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SUMMARY
Dysregulation of mitochondrial structure and function has emerged as a central factor in the
pathogenesis of Parkinson's disease and related parkinsonian disorders (PD). Toxic and
environmental injuries and risk factors perturb mitochondrial complex I function, and gene products
linked to familial PD often affect mitochondrial biology. Autosomal recessive mutations in PTEN-
induced kinase 1 (PINK1) cause an L-DOPA responsive parkinsonian syndrome, stimulating
extensive interest in the normal neuroprotective and mitoprotective functions of PINK1. Recent data
from mammalian and invertebrate model systems converge upon interactions between PINK1 and
parkin, as well as DJ-1, α-synuclein and leucine rich repeat kinase 2 (LRRK2). While all studies to
date support a neuroprotective role for wild type, but not mutant PINK1, there is less agreement on
subcellular compartmentalization of PINK1 kinase function and whether PINK1 promotes
mitochondrial fission or fusion. These controversies are reviewed in the context of the dynamic
mitochondrial lifecycle, in which mitochondrial structure and function are continuously modulated
not only by the fission-fusion machinery, but also by regulation of biogenesis, axonal/dendritic
transport and autophagy. A working model is proposed, in which PINK1 loss of function results in
mitochondrial reactive oxygen species (ROS), cristae/respiratory dysfunction and destabilization of
calcium homeostasis, which trigger compensatory fission, autophagy and biosynthetic repair
pathways that dramatically alter mitochondrial structure. Concurrent strategies to identify pathways
that mediate normal PINK1 function and to identify factors that facilitate appropriate compensatory
responses are both needed to halt the aging-related penetrance and incidence of familial and sporadic
PD.
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1. Mitochondrial pathobiology is centrally implicated in Parkinson's disease
Parkinson's disease (PD) is a debilitating movement disorder that affects about a million people
in North America, and which is expected to increase as the population grows older. Studies
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employing Mendelian models of parkinsonian neurodegeneration implicate an exciting
convergence with mechanisms identified from studies of Parkinson's disease patient tissues
and intoxication related to drug or environmental exposures [1,2]. In short, these three major
approaches to studying PD converge upon perturbations in mitochondrial structure, function
and distribution [3]. There are currently no therapies to slow disease progression, although
presumed loss-of-function mutations in autosomal recessive families result in accelerated
disease presenting at younger ages. Thus, studying the regulation and function of the wild type
gene products may yield important therapeutic insights to prevent or delay onset and
progression of PD in general [4–7].

The proteins involved in autosomal recessive PD include parkin, PTEN-induced kinase 1
(PINK1), DJ-1 and ATP13A2 [8–11]. Parkin is an E3 ubiquitin ligase, and impaired
proteasome function has been described in sporadic PD [5,12]. Mitochondria are central to the
actions of parkinsonian toxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine
(MPTP) [13], rotenone [7] and 6-hydroxydopamine (6-OHDA) [14,15], and PINK1 represents
the only kinase known to exhibit a canonical N-terminal mitochondrial localization signal
[10]. ATP13A2 is a lysosomal ATPase, and dysregulation of macroautophagy [16–18] and
chaperone-mediated autophagy [19,20] have been shown in mutiple models of dopaminergic
neuronal injury. Finally, oxidative stress has long been considered a central factor in PD
mechanisms based upon human tissue studies and PD toxin models [21,22]. Data showing that
DJ-1 localizes to mitochondria during oxidative stress [6], where it exhibits peroxiredoxin-like
activity [23], lend further support to the concept of common pathways of dopaminergic (DA)
neurodegeneration that are potentially amenable to therapeutic intervention [123].

2. Mitochondrial dynamics and neuronal differentiation and function
Due to their polarized nature, proper distribution of mitochondria within cellular
subcompartments is particularly important in neurons. Mitochondrial content in neuronal
processes (axons, synapses and dendrites, known collectively as neurites) plays a critical role
in regulating outgrowth and synaptic remodeling into adulthood [24,25]. Disruption of neurite
remodeling and plasticity due to old age and disease likely contributes to memory loss and
neurodegeneration. Interestingly, the dynamic remodeling of pre-existing mitochondria may
play a more prominent role than biogenesis in regulating mitochondrial content in neurites
[26,27].

The classic view of mitochondrial dynamics focuses upon regulation of mitochondrial fission
and fusion, although several other processes also regulate the steady state morphology and
distribution of mitochondria within neurons (Figure 1). Mitochondrial fusion is mediated by
the inner membrane protein optic atrophy 1 (Opa1) and two outer membrane mitofusins. In
general, enhanced mitochondrial fusion and connectivity play critical roles in conferring
resistance to many forms of cellular injury [28,29], potentially through enhanced respiration,
enhanced calcium buffering capacity or stabilization of the mitochondrial genome [30].
Mutations in the fusion machinery cause several forms of hereditary neurodegeneration,
attesting to the importance of proper fission-fusion dynamics in neurons [31].

Mitochondrial fission is mediated by cytosolic and outer mitochondrial membrane proteins
including dynamin-related protein (Drp1) and hFis1, which mediate mechanical constriction
powered by GTP hydrolysis. While Drp1-dependent mitochondrial fission can limit injury
associated with calcium waves [32], fission is often associated with cell death. Fission is
elicited by the PD neurotoxins 6-OHDA [33] and rotenone [34], playing an important role in
the execution of apoptosis when occurring in conjunction with Bax recruitment [35,36]. On
the other hand, a basal level of mitochondrial fission is important for cell division and
mitochondrial trafficking, and dominant negative Drp1 homologues reduce both mitochondrial
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content and functional plasticity of synapses [25,26]. Little is known about the posttranslational
regulation of mitochondrial dynamics, although sumoylation and phosphorylation of Drp1
have been recently reported [28,37].

In addition to dynamic changes in mitochondrial fission/fusion and trafficking, there is growing
evidence that autophagic degradation plays a major role in regulating neurite morphology and
mitochondrial content. Macroautophagy involves the regulated, membranous engulfment of
cytoplasmic cargo destined for lysosomal degradation [38,39], and represents the only major
degradative pathway for organelles and insoluble proteins [40]. The autophagy machinery
includes conjugating enzymes required for covalent attachment of ubiquitin-fold proteins
Atg12 and Atg8/microtubule-associated light chain protein 3 (LC3) to nascent autophagic
membranes [38]. RNAi knockdown of Atg conjugation components are effective at inhibiting
induction of autophagy and mitophagy [16,18].

Mitochondrial autophagy (mitophagy) comprises an adaptive response to hypoxia,
mitochondrial damage or limiting amounts of aerobic substrates in many cell types [41].
However, in cardiac muscle and neuronal cells, which are dependent upon aerobic respiration,
robust mitophagy may also prove harmful [18,42,43]. Autophagy induced by cerebral hypoxia
exacerbates neuronal apoptosis in vivo [44,45]. Since substantia nigra DA neurons exhibit
decreased basal mitochondrial content compared to other midbrain neurons, it has been
proposed that diminished reserves may render them more susceptible to compromise of
mitochondrial homeostasis during PD pathogenesis [46]. We have postulated that the outcome
of mitophagy induction may depend upon the ability of neurons to replace sequestered/
degraded mitochondrial components with newly synthesized replacements [39], given data
suggesting deficits in nuclear import and transcription in 6-OHDA treated neuronal cells and
post-mortem PD tissues [47,48]. Interestingly, impaired mtDNA replication has been
implicated in PINK1 deficient cells [49], although evidence of compensatory mitochondrial
and antioxidant transcription have also been reported [50,51].

3. PINK1 is a novel neuroprotective kinase
PINK1 is a 581 amino acid protein with an N-terminal mitochondrial targeting signal, a putative
transmembrane segment, a Ser/Thr kinase domain, and a C-terminal regulatory domain
[Reviewed in [52]]. PINK1 was originally identified as a PTEN regulated message in cancer
cells, but showed no effects on cell proliferation [53]. A homozygous G309D mutation and a
truncating W437X mutation were first identified in consanguineous European PD families
[10]. Subsequently, additional autosomal recessive PINK1 mutations, including heterozygote
compound mutations at E240K and L489P, were identified in other PD families [54–57]. The
possibility of PINK1 haploinsufficiency as a risk factor in sporadic PD has also been raised
[58–60]. Although meta-analysis reveals a nonsignificant odds ratio for PINK1 heterozygotes,
these patients may show accelerated disease progression [61].

Mutations in familial PINK1 involve several regions of the protein and specific effects are
likely to vary depending upon the mutation (Reviewed in [52]). PD-associated mutations in
PINK1 can affect PINK1 stability and expression levels [62], its association with heat shock
protein 90 chaperones [63,64], or its ability to phosphorylate pan-kinase substrates such as
histone H1 and casein [65,66], although neither mitochondrial import [62] nor ability to
dimerize [67] appear to be affected by the point mutations. C-terminal truncations of PINK1
are likely to affect function, as in vitro kinase activity of PINK1 is regulated in different
directions by portions of the C-terminal domain [65,66].

Overexpression of wild type PINK1 confers protection from proteasome inhibitor-mediated
cell death [10], a property abolished by PD-associated mutations [68], and PINK1 is found in
mitochondria involved in aggresomes [69]. Wild type, but not mutant, PINK1 protects from
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staurosporine-induced apoptosis [70], although this is not seen in all systems [34]. PINK1
protects against MPTP toxicity in vivo and MPP+ toxicity in vitro [71], and siRNA knockdown
of PINK1 expression enhances susceptibility to MPP+ and rotenone [72]. Despite these striking
effects on survival, few target pathways for PINK1 have been identified. PINK1
phosphorylates the mitochondrial heat shock protein 75 (also known as TNF receptor-
associated protein 1) [73] and interacts with p38 MAPK in phosphorylating the mitochondrial
protease HtrA2 [74].

In addition to neuroprotection against pharmacologic injuries, PINK1 can reduce injury
associated with dominant genetic PD models. Sporadic PD and autosomal dominant
parkinsonism is typically characterized by Lewy bodies containing aggregated α-synuclein. In
recent years, α-synuclein has also been implicated in mitochondrial degeneration, both in
vitro [75] and in vivo [76]. PINK1 protects against α-synuclein-mediated retinal degeneration
in Drosophila [77]. In cultured cells, a truncated mutant PINK1 exacerbates A53T α-synuclein
toxicity [78] and PINK1 siRNA elicits proteasomal impairment and α-synuclein aggregation
[67]. The dominant G2019S leucine rich repeat kinase 2 causes neurite degeneration through
an autophagic mechanism [17]. PINK1 overexpression protects against G2019S LRRK2-
mediated neurite injury (SJ Cherra & CT Chu, unpublished data), while nematode lrk-1 is
necessary for expression of pink-1 null phenotypes [79]. Given the broad neuroprotective
properties of PINK1 in both toxic and genetic models of parkinsonian injury, elucidating the
normal function(s) of PINK1 holds much promise towards development of future therapies
that will be effective in multiple forms of PD.

4. PINK1 is a unique kinase directly targeted to mitochondria (sometimes)
Following identification of PINK1 as a PD-associated gene, it was found to be broadly
expressed in the cortex, striatum and brainstem [80], with regulation by post-transcriptional
mechanisms [81]. PINK1 represents the first large canonical kinase to exhibit a canonical
mitochondrial targeting sequence. This consists of an N-terminal amphipathic helix that is
recognized by the translocase of the outer mitochondrial membrane (TOM) [82]. PINK1
colocalizes with mitochondria in cells [65] and in human brain tissues [83], but is also present
in cytosolic fractions [62,63]. In Drosophila, the rhomboid-7 mitochondrial proteinase may be
involved inprocessing both PINK1 and HtrA2/Omi [84].

Recent studies show that the N-terminal mitochondrial localization signal is necessary for some
[68], but not all effects of PINK1 [71]. This suggests that PINK1 neuroprotection could involve
cytosolic targets even in models involving mitochondrially targeted injury. The ability to form
cytosolic complexes with parkin and DJ-1, with effects on E3 ligase activity, has been recently
reported [85]. On the other hand, recombinant variants of PINK1 lacking the N-terminal
domain are still present in mitochondrial fractions due to binding interactions with other
proteins [86], so these studies do not negate the probability of key mitochondrial targets for
PINK1.

Similarly, PINK1 localization with respect to mitochondrial subcompartments is still unclear.
While most studies indicate localization predominantly near the inner mitochondrial membrane
[65,73,78,83], PINK1 may also associate with outer membrane fractions to a lesser extent
[78]. Moreover, one study suggests that the kinase domain faces outwards from the
mitochondrion through an arrested import mechanism [87]. Like other kinases [88], it is likely
that PINK1 has multiple functions in the cell involving dynamic trafficking between subcellular
compartments and scaffold complexes, depending upon post-translational modifications and
proteolytic processing.

One of the challenges with studying PINK1 has been difficulty detecting endogenous levels
of the PINK1 protein. Thus, localization and even degree of RNAi knockdown has been
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estimated using overexpressed tagged recombinant PINK1. As the degree of protein
overexpression cannot be estimated without a reliable measure of endogenous PINK1, it is
possible that high levels of overexpression saturate transport or processing mechanisms. Using
an antibody raised to the kinase domain, the major band detected in SH-SY5Y cells is a
processed form that lacks both the N- and C-terminals, whereas recombinant C-terminal tagged
PINK1 migrates as a full-length species that nevertheless associates with mitochondrial
fractions [89]. While detection of tagged species can be markedly enhanced by proteasome
inhibition in agreement with other studies [64], such treatments have little effect on endogenous
bands. Conversely, other studies have shown that processed PINK1 is not limited to
mitochondrial fractions, suggesting either efflux from mitochondria [62] or other sites of
proteolytic processing. Other considerations include non-linearity of antibody responses,
observations that one antibody may preferentially recognize one processed form over another
even if equivalent amounts are present, and effects of as yet uncharacterized post-translational
modifications on antibody avidity. It is clear that much work remains to be done to illuminate
the distribution of PINK1 under different physiologic and injury states in pertinent neuronal
populations.

5. PINK1 loss of function has major effects on mitochondrial morphology
Regardless of the major site(s) of PINK1 function, modulating PINK1 expression shows major
effects on mitochondrial morphology in Drosophila (see below) and several mammalian studies
(see Table I). Interestingly, silencing or knockout of PINK1 expression in mice does not cause
neuronal cell death [90,91], resulting instead in decreased evoked striatal dopamine release
[91] and reduced state 3 maximal respiration in the presence of ADP [92]. Cortical regions are
less susceptible to these changes, but these differences can be overcome by H2O2 or heat shock,
suggesting that the mice are well compensated for developmental absence of PINK1.

Drosophila studies show flight muscle degeneration accompanied by markedly swollen and
enlarged mitochondria. Notably, PINK1 and parkin flies show similar phenotypes. While
parkin overexpression reverses effects of PINK1 loss-of-function on mitochondrial
morphology, the converse was not observed, suggesting that parkin functions downstream of
PINK1 [93–95]. The ability of parkin overexpression to correct morphologic effects of PINK1
deficiency has also been observed in mammalian cells [89,96]. Assuming that parkin
overexpression acts to directly reverse the deficit left by reduced PINK1 function, the simplest
model places parkin as a mediator of PINK1 mitoprotection (Fig. 2, top), although other
potential mechanisms are also compatible with the data (Fig. 2, bottom and legend).

Additional studies supporting a direct relationship between PINK1 and parkin include
observations that a parkin peptide can be phosphorylated by ΔN-PINK1 in vitro [97] and
demonstrating physical interaction between overexpressed PINK1 and parkin in the cytosol
[85,98,99]. It remains to be discovered whether or not the mitochondrial effects of altered
PINK1 are modulated by parkin E3 ligase activity, nor is it known whether or not PINK1 kinase
activity is important for this effect. With some exceptions (e.g. MAPKs), activated kinases
typically do not stably dock with their substrates, but can form stable complexes with inhibitors,
anchoring proteins and scaffolds.

Both Drosophila and mammalian cell studies show ultrastructural changes for PINK1 loss of
function involving mitochondrial pallor with decreased or disorganized cristae [89,100,101],
which resemble mitochondria in sporadic PD cybrid cell lines [102]. While some profiles
appear enlarged, it is unclear whether this reflects swelling or fusion. The apparent size of
ultrastructural profiles is influenced by the angle between the plane of section and the
longitudinal mitochondrial axis, as well as by degree of branching and tortuosity. In addition,
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fluorescence and molecular genetic data in Drosophila [100,101,103] and mammalian culture
systems [34,89,96] appear to support opposite conclusions in the fission-fusion balance.

In PINK1 deficient Drosophila, GFP-tagged mitochondria in longitudinal flight muscle
sections show a dishomogeneous distribution with significant clumping that is distinct from
the clearly fissioned appearance elicited by knockdown of Marf (Mfn homolog) [103].
Surprisingly, immunostaining of GFP-tagged mitochondria in DA neuron whole mount
sections show similar mitochondrial aggregation in both dPINK1 deficient and dPINK1
overexpressing flies [100]. However, the mechanisms may be different as analysis of cultured
Drosophila neurons, S2R cells and COS cells reveal that more PINK1 deficient cells are scored
as cells with elongated profiles compared to dPINK1 overexpressing cells [100]. In Drosophila
systems, molecular manipulations to increase fission or decrease fusion protected against
muscle degeneration, mitochondrial swelling and loss of brain DA levels [100,101,103]. These
include providing an extra copy of Drp1 or decreasing levels or function of Opa1 or Mfn. On
the hand, decreased Drp1 suppresses the effects of PINK1 overexpression in the eye [101], and
exacerbated injury in PINK1 deficient flies. Assuming that the effects of manipulating
mitochondrial fission-fusion machinery directly reverses the effects of insufficient PINK1,
these data suggest that the normal function of PINK1 may be to promote fission [100,101].
Alternatively, data in Drosophila muscle and testes suggest that the effects of PINK1 are not
mediated by a direct linear relationship with Drp1, as the mitochondrial phenotypes are distinct
and a modest deficit in Drp1 causes lethality in PINK1 null flies [103]. As discussed below,
the effects of Drp1 manipulation may also be compatible with modulation of a compensatory
mechanism that protects from the effects of PINK1 deficiency.

In mammalian cells, three studies have shown the opposite phenotype, namely that PINK1
deficient cells exhibit fragmented rather than fused mitochondria [34,89,96]. The changes
observed in stable deficient states may be time dependent, as a transient siRNA study showed
no morphology changes at 12 d [49]. In mutant PINK1 patient fibroblasts, human HeLa cells
and human M17 neuronal cells, significantly increased percentages of PINK1 deficient cells
are scored as showing fragmented rather than interconnected mitochondria [34,96]. Using a
different technique involving computerized analysis of individual mitochondria within cells,
average cellular indices of mitochondrial interconnectivity and elongation are decreased with
PINK1 deficiency or Drp1 overexpression (as a positive control for fission) and increased with
either transient or stable overexpression of wild type PINK1 and with a dominant negative
Drp1 (as a positive control for fusion) [89]. Ultrastructural analysis of several independent
PINK1 knockdown cell lines showed a mixture of small fragmented profiles and large rounded,
pale profiles, both with diminished cristae density. The appearance of larger diameter profiles
has also been described in aging PINK1 KO mice [92] and in cells co-expressing mutant α-
synuclein and truncated PINK1 [78]. Confocal microscopy with 3-D reconstruction show that
irregardless of diameter, mitochondrial fragments are isolated from each other, consistent with
a fission-dependent process [89]. In contrast, overexpression of PINK1 results in a more
interconnected network. Finally, live cell imaging was used to demonstrate that PINK1
deficient cells show reductions in the mobile fraction of mito-YFP, consistent with reduced
interconnectivity [34]. In light of recent reports of PINK1 associating with mitochondrial
adapters for microtubule dependent transport [86], this data could also be consistent with
reduced overall mitochondrial mobility. Irregardless, rates of mitochondrial fusion were
decreased in PINK1 deficient cells when assayed using photoactivated mito-GFP [34]. Taken
together, these studies demonstrate a shift in the fission-fusion balance to favor Drp1-
dependent fission in PINK1 deficient cells.

In human neuronal cells, the mitochondrial fragmentation phenotype is suppressed by
dominant negative Drp1 [89], Drp1 knockdown, or Opa1/Mfn2 overexpression [34].
Overexpression of Drp1 promotes further fragmentation. Furthermore, PINK1 knockdown
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cells exhibit decreased phosphorylation of Drp1 at S637 through activation of calcineurin
phosphatase activity [34], while PINK1 overexpressing cells exhibit Drp1 2D-gel mobility
consistent with higher phosphorylation states (SJ Cherra & CT Chu, unpublished data).
Because Drp1 phosphorylation at S637 inhibits its ability to mediate fission [104], these data
are consistent with a role for PINK1 in suppressing fission. Interestingly, suppressing Drp1
activity exacerbated cellular injury in the setting of PINK1 deficiency [89], in agreement with
Drosophila studies, despite reversing the mitochondrial morphology changes. Again, these data
implicate fission as a response to injury elicited by PINK1 deficiency.

6. Alternative models for PINK1-parkin interactions and mitochondrial
regulation

While direct studies of mitochondrial fission and fusion kinetics may help resolve some issues,
it is important to recognize that fission and fusion are not the only modulators of the steady
state appearance of the mitochondrial network (Fig. 1). Selective clearance of smaller somatic
mitochondrial fragments through either axonal transport or autophagic degradation, or
alterations in delivery of newly synthesized mitochondrial components, can each affect the
distribution of elongated or punctate mitochondria. A recent pair of studies that together suggest
an alternative model for PINK1-parkin interactions (Fig. 2 bottom), may also partially resolve
some of the controversies associated with effects of Drp1 modulation between Drosophila and
human neuronal lines.

It has been elegantly demonstrated that parkin regulates not only proteasomal degradation, but
is recruited to chemically depolarized mitochondria where it promotes their degradation
through autophagy [105]. While autophagy has been traditionally viewed as a nonselective
bulk housekeeping process, recent work in injury and disease models support the concept that
selective mechanisms of targeted degradation must also exist. For mitochondrial autophagy,
eat-me signals may include decreased membrane potential [41,105,106], targets of mitogen
activated protein kinase/extracellular signal regulated protein kinase activity [18], or lipid
oxidation [107]. Interestingly, given the E3 ligase function of parkin, certain forms of
ubiquitination may also be involved in autophagy regulation [108].

If parkin rescues from PINK1 deficiency by reconstituting a downstream function of PINK1,
it would be logical to surmise that PINK1 may also function to promote clearance of damaged
mitochondria. Instead, we found the opposite: wild type PINK1 suppresses injury-induced
autophagy while PINK1 deficient lines showed induction of autophagy and mitochondrial
degradation [89]. Further investigation revealed that parkin overexpression complements the
effects of PINK1 knockdown in human neuronal cells by further enhancing autophagic
clearance of mitochondria isolated by fission [89]. Also, an intact autophagy machinery is
essential for parkin-mediated protection against cell death in PINK1 deficient cells (RK Dagda
& CT Chu, unpublished data). These studies indicate that PINK1 and Parkin can promote a
similar steady state phenotype of healthy, elongated mitochondrial networks by acting at
different ends of the process, with PINK1 maintaining mitochondrial health and Parkin
eliminating damaged mitochondria. Similarly, the ability of fission mediators to rescue against
injury in Drosophila PINK1 mutants, may relate to enhancing the isolation and clearance of
damaged mitochondria (Fig. 2, bottom). Undoubtedly both fission and fusion are activated as
an injury response (Fig. 1), with the steady state outcome on mitochondrial morphology
dependent upon cell type- and context-dependent differences in compensatory reserve and
susceptibility to injury.

A third model must also be considered, as it is possible that PINK1 and parkin regulate a
common process or outcome through distinct mechanisms. For example, PINK1 [49] and
parkin [109] may be implicated in mitochondrial biogenesis through different pathways.
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Furthermore, although PINK1 does not rescue parkin null phenotypes in Drosophila, parkin
can still function upstream of PINK1 by modulating its processing and subcellular distribution
[63]. These models are not mutually exclusive, and it is likely that multiple levels of interaction
exist depending upon the particular process regulated by PINK1.

7. Towards a unifying model of PINK1 deficiency studies
If the primary role of PINK1 is to maintain healthy mitochondrial networks, with perturbations
in mitochondrial dynamics occurring secondary to injury, what then contributes to
mitochondrial or cellular injury? The final portion of this review will focus upon data
implicating 1) abnormal cristae structure and function, 2) calcium dysregulation, and 3)
oxidative stress, each of which may provide signals to trigger mitochondrial remodeling and
autophagy.

Abnormal cristae structure and membrane depolarization have been consistently described in
all mammalian culture studies of PINK1 deficiency (Table I). Given that cristae are important
for expanding the surface area of the inner mitochondrial membrane available for
mitochondrial respiration, it is likely that these structural and functional alterations are linked.
PINK1 may play a primary role in modulating the functional morphology of cristae, given its
recently reported association with mitofilin [86]. These changes are unlikely to occur purely
as a nonselective consequence of PINK1 deficient injury, as overexpression of PINK1 causes
markedly increased cristae density without eliciting an autophagic injury response [89]. The
mechanisms for abnormal electron transport chain function are still being elucidated, and may
include substrate limitation [110] or direct effects on mitochondrial complex I function [111],
although no consistent change in expression of mitochondrial electron transport complex
components has been reported (Table I). Given that changes in mitochondrial membrane
potential play important normal roles in regulating axonal transport [112,113], mitophagy or
apoptosis [114], additional work on the role of PINK1 in modulating membrane potential may
yield new therapeutic directions.

Mitochondrial calcium dysregulation may play a key role in PINK1 deficient cells [110] and
in a combined mutant α-synuclein and mutant PINK1 model [78]. Under normal circumstances,
mitochondria play an important role in rapid buffering of cytosolic calcium, taking up calcium
into the matrix through a membrane potential-dependent uniporter [115]. An unidentified
sodium-calcium antiporter than releases calcium back into the cell, preventing saturation of
this buffering system. In PINK1 deficient human and mouse neurons, defective antiporter
function results in elevated basal mitochondrial calcium levels and impaired buffering capacity
[110]; inhibiting calcium uptake into mitochondria protects against effects of overexpressed
W437X PINK1 and A53T α-synuclein in rat neuroblastoma cells [78]. Among effects of
elevated cytosolic calcium are activation of NADPH oxidase [110] and calcineurin, which
promotes fission in PINK1 knockdown cells [34]. Antioxidants reverse glucose uptake deficits
and restore function of the electron transport chain [34]. Interestingly, chronic lysosomal
dysfunction results in accumulation of mitochondria with calcium buffering deficits and
enhanced sensitivity to calcium mobilizing injuries [116]. Likewise, mitochondrial fission,
which exacerbates cell death due to Drp1-dependent recruitment of Bax, protects against
injuries involving propagating mitochondrial calcium waves [32]. Given that fission plays a
protective role in PINK1 deficient cells [89,100,101,103], these observations provide
additional indirect support to the calcium dysregulation model for PINK1 deficiency.

Oxidative stress has been implicated in eye degeneration caused by dPINK1 inactivation in
fruit flies [117] and in several mammalian neuronal systems [49,51,89]. While PINK1 has been
implicated in a FOXO3a-mediated ROS defense pathway [118], increased electron leakage
from dysfunctional respiration or calcium-mediated activation of NADPH oxidases could
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contribute to ROS generation in PINK1 deficient cells. ROS-mediated damage to nearby
respiratory components and/or mtDNA could in turn set up a damaging positive feedback loop
to further amplify injury. Whether ROS is a primary or secondary event, these species clearly
contribute to injury. Although there is little evidence of oxidative injury in PINK1 knockout
mice other than aconitase inactivation [113], antioxidant enzymes and pharmaceutical agents
confer significant protection against several alterations observed in PINK1 deficient
Drosophila [117] and human cells, including diminished membrane potential [89,110].

It may be worth separating potential signaling functions of reactive oxygen species from
pathologic levels of oxidative stress. For instance, reversible redox inactivation of autophagy
proteins that remove LC3 from membranes may function as part of a physiologic regulatory
system that allows initiation of starvation-induced autophagy [119]. Much higher levels of
mitochondrial ROS, however, may result in overactivation of autophagy through robust
mitochondrial ERK activation [15,18] or loss of physiologic feedback mechanisms involving
beclin 1 [120]. While autophagy is cytoprotective in the context of PINK1 deficiency, beclin
1 independent autophagy contributes to neurite retraction in the MPP+ and G2019S LRRK2
models [16,17]. As with fission/fusion and other potential therapeutic targets, either
insufficient or excess stimulation may prove harmful unless properly balanced [39].

7. Conclusions
Mitochondrial fragmentation, cristae loss and mitophagy have been observed in human
neurodegenerative diseases [121,122], suggesting that perturbations in fission-fusion
homeostasis and autophagy could contribute to neuritic/synaptic dysfunction and
neurodegeneration in PD. Current data in models of autosomal recessive PARK6
neurodegeneration suggest that aberrant cristae/inner membrane function, calcium
dysregulation and oxidative stress trigger a series of pathogenic as well as compensatory
pathways. Coordinated activation of mitochondrial fission and autophagy function to isolate
dysfunctional mitochondria, limiting cell death, while fusion may also be activated to facilitate
repair and mtDNA stabilization [30].

Complementation of PINK1 deficient states may be mediated by 1) restoring pathways
dependent upon PINK1 function, 2) reversing pathologic pathways activated in its absence, or
3) facilitating success of compensatory mechanisms. Given that stimulating fission or
autophagy can be beneficial in some contexts and harmful in others, additional studies are
warranted to distinguish cause from correlation, and factors that determine success of a given
compensatory or protective response. Both direct and indirect effects of altered PINK1 kinase
activity and/or localization could form valid targets for therapeutic modulation. Understanding
pathways of injury and compensation are important therapeutically whether or not they
represent direct kinase substrates, as there are multiple mechanisms to achieve a common
phenotype of a healthy neuronal mitochondrial network. Given the broad neuroprotective
properties of PINK1 in both toxic and genetic models of parkinsonian injury, elucidating the
normal function(s) of PINK1 offers exciting promise for therapies effective in multiple forms
of PD.
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Figure 1. The lifecycle of a mitochondrion
There are multiple factors that regulate the steady state distribution and morphology of the
mitochondrial network in a cell. Dynamic processes that regulate the normal mitochondrial
lifecycle are linked by blue arrows. Mitochondrial biogenesis is regulated by both nuclear and
mitochondrial transcription factors, targeted translational and protein trafficking mechanisms
and, in neurons, activity-dependent transport of the entire organelle to meet functional
demands. A balance of fission and fusion events occur continuously, and is tied into axonal
trafficking in neurons and cell cycle in non-neuronal cells. A portion of mitochondria isolated
by fission undergoes basal autophagic turnover, releasing new building blocks and unknown
signals related to biogenesis (green dashed arrow). Most injury states that have been studied
promote mitochondrial fission (red arrow). While fission involving bax-recruitment is
necessary for cell death in some systems [35], the role of fission in other injury contexts is less
clear. We propose that fission serves predominantly as an injury response to isolate damaged
segments of the mitochondrial network. Segments that can be repaired may refuse with other
undamaged portions (green arrow). Fission protects the remainder of the network against
harmful calcium fluxes [32], and enhances retrograde transport and mitochondrial autophagy,
which serves to further sequester damaged mitochondria and reduce leakage of pro-death
mediators. If neither repair nor autophagy is sufficient, or if degraded mitochondria are
ineffectively replaced [39], the balance tips to favor cell death (red dashed arrow).
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Figure 2. Hypothetical models for PINK1-Parkin interactions
Several effects of PINK1 deficiency can be complemented by overexpression of Parkin in both
mammalian and invertebrate systems.
1) The simplest model places Parkin as a downstream mediator of a common PINK1-Parkin
pathway that affects mitochondrial dynamics, although there is disagreement in the literature
over whether the fission-fusion balance is positively (Drosophila) or negatively (mammalian
cells, C. elegans) associated with PINK1 activity.
2) An alternative model is suggested by data showing opposite effects of PINK1 and parkin
activities on autophagy/mitophagy [89]. PINK1 maintains healthy mitochondrial networks
regulated by a steady state fission-fusion balance, and in the absence of damage, there is no
stimulus to induce autophagy. In PINK1 deficient cells, fission and autophagy are coordinately
upregulated to isolate damaged and often swollen segments of mitochondria, preventing
propagation of calcium waves and release of oxidants and other death mediators. Parkin
overexpression augments selective clearance of depolarized mitochondria [105]. Thus, PINK1
and Parkin promote a similar steady state phenotype of healthy mitochondrial networks by
acting at different ends of the process, with PINK1 maintaining mitochondrial health and Parkin
eliminating damaged mitochondria. Experimentally increasing Drp1 indirectly protects against
cell injury by further enhancing the compensatory fission-autophagy process (rather than by
restoring a normal PINK1 function), while knockdown of Drp1 function and increased Opa
serve to exacerbate injury.
These two models are not mutually exclusive, and there is at least one other model in which
both proteins may affect a similar process through different mechanisms. For example, both
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Parkin and PINK1 may function to enhance mitochondrial biogenesis [49,109], but Parkin does
not rescue the effects of PINK1 deficiency in this context.
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