide exposure 
among all studies combined or subgroups of 
studies with high total-quality scores, well-
defined or reasonably inferable preconceptual 
exposure windows, pesticide exposure infor-
mation collected before offspring leukemia 
diagnosis, farm-related exposures, or cohort 
design. We found elevated childhood leuke-
mia risks in relation to paternal occupational 
exposure to the broad pesticide classes of insec-
ticides and herbicides; however, there were 
few relevant studies and they did not address 
exposure–risk relationships, precluding firm 
conclusions.

We also concluded that there was an over-
all association between childhood leukemia 
and prenatal maternal occupational pesti-
cide exposure; this association was somewhat 
stronger among the subgroups of studies with 
high exposure-measurement-quality scores or 
farm-related exposures and those that assessed 
ALL and AML subtypes. We also found asso-
ciations between childhood leukemia and 
maternal occupational exposure to insecti-
cides and herbicides; however, because these 
were based on few available studies, further 
research in this area is needed.

Although the evidence for associations 
between parental occupational pesticide 
exposure and childhood leukemia is limited, 
precautionary public health policies that will 
minimize such exposures may be warranted. 
The epidemiologic and biological evidence 
summarized here suggests that avoidance 
of prenatal maternal occupational pesticide 
exposure may be particularly important in 
this regard.

Important research needs include a) vali-
dated self-reported pesticide exposure indices 
for both parents, including specific pesticide 
exposure questions; b) biomonitoring of pes-
ticide levels in occupationally exposed men 
and women; c) continued follow-up of exist-
ing well-designed cohort studies, such as the 
Agricultural Health Study in the United States; 
d) follow-up studies of the children of par-
ents in such cohorts; e) new case–control and 
cohort studies with sufficient statistical power 
to assess childhood leukemia subtypes, leuke-
mia before 5 years of age, potential precursors 

of childhood leukemia, exposure–risk gradi-
ents, specific or toxicologically related groups 
of pesticides, and genetic susceptibility markers 
(including preservation of DNA samples from 
parents and children to permit future analyses 
of genetic markers); and f) basic research on 
potential biomarkers of pesticide exposure and 
mechanisms of childhood leukemia initiation 
and progression.

Correction

Many of the values (e.g., ORs, 95% CIs, 
p-values) were slightly different in the 
manuscript originally published online; 
they have been corrected here.
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