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Abstract
Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia,
mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with
the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids,
proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways.
Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the
release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the
mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role
by activating signaling pathways through ROS production and by regulating mitochondria-dependent
apoptosis pathways.
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1. Introduction
Mitochondria are the powerhouse of the cell. Their primary physiological function is to
generate adenosine triphosphate through oxidative phosphorylation via the electron transport
chain, which contains five multi-subunit enzyme complexes, I to V. Reactive oxygen species
(ROS) are generated in complex I and complex III during mitochondrial respiration [1].
Therefore, oxygen metabolism can be a potential threat to tissues and cells.

Numerous studies have shown the roles ROS play in the pathophysiology of neurological
disorders, including ischemia, trauma, and degenerative diseases. ROS cause macromolecular
damage such as lipid peroxidation, protein oxidation, and DNA oxidation, all of which can
lead to cell injury and death [2,3]. In addition, ROS can act as intracellular messengers to
transduce signals of various pathways, including cell death pathways [4,5], similar to the way
in which reactive nitrogen species transduce signals in endothelial cells or neurons [6,7].
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Besides triggering molecular signals by overproduction of ROS, mitochondria regulate
apoptotic pathways by sequestering Ca2+, storing and releasing pro-apoptotic proteins such as
cytochrome c and apoptosis-inducing factor (AIF), and probably by opening the permeability
transition pore [8,9]. In this review, we discuss the roles of ROS generated in mitochondria
and mitochondria-dependent apoptotic pathways in several in vivo models of cerebral
ischemia.

2. The roles of ROS generated by mitochondria
2.1. Generation and clearance of ROS under normal physiological conditions

Because mitochondria generate superoxide anions (O2-) and hydrogen peroxide (H2O2) during
mitochondrial respiration under normal physiological conditions [1], oxygen metabolism poses
a potential threat to cells. It is, nevertheless, essential for cell survival. Pro-oxidant enzymes,
such as nitric oxide synthases (NOS), cyclooxygenases, xanthine dehydrogenase, xanthine
oxidase, NADPH oxidase, myeloperoxidase, and monoamine oxidase, generate the ROS O2-,
H2O2, nitric oxide, and lipid peroxides.

To detoxify such ROS, cells develop ROS clearance systems. Superoxide dismutase (SOD),
glutathione peroxidase (GSHPx), and catalase contribute to scavenging these ROS. SOD has
three isoforms: copper/zinc SOD (SOD1), manganese SOD (SOD2), and extracellular SOD
(SOD3) (Table 1). All three SOD isoforms dismutate O2- to H2O2 and molecular oxygen. Then,
GSHPx scavenges H2O2 to water at the expense of glutathione. Catalase also dismutates
H2O2 to water [2]. Other small molecular non-enzymatic antioxidants such as vitamin E and
vitamin C are also involved in the detoxification of free radicals [10].

Oxidative stress is defined as the pathogenic outcome of ROS overproduction beyond the
capacity of ROS clearance in cells. After cerebral ischemia, the balance between ROS
production and clearance shifts to the production side, resulting in induction of oxidative stress-
induced signaling and cell injury.

2.2. Reperfusion injury and ROS
Reperfusion injury is brain damage caused by the return of blood flow, resulting in progression
of vasogenic edema, hemorrhagic transformation, and an increase in stroke volume. ROS
involvement in reperfusion injury has been described since the early 1980s [11,12]. Numerous
subsequent reports have presented the relationship between reperfusion injury and ROS. In
ischemic brain tissue, ROS generation is accelerated by cytosolic pro-oxidant enzymes and by
mitochondria, inactivation of detoxification systems, consumption of antioxidants, and failure
to adequately replenish antioxidants [2]. These overproduced ROS cause macromolecular
damage and activation of various pathways.

2.3. Detection and quantification of ROS
To detect and quantify various ROS in the ischemic brain, an indirect measurement method is
required because of the short half-life of most ROS. One approach is to detect oxidative
modification of biological targets of ROS such as lipid peroxidation, protein oxidation, or DNA
oxidation. Another approach is to use reporter molecules, which are oxidized by ROS, resulting
in the production of chromogenic, fluorescent, or luminescent molecules. Hydroethidine (HEt),
one such reporter molecule, has been used to detect O2- in cells and tissues [13,14]. “Ethidium
fluorescence”, which is the red fluorescence arising from oxidation of HEt, has been attributed
to O2- trapping in cells [13,14]. However, a recent study revealed that ethidium could be
generated by other ROS [15]. To specifically detect O2-, 2-hydroxyethidium (2-HE), the two-
electron oxidation product of HEt [16], is a more suitable diagnostic marker than HEt [15].

Niizuma et al. Page 2

Biochim Biophys Acta. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although the fluorescence spectra from 2-HE and ethidium overlap and fluorescence from 2-
HE cannot be separated under a fluorescent microscope, red fluorescence caused by HEt
oxidation is still a powerful tool for detecting ROS, mainly O2-. Upregulation of this red
fluorescence suggests that O2- affects signaling and injury after cerebral ischemia [17-20].

A disadvantage of HEt is that reliable quantification cannot be provided with a fluorescent
microscope. For specific and quantitative detection of O2-, a high-performance liquid
chromatography/fluorescence assay [15], in addition to a fluorescent microscope study, may
be required.

2.4. Transgenic and knockout studies of SOD
Although development of methodologies to detect and quantify ROS have enabled researchers
to investigate their roles after cerebral ischemia, their causative roles in ischemic brain injury
remain unclear. Advances in transgene and gene knockout (KO) technology have allowed us
to investigate the contributions of ROS to molecular mechanisms of ischemic brain injury.
Table 2 shows studies using cerebral ischemia models with transgenic (Tg) animals that carry
human SOD genes or KO animals that are homozygously or heterozygously deficient in SOD
genes.

SOD1 is neuroprotective. In heterozygous SOD1 Tg animals that carry the human SOD1 gene,
SOD1 activity increased (a three-fold increase in SOD1 Tg mice [21] and an approximate four-
fold increase in SOD1 Tg rats [22]) compared with wild-type (Wt) animals. In SOD1 Tg
animals, a 35-50% decrease in infarct volume is usually observed after focal cerebral ischemia
(FCI) [23,24]. After transient global cerebral ischemia (tGCI), delayed neuronal cell death
decreases to about 50% in SOD1 Tg animals [25,26]. Regulation of various pathways
contributes to neuroprotection, including activation of the phosphoinositide 3-kinase (PI3-K)
pathway [27,28], and inhibition of the mitogen-activated protein kinase (MAPK) -related
pathway [29,30], and the p53 signaling [18,31], nuclear factor-κB [19,20,32], and
mitochondria-dependent apoptotic [22,29,33] pathways. Moreover, infarct volume and edema
levels decrease after FCI in homozygous SOD1 KO mice [34-36], while cell death increases
after tGCI [37].

SOD2 also has important neuroprotective roles. Heterozygous SOD2 Tg mice carrying the
human SOD2 gene showed decreased injury [38] and reduced vascular endothelial cell death
[39] after FCI. Moreover, infarct volume [40], brain edema [39], O2- production [17], matrix
metalloproteinase-9 activity [39], caspase-9 activation [41], and cytochrome c release [42]
increase after FCI in SOD2 KO mice compared with Wt mice. Furthermore, hemorrhagic
transformation after transient FCI (tFCI) significantly increases in SOD2 KO mice [39].

Although only a few studies have used SOD3 Tg or KO mice in cerebral ischemia models,
they have shown that SOD3 has neuroprotective roles. Infarct volume after FCI decreases
(−28%) in SOD3 Tg mice [43] that express a five-fold higher level of SOD3 in the brain
compared with Wt mice [44]. Neuronal death after tGCI also decreases (−48%) in SOD3 Tg
mice [45]. In contrast, infarct after FCI in homozygous SOD3 KO mice increases (+81%)
[46]. In summary, studies using various SOD Tg and KO animals imply that ROS have
important roles in activating various pathways and determining the outcome after cerebral
ischemia.

2.5. Mitochondrial NOS
Three canonical isoforms of NOS are well known in mammals: neuronal NOS (nNOS),
inducible NOS, and endothelial NOS. Recent findings reveal that mitochondria contain their
own isoform of NOS, mitochondrial NOS (mtNOS), at their inner membrane [47,48]. Since
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NOS isoforms are encoded not by mitochondrial DNA, but by nuclear DNA, mtNOS is thought
to be synthesized in the cytosol and translocated to mitochondria [49], although the mechanism
of this translocation remains unknown. mtNOS stays active because of mitochondrial Ca2+

content, in contrast to other nitric oxide sources. mtNOS continuously controls mitochondrial
respiration [47,48] and is considered a key molecule of reperfusion injury [50].

The enzymatic activity of mtNOS was higher in hypoxic animals than in normoxic controls
[51]. mtNOS is also considered a marker of brain aging. In aged mice, mtNOS activity was
linearly correlated with neurological performance and survival [52]. Since mtNOS controls
mitochondrial respiration and nitric oxide generation, it may correlate with apoptosis after
stroke. Further studies may reveal the roles of mtNOS after stroke and may provide novel
therapeutic strategies.

3. Ischemic neuronal apoptotic pathways (Fig. 1)
3.1. The intrinsic pathway

After mitochondria trigger various signaling pathways by overproduction of ROS, some, but
not all, apoptotic signals return to mitochondria with the help of BH3-only proteins. Then,
Bcl-2 family proteins (such as cytochrome c, AIF, endonuclease G [Endo G], and second
mitochondria-derived activator of caspase [Smac]) interact with each other, resulting in the
release of pro-apoptotic proteins stored in the mitochondrial intermembrane space, followed
by neuronal apoptosis. This pathway is called the ‘intrinsic pathway’.

3.2. Bcl-2 family protein interactions
The Bcl-2 protein family, which is a principal regulator of mitochondrial membrane integrity
and function, is classified into three subgroups according to structural homology: the anti-
apoptotic proteins such as Bcl-2, Bcl-XL, and Bcl-w, the pro-apoptotic proteins such as Bax
and Bak, and the BH3-only proteins including Bad, Bid, Bim, Noxa, and p53-upregulated
modulator of apoptosis (PUMA). Since neurons lack full-length Bak, Bax is the only pro-
apoptotic protein in neurons. In response to apoptotic stimuli, specific BH3-only proteins are
activated and transduce apoptotic signals to mitochondria. Studies have shown that after
cerebral ischemia, BH3-only proteins were upregulated, meaning cerebral ischemia activates
various apoptotic pathways.

Currently, two main ideas can explain Bcl-2 protein family interaction: the ‘direct model’ and
the ‘hierarchy model’ (Fig. 2). In the direct model, anti-apoptotic proteins trap pro-apoptotic
proteins. BH3-only proteins disrupt this interaction, resulting in liberation of pro-apoptotic
proteins and subsequent apoptosis (Fig. 2A).

Recently, Kim et al. [53] advocated the ‘hierarchy model’. In this model, BH3-only proteins
are subdivided into two groups: ‘activator’ and ‘inactivator’. Bim, PUMA, and truncated Bid
(tBid) belong to the activator group and other BH3-only proteins belong to the inactivator
group. Activator BH3-only proteins are trapped by anti-apoptotic proteins, whereas pro-
apoptotic proteins are not. Inactivator BH3-only proteins disrupt this interaction, resulting in
liberation of activator BH3-only proteins. Liberated activator BH3-only proteins interact with
pro-apoptotic proteins, followed by apoptosis (Fig. 2B).

The Bcl-2 family plays various roles in cerebral ischemia. BH3-only proteins, including Bad
[33,54,55], Bim [56,57], Noxa [57,58], PUMA [18,59], and tBid [18,60] contribute to cell
death after cerebral ischemia, mainly through interactions with other Bcl-2 family members.
Bax increases after tGCI [61] or FCI [62], and translocates from the cytosol to mitochondria,
mediated by c-Jun N-terminal kinase with BimL [56]. Bim [56], tBid [63], and PUMA [18]
have been reported to interact with Bax after cerebral ischemia, which may support the
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hierarchy model. After interacting with other Bcl-2 family proteins, Bax is oligomerized and
activated, which triggers release of apoptotic proteins stored in the mitochondrial
intermembrane space, leading to neuronal apoptosis [8,56].

3.3. Bcl-2 family downstream interactions
Proteins in the mitochondrial intermembrane space, including cytochrome c [64,65], Smac
[66], AIF [67], and Endo G [68], are released after cerebral ischemia, at which time they cause
transduction of apoptotic signals. Release of these proteins leads to ‘the point of no return’.
Cytochrome c interacts with apoptosis activating factor-1, deoxyadenosine triphosphate, and
procaspase-9, and forms the apoptosome, which activates procaspase-9 [69-71]. Caspase-9
activates procaspase-3, then caspase-3 cleaves inhibitor of caspase-activated DNase, which is
an inhibitor and a chaperone of caspase-activated DNase. Liberated caspase-activated DNase
damages DNA and induces apoptosis. Caspase-3 can also activate other effector caspases,
which activate crucial substrates, including poly(ADP-ribose) polymerase (PARP), after
cerebral ischemia [72,73]. Although PARP is involved in both apoptotic and non-apoptotic
cell death, 89- and 21-kDa fragments are cleaved by caspases and are related to apoptosis after
cerebral ischemia [73,74].

Smac also contributes to activation of caspases. Smac released from mitochondria binds to and
neutralizes the effect of the X chromosome-linked inhibitor-of-apoptosis protein, which
prevents procaspase activation and inhibits activities of activated caspases [66,74] after
cerebral ischemia.

Recent reports show the importance of the caspase-independent pathways. AIF translocates
from mitochondria to the nucleus and induces apoptosis after tFCI [67]. In mutant mice that
express low-level AIF, infarct volume decreased (−43%) after tFCI [67]. PARP helped nuclear
translocation of AIF [75]. Endo G is also known to translocate to the nucleus, causing DNA
fragmentation after tFCI [68].

3.4. Upstream of the intrinsic pathway
ROS activate a number of pathways, including PI3-K, MAPK, and p53 pathways. These
pathways modulate the intrinsic pathway.

3.4.1. Kinase pathway—Akt is a key molecule for neuronal death and survival after cerebral
ischemia [27]. Akt is a serine/threonine kinase and a major downstream target of PI3-K. Akt
phosphorylates and inactivates Bad after cerebral ischemia [55]. Since phosphorylated Bad is
unable to inhibit the pro-survival Bcl-2 family proteins, Bad phosphorylation results in
inactivation of the apoptotic pathway. Akt also phosphorylates procaspase-9 and caspase-9 on
serine-196; procaspase-9 phosphorylation inhibits activation of procaspase-9, and caspase-9
phosphorylation inhibits protease activity [76]. Akt modulates p53 degradation through MDM2
phosphorylation [31].

Other kinases also have regulative roles in the intrinsic pathway. Phosphorylated extracellular
signal-regulated kinase, which also phosphorylates and inactivates Bad, is upregulated after
tFCI [29]. Protein kinase A phosphorylates and inactivates Bad after cerebral ischemia [33].

3.4.2. p53 signaling pathway—Since a number of Bcl-2 family proteins such as Bax, Bid,
Noxa, PUMA, and p53AIP1 are the products of p53, p53 plays important roles in the intrinsic
pathway. These Bcl-2 family proteins increase and regulate cell death after cerebral ischemia,
as described in section 3.2. Recent findings suggest that p53 can activate the intrinsic pathway
in a transcription-independent manner, as well as in a transcription-dependent manner [58].
p53 translocates to mitochondria and interacts with anti-apoptotic Bcl-XL, which precedes
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cytochrome c release after tGCI [58]. A p53 inhibitor, pifithrin-α, decreased the translocation
of p53, and resulted in neuroprotection in the hippocampal CA1 subregion after tGCI [58]. In
summary, p53 acts as a BH3-only protein in this transcription-independent manner in addition
to transcription of apoptosis-related proteins such as Bcl-2 family proteins.

3.4.3. PIDD signaling pathway—p53 and caspase-2 are involved with stress-induced
apoptosis. However, the key molecules connecting them have not been determined. Tinel and
Tschopp [77] reported that p53-induced protein with a death domain (PIDD), which is a target
of p53, formed a high-molecular weight protein complex with RAIDD and procaspase-2. This
molecular complex is referred to the ‘PIDDosome’, in which caspase-2 is activated, similar to
caspase-9 activation in the apoptosome [77]. After tGCI, the PIDDosome increased in the
hippocampal CA1 subregion, followed by caspase-2 activation and Bid cleavage, which
preceded neuronal death [78].

Recently, in vitro studies have presented new findings regarding this PIDD pathway. One
finding is that caspase-2 can directly interact with mitochondria and activate the mitochondria-
dependent apoptotic pathway [79,80]. Interestingly, this interaction occurs independently of
its proteolytic activity. Another finding is that a cleaved fragment of PIDD (PIDD-C) forms
protein complexes that differ from the PIDDosome. The protein complex containing PIDD-C
and nuclear factor-κB has an anti-apoptotic role in response to genotoxic stress [81]. These
interactions after cerebral ischemia are unknown and require further study.

3.4.4. Crosstalk between the intrinsic pathway and the extrinsic pathway—The
extrinsic pathway is the death-receptor-mediated pathway that receives extracellular signals
and transduces them to intracellular signals. Recent studies have shown that the death receptor
pathway has various physiological functions as well as apoptotic roles.

The Fas pathway (Fas is a death receptor) is involved in apoptosis after cerebral ischemia.
mRNA and protein levels of both Fas and the Fas ligand are upregulated after cerebral ischemia
[82,83]. Mutant mice that have a loss-of-function mutation for Fas show reduced infarct volume
after FCI [82]. Fas, Fas-associated death domain, and procaspase-8 form a protein complex
that is referred to as the death-inducing signaling complex (DISC). DISC activates
procaspase-8, similar to procaspase-9 activation by the apoptosome. Caspase-8 activation is
followed by activation of caspases −3 and −10 after cerebral ischemia [83].

There is crosstalk between the intrinsic pathway and the extrinsic pathway. The key molecule
involved in this crosstalk is Bid, which is also a key molecule for the p53-caspase-2 pathway
as described above. Bid is truncated by caspase-8, translocates to mitochondria, and interacts
with other Bcl-2 family proteins, which causes cytochrome c release followed by apoptotic
cell death [60].

4. Conclusions
Numerous reports show the involvement of ROS in cell death after cerebral ischemia. ROS
contribute not only to injury of macromolecules, but also to transduction of apoptotic signals.
Although it is well known that various factors, including necrosis, are involved in the
mechanisms of cell death after cerebral ischemia, mitochondria contribute to cell death by
activating signaling pathways through ROS production and by regulating intrinsic apoptosis
pathways. Future studies of these cell death mechanisms after ischemia may provide unique
information regarding molecular targets for therapeutic strategies in clinical stroke.
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Fig. 1.
Mitochondria-dependent pathways of apoptosis in cerebral ischemia and reperfusion. After
cerebral ischemia, various pathways, such as the death receptor pathway, p53 pathway, c-Jun
N-terminal kinase (JNK) pathway, PI3-K pathway, and the MAPK pathway are activated. Most
signaling pathways induce apoptosis with the help of pro-apoptotic proteins, such as
cytochrome c, Endo G, AIF and Smac, which are stored in mitochondria.
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Fig. 2.
Two models of Bcl-2 protein family interaction. (A) The direct model for Bax activation. After
apoptotic stimuli, specific BH3-only proteins are activated and inhibit anti-apoptotic Bcl-2
family proteins. Liberated Bax oligomerizes and triggers the release of pro-apoptotic proteins
stored in the mitochondrial intermembrane space. (B) The hierarchy model for Bax activation.
After apoptotic stimuli, specific inactivator BH3-only proteins are activated and inhibit anti-
apoptotic Bcl-2 family proteins. Then, liberated activator BH3-only proteins interact with Bax,
resulting in the release of pro-apoptotic proteins stored in the mitochondrial intermembrane
space.

Niizuma et al. Page 15

Biochim Biophys Acta. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Niizuma et al. Page 16

Table 1

Mammalian superoxide dismutases

□ SOD1
(CuZnSOD)

SOD2
(MnSOD)

SOD3
(ECSOD)

Location Cytosol Mitochondria Extracellular space
Molecular weight 32,000 88,000 120,000
Structure Dimer Tetramer Tetramer
Metals, g-atoms/subunit Cu 1, Zn 1 Mn 1 Cu 1, Zn 1
Phenotype of transgenic mouse (+/+) Normal Normal Normal
Phenotype of knockout mutant (−/−) Normal Neonatal lethality Normal

21 (human) 6 (human) 4 (human)
16 (mouse) 17 (mouse) 5 (mouse)

Chromosome 11 (rat) 1 (rat) 14 (rat)

CuZn, copper, zinc; Mn, manganese; EC, extracellular.

Biochim Biophys Acta. Author manuscript; available in PMC 2011 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Niizuma et al. Page 17

Table 2

Transgenic and knockout studies of superoxide dismutases using in vivo cerebral ischemia models

Study Animal Model Main findings References

SOD1 +/− Mouse pFCI Decreased cortical infarct (−35%) [23]
SOD1 +/− Mouse pFCI No protection [84]
SOD1 +/− Mouse tFCI Decreased infarct [85]
SOD1 +/− Mouse tFCI Sustained hsp70 mRNA expression [86]
SOD1 +/− Mouse tFCI Sustained c-fos mRNA expression [87]
SOD1 +/− Mouse tGCI Induction of hsp 70 [88]
SOD1 +/− Mouse tFCI Decreased injury (−50%) [24]
SOD1 +/− Rat tGCI Decreased injury (−50%) [25]
SOD1 +/− Mouse tGCI Decreased injury (−50%) [26]
SOD1 +/− Mouse tFCI Decreased DNA fragmentation [89]
SOD1 +/− Mouse tFCI Decreased cytochrome c release [90]
SOD1 +/− Mouse tFCI Decreased NF-κB expression [32]
SOD1 +/− Mouse tFCI Decreased activation of activator protein-1 [91]
SOD1 +/− Mouse pFCI No difference in infarct volume [92]
SOD1 +/− Rat tGCI Decreased active caspase-3, -9 [22]
SOD1 +/− Mouse tFCI Decreased ERK activation [29]
SOD1 +/− Mouse tFCI Decreased Bad activation [33]

SOD1 +/− Mouse tFCI
Increased pAkt expression; decreased DNA
fragmentation [27]

SOD1 +/− Mouse tFCI Decreased PARP activation [93]

SOD1 +/− Mouse tFCI
Decreased lesion size and edema; decreased MMP-2, -9
expression [36]

SOD1 +/− Rat tGCI
Decreased injury, PERK phosphorylation and GRP78
release [94]

SOD1 +/− Mouse tFCI
Decreased injury, PERK phosphorylation and GRP78
release [95]

SOD1 +/− Mouse tFCI
Decreased binding of XIAP/DNP, Smac/DNP and
caspase-9/DNP [96]

SOD1 +/− Mouse tFCI Decreased Omi/HtrA2 activation [96]
SOD1 +/− Mouse tFCI Increased ILK expression and ILK/Akt complex [97]

SOD1 +/− Rat tGCI

Inhibited ATF-4 induction and CHOP expression;
decreased endoplasmic
reticulum damage [98]

SOD1 +/− Mouse tFCI Inhibited ATF-4 induction and CHOP expression [98]

SOD1 +/− Mouse tFCI
Increased proteasome activity and MDM2 activation;
decreased nuclear p53 [31]

SOD1 +/− Rat tGCI Inhibited APE/Ref-1 decrease; decreased injury [99]
SOD1 +/− Mouse tFCI Decreased MCP-1 and MIP-1α expression [100]

SOD1 +/− Mouse tFCI
Decreased level of O2-; decreased NF-κB activation and
phosphorylation [20]

SOD1 +/− Mouse tFCI
Increased pPRAS, pPRAS/pAkt binding and pPRAS/
14-3-3 protein binding [101]

SOD1 +/− Rat tGCI Increased pAkt and pGSK-3β expression [28]
SOD1 +/− Rat tGCI Decreased p53 translocation to mitochondria [58]

SOD1 +/− Mouse tFCI
Decreased level of O2-; inhibited persistent upregulation
of NF-κB [19]

SOD1 +/− Rat
tFCI with
hyperglycemia Decreased MMP activity and Evans blue leakage [102]

SOD1 +/− Rat tFCI
Decreased activity of p38, phospho-p38, Evans blue
leakage, edema and infarct [30]

SOD1 +/− Rat tGCI
Decreased PUMA activation and injury; decreased level
of O2- [18]

SOD1 −/− Mouse tFCI Increased infarct (+40%) [34]
SOD1 −/− Mouse tFCI Increased lesion size and edema [35]
SOD1 −/− Mouse tGCI Increased cell death [37]
SOD1 −/− Mouse pFCI No difference in infarct volume [92]
SOD1 −/− Mouse tFCI Increased edema [36]

SOD2 +/− Mouse tFCI Decreased injury (−50%) [38]
SOD2 +/− Mouse tFCI Decreased vascular endothelial cell death [39]

SOD2 −/+ Mouse pFCI Increased infarct (+66%) [40]
SOD2 −/+ Mouse pFCI Increased active caspase-9 [41]
SOD2 −/+ Mouse tFCI Increased cytochrome c release [42]
SOD2 −/+ Mouse pFCI Increased O2- production [17]
SOD2 −/+ Mouse tFCI Increased MMP-9 expression [103]

SOD2 −/+ Mouse tFCI
Increased MMP activity, edema, inflammation and
hemorrhagic transformation [39]

SOD3 +/− Mouse tFCI Decreased infarct (−28%) [43]
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SOD3 +/− Mouse tGCI Decreased injury (−48%) [45]

SOD3 −/− Mouse tFCI Increased infarct (+81%) [46]

+/−, heterozygous transgenic animals carrying human SOD genes; −/+ heterozygous knockout mutant of SOD genes; −/− homozygous knockout mutant
of SOD genes.

Abbreviations used are: pFCI, permanent focal cerebral ischemia; tFCI, transient focal cerebral ischemia; tGCI, transient global cerebral ischemia; APE,
apurinic/apyrimidinic endonuclease; ATF-4, activating transcription factor-4; CHOP, C/EBP homologous protein; DNP, 2,4-dinitrophenylhydrazone;
GRP78, glucose-regulated protein 78; ILK, integrin-linked kinase; MCP-1, monocyte chemoattractant protein 1; MIP-1α, macrophage inflammatory
protein-1α; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; pAkt, phosphorylated Akt; PERK, phosphorylation of RNA-dependent protein
kinase-like endoplasmic reticulum eukaryotic initiation factor 2α kinase; PARP, poly(ADP-ribose) polymerase; pGSK-3β, phosphorylated glycogen
synthase kinase-3β; pPRAS, phosphorylated proline-rich Akt substrate; PUMA, p53-upregulated modulator of apoptosis; Ref-1, redox factor-1; Smac,
second mitochondria-derived activator of caspases; XIAP, X chromosome-linked inhibitor of apoptosis protein.
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