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Abstract
The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be
better understood. Based on the studies from ALS patients and transgenic animal models, it is
believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have
been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate
excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant
RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell
survival, have shown to be an early target in ALS pathogenesis and contribute to the disease
progression. Morphological and functional defects in mitochondria were found in both human
patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially
associated with mitochondria and subsequently impair mitochondrial function. Recent studies
suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may
also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper
mitochondrial function in axons and neuromuscular junctions, supporting the emerging “dying-back”
axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been
linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes
to the disease etiology.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by
preferential motor neuron death. Approximately 10-20% of the cases are familial whereas the
majority of them are sporadic. Among the familial cases, the most common disease-causing
mutations are found in the copper-zinc superoxide dismutase (SOD1) gene [1,2]. Mutations in
other genes have also been found to cause various subsets of familial ALS, including the
recently discovered RNA processing proteins TDP-43 [3,4] and FUS/TLS [5,6]. While the new
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gene mutations in TDP-43 and FUS/TLS will help understanding the etiology of ALS,
particularly the potential mechanisms underlying both sporadic and familial ALS, the large
body of knowledge on the disease pathogenesis has been based on the studies of mutant SOD1
mediated familial ALS in the past decade. This review is also focused on the mitochondrial
dysfunction induced by mutant SOD1.

The mitochondrion is a critical organelle within cells executing multiple functions.
Mitochondria are the primary site of ATP production, maintain calcium homeostasis and
participate in calcium signaling, and regulate intrinsic apoptosis. Mitochondrial malfunction
confers pleiotropic effects to the cells, especially neurons with an elevated susceptibility to
aging and stress. Mitochondrial pathology is a key player among multiple working hypotheses
in the ALS studies [2,7]. Mutant SOD1 has been reported to be associated with mitochondria,
and the morphology and bioenergetic function of mitochondria can consequently be impacted.
More recent studies also support that axonal transport of mitochondria is disrupted by mutant
SOD1 in ALS. Furthermore, mitochondrial dynamics and function can be altered when the
axonal transport in motor neurons is compromised. The above mechanisms are not mutually
exclusive, but rather consist a vicious cycle that deteriorates mitochondria in motor neurons
especially the distal nerve terminals. These observations suggest that mitochondrial
dysfunction is likely an important causal or contributing factor to ALS pathogenesis and
progression. This review will discuss the findings and the mechanistic insights garnered from
the studies.

Subcellular localization of SOD1
SOD1 is a ubiquitous protein that functions as a primary antioxidant by catalyzing the
disproportionation of superoxide radicals to hydrogen peroxide and molecular oxygen. The
homodimeric protein is localized predominantly in the cytoplasm, but it is also found in other
cellular compartments including the nucleus [8], endoplasmic reticulum [9] and mitochondria
[10,11]. Wild type (WT) SOD1 as well as copper chaperone for SOD1 (CCS) has been found
in the intermembrane space (IMS) of mitochondria [10,11]. It has been proposed that the
nascent SOD1 polypeptide with no metal ion bound can efficiently enter the mitochondria and
that the maturation of SOD1 (including metal ion binding and intramolecular disulfide bond
formation) inside mitochondria and the subsequent retention in IMS involve the SOD1-CCS
interaction. Moreover, high levels of CCS in the mitochondrial intermembrane space could
result in enhanced mitochondrial accumulation of SOD1 [12].

The ALS-related mutant SOD1 proteins have also been found in the IMS, matrix and outer
membrane of mitochondria [13-16]. It is likely that mutant SOD1 fails to fold properly and
perturbs the physiological regulation of mitochondrial import and retention [16]. However, it
remains unclear how mutant SOD1 becomes aggregated on the outer membrane or in the matrix
of mitochondria. It is also unclear how mutant SOD1 is selectively recruited to spinal, but not
liver, mitochondria [17].

Once associated with mitochondria, the mutant SOD1 is believed to cause multiple damages
to mitochondria. An early event could be damage to the mitochondrial membrane leading to
loss of mitochondrial membrane potential and swelling of the important organelle [18,19].
Potential consequences include impaired respiratory complex [20-22], disrupted redox
homeostasis and decreased ATP production [23]. Furthermore, calcium homeostasis can be
disrupted [22,24-26] and apoptosis may be activated [27-29]. Details of the above inter-related
mechanisms underlying mutant SOD1 induced mitochondrial dysfunction will be discussed in
the sections in the first half of this review.
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Abnormal mitochondrial morphology and bioenergetics in ALS
Early studies have shown degenerating mitochondrial vacuoles in axons and dendrites of motor
neurons in presymptomatic mice expressing mutant SOD1 [18,19,30]. In addition, dense
conglomerates of mitochondria in the anterior horn of lumbar spinal cord and proximal axons
have been found in sporadic ALS patients [31,32]. Abnormal clustering of mitochondria was
recently reported in motor axons in mutant SOD1 transgenic mice [33]. Extensive
fragmentation of mitochondria was also reported in cultured NSC34 cells overexpressing
mutant SOD1 [34,35]. A further study found that vacuolation of mitochondria in the spinal
motor neurons of G93A transgenic mice was caused by expansion of the IMS and the outer
mitochondrial membrane. The same study found that the degenerative vacuoles were bounded
by mutant SOD1 that colocalized with mitochondrial outer membrane markers [36]. Besides
alteration of mitochondrial morphology, damage to the mitochondrial membrane caused by
mutant SOD1 can yield loss of mitochondrial membrane potential, disruption of mitochondrial
respiratory chain activity [20,21], and reduction in mitochondrial Ca2+ buffering capability
[26]. The dysregulation in electron transfer chain complexes was observed in both G93A SOD1
transgenic mice and human ALS patients [20,22].

Disruption of calcium homeostasis in ALS
Another important function of mitochondria is to buffer intracellular surges of Ca2+ in excited
cells. In excitable cells like motor neurons, mitochondria play an important role in short-term
handling of rapid cytosolic Ca2+ transients. Ca2+ is a ubiquitous second messenger and
participates in many signaling pathways that are crucial for cell survival. Increased Ca2+

concentration and mitochondrial damage were found in ALS patients as well as animal and
cellular ALS models [25,26,37-39]. A significant decrease in mitochondrial Ca2+ loading
capacity in brain and spinal cord, but not in liver, was observed in presymptomatic G93A
mutant transgenic mice [38]. Elevated Ca2+ can induce reactive oxygen species and oxidative
stress in primary motor neurons isolated from G93A transgenic mice [25]. Alternatively,
Ca2+ mediated glutamate excitotoxicity might contribute to the mutant SOD1 toxicity in motor
neurons. Altogether, the mitochondrial dysfunction induced by mutant SOD1, disrupted
calcium homeostasis and subsequent excitotoxicity are likely to be interrelated mechanisms
that collectively contribute to motor neuron degeneration in ALS.

Involvement of mitochondria-mediated apoptosis in ALS
Mitochondria-mediated apoptosis was found to be involved in motor neuron degeneration in
early studies of ALS. In G93A SOD1 transgenic mice, cytosolic release of cytochrome c was
observed [27-29], and levels of pro-apoptotic proteins Bad and Bax were increased while those
of anti-apoptotic proteins Bcl2, Bcl-xL and XIAP were decreased [40-42]. It has been proposed
that mutant SOD1 can sequester anti-apoptotic protein Bcl-2 [27], reduce mitochondrial
membrane potential, and trigger cytochrome c release from mitochondria [27-29]. Caspase-1
and caspase-3 were also found to be sequentially activated in motor neurons and astrocytes in
G93A SOD1 mice as well as in G37R SOD1 and G85R SOD1 mice [43-45]. Strategies
intervening in mitochondria-mediated apoptosis were demonstrated to be effective in G93A
SOD1 mice: (i) intraventricular administration of minocycline, which inhibits cytochrome c
release from mitochondria, was shown to delay disease onset and extend survival [46]; (ii)
over-expression of anti-apoptotic protein Bcl-2 could delay activation of the caspases, attenuate
neuron degeneration and delay disease onset and mortality [41,47]; and (iii) intraventricular
administration of a broad spectrum caspase inhibitor zVAD-fmk could delay disease onset and
mortality [43]. However, the clinical trials based on the above apoptosis-inhibiting approaches
(e.g. minocycline) failed in human ALS patients [48].
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Interestingly, Gould et al. crossed the mutant SOD1 transgenic mice with Bax knockout mice
and showed that neuromuscular denervation and mitochondrial vacuolization persisted in the
absence of apoptotic death of motor neuron cell bodies in the double mutant mice [49].
Neuromuscular denervation was observed to begin long before the activation of apoptotic
proteins, and Bax deficiency delayed the onset of neuromuscular denervation. Motor neurons
exhibited mitochondrial abnormalities at the innervated neuromuscular junction at the onset
of neuromuscular denervation. In addition, presynaptic terminals of motor neurons
accumulated high levels of mutant SOD1 before the axons were withdrawn from the
neuromuscular junction. A separate study showed denervation of 40% neuromuscular junctions
in pre-symptomatic G93A SOD1 transgenic mice (47 days), 60% loss of ventral root axon in
80 days old G93A mice (immediately prior to onset), and significant motor neuron death until
100 days old (post-symptomatic) [50]. The results from these studies support the “dying back”
hypothesis that clinical symptoms in the G93A SOD1 mice result from damages to the distal
motor axon rather than the activation of the cell death pathway in cell bodies. Furthermore, the
results suggest that local mitochondrial changes in distal axons may represent a triggering
mechanism for axonal degeneration and denervation. The findings inspired more careful
studies of mitochondrial abonormalities in ALS with respect to the subcellular localization of
such changes as well as the transport and dynamics of mitochondria. The significance and
findings of mitochondrial transport and dynamics in the context of ALS are discussed below.

Disruption of axonal transport in ALS
Neurons have extensive dendritic arbors and axonal processes that can extend far from the cell
body. Transport of materials (proteins and organelles) and signals between the cell body and
neuronal processes is crucial to neuronal function and survival. Disruption of slow axonal
transport of the cytoskeleton is one of the earliest pathological events in mutant SOD1 mice
[51,52]. Fast axonal transport mediated by kinesin and dynein motor complexes is responsible
for transporting membrane-bound organelles (e.g. mitochondria) for axonal and synaptic
function. Mutations in the anterograde transport motor protein kinesin (KIF5A) can cause
spastic paraplegia [53] and mutations in the retrograde motor complex dynein-dynactin cause
motor neuron degeneration in humans and mice [54,55]. Mouse strains carrying various dynein
or dynactin mutations also showed retrograde transport impairment and motor neuron
degeneration [54,56-59]. Decreased kinesin-mediated (anterograde) and dynein-mediated
(retrograde) axonal transport have been observed both in ALS patients and in transgenic animal
models [51,60-65]. More intriguingly, crossing of G93A SOD1 ALS mice with different mouse
strains carrying dynein or dynactin mutations resulted in various degrees of protection in the
double mutant mice [56-58,66,67]. Nevertheless, the results strongly support that axonal
transport is likely a critical component in ALS disease etiology.

The detailed mechanisms by which axonal transport is affected in ALS have yet to be
established. In the last few years, ALS-related mutant SOD1 proteins have been shown to
interact with both the anterograde motor protein kinesin-2 complex via kinesin-associated
protein 3 (KAP3) and the retrograde motor protein complex dynein-dynactin [68-70],
providing potential molecular mechanisms how mutant SOD1 may interfere with axonal
transport. Most recently, a genome-wide single nucleotide polymorphism analysis in a set of
1,821 sporadic ALS cases and 2,258 controls from the U.S. and Europe revealed that a variant
within the KAP3 gene was associated with decreased KAP3 expression and increased survival
in sporadic ALS [71]. Examination of the literature revealed a report showing increased
expression of KAP3 in mutant SOD1 transgenic mice [72]. These findings provide an emerging
concept that alterations of axonal transport might be involved in both familial and sporadic
ALS.
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Axonal transport of mitochondria and its regulation
Different from other transported organelles, mitochondria are unique since they do not have a
defined destination. Their dynamics are influenced by moment-to-moment changes in the
energy demands of the cell [73]. Appropriate distribution of mitochondria is critical for meeting
cellular energy demands or regulation of Ca2+ levels, especially in neurons [74]. Mitochondria
are frequently found in axon terminals due to the high demand of ATP and Ca2+ handling at
synapses [75,76]. In response to synaptic excitation, mitochondria redistribute to the dendrites
and facilitate spine morphogenesis and synaptogenesis [77]. In neurons, mitochondria migrate
in both anterograde and retrograde directions through association with kinesin and dynein
motor complexes. Disruption of kinesin heavy chain KIF5B causes perinuclear clustering of
mitochondria in mouse neurons, indicating that KIF5B is essential for mitochondrial dispersion
[78]. In addition, other kinesin superfamily members KIF1B and KLC3 are also implicated in
anterograde transport of mitochondria [79,80]. Dynein is important not only for axonal
retrograde transport of mitochondria but also for mitochondrial fission [81].

The precise mechanisms that regulate the kinesin and dynein motor complexes and their
attachment to the organelles are yet to be fully understood [74]. One mechanism by which
mitochondria are attached to kinesin has been described. Milton is an adaptor protein
interacting with both kinesin heavy chain (KHC) and the mitochondrial protein Miro and
recruits mitochondria to the kinesin motor in microtubule-dependent transport [82-86]. The
interaction between Milton and KHC is independent of kinesin light chain (KLC). Miro mutants
in Drosophila cause enrichment of mitochondria in neuronal somata and reduction in neuropil
[84]. GTPase defective mutants of Miro resulted in the aggregation of mitochondria [85]. The
C-terminal transmembrane domain within Miro is required for mitochondrial outer membrane
targeting. The N-terminus within Miro is responsible for binding with the kinesin-interacting
protein GABA-A receptor-interacting factor 1 (GRIF-1) and O-linked N-acetylglucosamine
transferase interacting protein 106 (OIP106), linking mitochondria to kinesin-mediated axonal
transport [87-89].

Miro contains two Ca2+-binding EF-hand motifs, providing a calcium-responsive mechanism
to regulate mitochondrial transport. Ca2+ binding to the EF-hand motif of Miro can promote
direct binding of Miro to KHC rather than via Milton, and prevent the attachment of KHC to
microtubules [86]. In response to excitation, an influx of Ca2+ in both pre- and post-synaptic
cytosol will consequently inhibit mitochondrial transport. The locally arrested mitochondria
are then able to provide more ATP and to buffer high Ca2+ to avoid overexcitement.
Mitochondria subsequently move away when the local Ca2+ concentration returns to normal
and ATP is supplied [90,91]. This provides a mechanism for responding to local calcium
homestasis and energy demand.

Neurotrophic factors, which are critical to neuronal differentiation and survival and axonal
growth and maintenance, can also regulate axonal transport of mitochondria. For instance,
nerve growth factor (NGF) has been shown to regulate the motility and distribution of axonal
mitochondria and cause the local accumulation of mitochondria in cultured primary neurons
[92,93].

Disruption of axonal transport of mitochondria in ALS
Disruption of mitochondrial transport has been implicated in neurodegenerative diseases
including ALS [74,94,95]. Mitochondria, which display saltatory movement along
microtubules, are transported by kinesin and dynein motors at the speed of approximately 1
μm/s (i.e. 86.4 mm/day). In one study using both primary neurons isolated from G93A SOD1
transgenic mice and cortical neurons transfected with G93A SOD1, mitochondrial transport
was observed to be selectively reduced in the anterograde direction [94]. In another study using
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differentiated NSC34 cells overexpressing mutant SOD1, mitochondrial transport was found
to be altered in both anterograde and retrograde directions [95].

The mechanism by which mutant SOD1 interferes with mitochondrial transport is yet to be
elucidated. Several scenarios can be envisioned and illustrated as in Figure 1. First, various
kinases have been reported to be activated by pathogenic proteins implicated in different
neurodegenerative diseases to phosphorylate kinesin heavy chain (KHC) or kinesin light chain
(KLC), and to affect anterograde transport [96-99]. The p38 MAP kinase stress pathway was
reported to be activated in mutant SOD1 transgenic mice [100,101], which potentially provides
a connection between mutant SOD1 and kinesin-mediated axonal transport. Second, elevated
Ca2+ levels caused by disrupted calcium homeostasis can promote direct binding of KHC to
Miro and detachment of KHC from microtubules as discussed earlier [86], which would cause
decreased anterograde axonal transport. Third, our previous studies showed that mutant SOD1
could interact with the dynein-dynactin complex [68,69], linking mutant SOD1 to retrograde
transport. Fourth, mitochondrial transport and membrane potential are correlated [102]. Thus,
loss of mitochondrial membrane potential induced by mutant SOD1 as discussed earlier can
be another underlying mechanism. Fifth, mutant SOD1 aggregation along microtubules may
interfere with both anterograde and retrograde transport like blockades along highways. Sixth,
anterograde and retrograde transport are inter-related and highly regulated, thus it is not
surprising that disruption of the transport in one direction would affect the transport in the other
direction. Lastly, it is also unclear whether all transported cargos would be affected similarly
or differentially by mutant SOD1. For instance, a recent study showed that mutant SOD1
interacted with the kinesin-2 complex via kinesin-associated protein 3 (KAP3) and impaired
anterograde transport of choline acetyltransferase [70]. Will the axonal transport of
mitochondria and of choline acetyltransferase be affected in the same fashion in the presence
of mutant SOD1? Or will transport of pro-survival and pro-death signals be affected similarly
or differentially? It is conceivable that transport of different organelles, cargos or signals can
be differentially altered in the presence of the ALS-linked SOD1 mutants. Future studies are
needed to clarify how axonal transport of mitochondria is altered in ALS and to understand
the mechanisms.

Despite the unclear mechanism, impaired transport of mitochondria can result in abnormal
mitochondrial morphology, redistribution of mitochondria with fewer mitochondria in axons
and nerve terminals, reduced ATP production from mitochondrial metabolism, and decreased
calcium handling capacity. Moreover, altered mitochondrial transport can lead to abnormal
mitochondrial dynamics as discussed in the next section.

Potential role of mitochondrial dynamics in ALS
Mitochondria are highly dynamic organelles. Mitochondria are abundant in areas of active
neurons with intense ATP demands such as the axon hillock, the nodes of Ranvier, and the
synaptic regions [103]. They are actively transported and they can have defined subcellular
distributions that can change rapidly according to physiological needs. Mitochondria maintain
their overall morphology, distribution and activity through two essential mechanisms, fusion
and fission. An imbalance of these two opposing processes results in mitochondrial
fragmentation or elongation [104]. It is logical to speculate that mitochondrial morphology,
metabolic function, membrane potential, axonal transport, and fission and fussion are highly
inter-dependent.

In mammalian cells, the fusion machinery includes Mfn1, Mfn2 and OPA1. Mfn1 and Mfn2
belong to the large GTPase family and localize to the mitochondrial outer membrane. OPA1
is a dynamin family GTPase and localizes within the mitochondrial intermembrane space.
Mfn1 and Mfn2 deletion leads to loss of mitochondria fusion, high fragmentation, and
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correspondingly no mitochondrial tubules. In addition, Mfn1 and Mfn2 deletion results in
severe cellular defects, including widespread heterogeneity of mitochondrial membrane
potential and decreased cellular respiration [105]. In humans, mutations in Mfn2 cause
Charcot-Marie-Tooth neuropathy type 2A and mutations in OPA1 cause the most common
form of hereditary optic atrophy [106,107]. On the other hand, the components of mitochondrial
fission machinery in mammals include Drp1 and Fis1. Dominant-negative mutants of Drp1
inhibit mitochondrial division and result in highly interconnected mitochondrial tubules
[108]. Overexpression of Fis1 leads to mitochondrial fragmentation, release of cytochrome c,
and ultimately apoptosis [109].

Although no studies have been reported specifically regarding mitochondrial fission and fusion
in ALS, abnormal mitochondrial clustering and fragmentation [31-35] and altered
mitochondrial transport [94,95] are highly suggestive that mitochondrial dynamics may be
influenced in the presence of mutant SOD1. Changes in mitochondrial dynamics have been
found in other neurodegenerative diseases such as Alzheimer's Disease (AD). Wang et al. found
that mitochondria were much shorter and round in sporadic AD patients’ fibroblasts, indicating
imbalance of fission and fusion [110]. The same study also found that the levels of dynamin-
like protein 1 (Dlp1), a regulator of mitochondrial fission and distribution, were decreased
significantly in sporadic AD fibroblasts. Wang et al. also reported that levels of Dlp1 and OPA1
were significantly decreased whereas levels of Fis1 were significantly increased in M17 cells
overexpressing the AD-causing APP mutant [111]. Moreover, Dlp1 and OPA1 overexpression
could ameliorate the abnormal mitochondrial morphology and distribution and synaptic loss
induced by oligomeric amyloid-β derived diffusible ligands [112]. The results provide the best
evidence thus far that APP mutant can cause an imbalance of mitochondrial fission/fusion and
consequently result in mitochondrial fragmentation and abnormal distribution. It remains to
be determined whether ALS mutant SOD1 may also impair mitochondrial dynamics.

Mitochondria in the “dying back” axonopathy hypothesis of ALS
Recent studies provide convincing evidence that devervation of motor neuron from muscles
occurs in early stage of the disease pathogenesis prior to clinical symptoms in mutant SOD1
transgenic mice [49,50,65,113,114]. A zebrafish model overexpressing mutant human SOD1
also caused motor neuron axonopathy in a dose-dependent manner [115]. A “dying-back”
axonopathy hypothesis of ALS thus is emerging in the field. Interestingly, transgenic mice
with muscular overexpression of uncoupling protein 1 (UCP1), which only caused
mitochondrial defects in muscles, displayed age-dependent deterioration of neuromuscular
junctions and subsequent motor neuron pathology [116]. The results are supportive that the
distal pathology at neuromuscular junction can contribute to motor neuron degeneration in
ALS. The results also illustrate the critical importance of proper function of mitochondria at
both the presynaptic and postsynaptic compartments of the neuromuscular junction. As
discussed earlier, mutant SOD1 may interfere with the mitochondrial function via multiple
mechanisms, particularly via impairment of mitochondrial transport and dynamics. Thus,
maintaining appropriate population of properly functioning mitochondria in distal axons could
provide a critical therapeutic avenue for potential ALS treatment.

Conclusion
It is believed that alteration in multiple pathways in multiple cell types can contribute to ALS
pathogenesis and progression. Mitochondrial dysfunction plays a critical role in mutant SOD1
mediated familial ALS. Various aspects of the underlying mechanisms as well as functional
consequences of mitochondrial dysfunction are discussed in this review. They include
association of mutant SOD1 aggregates with mitochondria, abnormal mitochondrial
morphology, impaired mitochondrial bioenergetics, loss of mitochondrial membrane potential,
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reduced mitochondrial calcium buffering capacity and disrupted calcium homestasis, impaired
axonal transport of mitochondria, and potential imbalance of mitochondrial fission and fusion.
In fact, many of the events can be cause for and consequence of each other and they create a
vicious cycle that results in motor axon denervation and ultimately motor neuron degeneration
in ALS.

It is evidently critical to determine the very first event induced by mutant SOD1 and devise a
strategy to stop or delay it before the cycle becomes unstoppable. Misfolding of mutant SOD1
due to the intrinsic structural properties of the mutation is probably the first event. The
impairment of axonal transport by misfolded mutant SOD1 is likely the immediate next event.
The mitochondrial abnormalities can be secondary effects caused by compromised axonal
transport as discussed in the review. This hypothesis would explain the accumulation of
dysfunctional mitochondria in distal axon terminals and the axon degeneration that were
observed in very early stage of presymptomatic ALS mice. This speculation is supportive of
the “dying back” axonopathy model that is emerging in the ALS field. It is also essential to
study the mechanisms in the context of each other to understand the crosstalk among the events
so that potential therapeutic strategies may be designed to tackle multiple pathways
simultaneously.
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Figure 1. Hypotheses of abnormal axonal transport of mitochondria in ALS
Several mechanisms by which mutant SOD1 can interfere with axonal transport of
mitochondria have been discussed. (1) Kinesin heavy chain and kinesin light chain can be
phosphorylated by various kinases and anterograde transport would be affected. (2) Elevated
Ca2+ levels can prevent kinesin from binding to microtubules and lead to decreased anterograde
axonal transport. (3) Mutant SOD1 can interact with the dynein-dynactin complex and may
result in impairment of retrograde transport. (4) Disturbed mitochondrial membrane potential
can impact mitochondrial transport. (5) Aggregation of mutant SOD1 along microtubules may
interfere with both anterograde and retrograde transport like a blockade.
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