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Abstract Reactive oxygen and nitrogen species (ROS

and RNS) are produced by metabolism of normal cells.

However, in liver diseases, redox is increased thereby

damaging the hepatic tissue; the capability of ethanol to

increase both ROS/RNS and peroxidation of lipids, DNA,

and proteins was demonstrated in a variety of systems,

cells, and species, including humans. ROS/RNS can acti-

vate hepatic stellate cells, which are characterized by the

enhanced production of extracellular matrix and acceler-

ated proliferation. Cross-talk between parenchymal and

nonparenchymal cells is one of the most important events

in liver injury and fibrogenesis; ROS play an important role

in fibrogenesis throughout increasing platelet-derived

growth factor. Most hepatocellular carcinomas occur in

cirrhotic livers, and the common mechanism for hepato-

carcinogenesis is chronic inflammation associated with

severe oxidative stress; other risk factors are dietary afla-

toxin B1 consumption, cigarette smoking, and heavy

drinking. Ischemia–reperfusion injury affects directly on

hepatocyte viability, particularly during transplantation and

hepatic surgery; ischemia activates Kupffer cells which are

the main source of ROS during the reperfusion period. The

toxic action mechanism of paracetamol is focused on

metabolic activation of the drug, depletion of glutathione,

and covalent binding of the reactive metabolite N-acetyl-p-

benzoquinone imine to cellular proteins as the main cause

of hepatic cell death; intracellular steps critical for cell

death include mitochondrial dysfunction and, importantly,

the formation of ROS and peroxynitrite. Infection with

hepatitis C is associated with increased levels of ROS/RNS

and decreased antioxidant levels. As a consequence, anti-

oxidants have been proposed as an adjunct therapy for

various liver diseases.
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Introduction

Oxygen toxicity

Oxygen is lethal to mammals within a few days when

dioxygen is inhaled at 1 atm, whereas survival time at

5 atm is approximately 1 h. Oxygen toxicity is associated

with the capacity of this molecule to oxidize organic

molecules and to produce free radical species according to

the general reactions:

RH2 þ O2 ! RH�� þ 1-electron transferð Þ
RH2 þ O2 ! Rþ H2O2 2-electron transferð Þ

For these reactions to occur at significant rates, transition

metal catalysts are required.

Properties of free radicals

All molecules have electrons as their outermost components.

The behavior of these electrons determines the properties

of the molecule. Modern quantum-mechanical theory

describes electrons as having an intrinsic tendency to spin,

thereby generating an electromagnetic field, the effect of

which can be canceled by a similar charge spinning in the

opposite direction. Thus, the most stable configuration of
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electrons is a paired one in which each member has opposite

spins. Given this requirement for pairing, any situation in

which species are generated with an unpaired electron will

result in a potentially reactive entity known as a free radical.

Therefore, a stable molecule contains an even number of

electrons and a free radical is formed by gaining or losing

one or more electrons. In order to have significant activity as

a free radical, a molecule must have an unpaired electron and

sufficient redox potential to be reactive. Free radicals can be

generated in biological systems through a variety of pro-

cesses. A major question in free radical biology is what they

do after they have been formed.

Polyunsaturated lipids are essential to the entire sup-

porting system of cells, including cell membranes, endo-

plasmic reticulum, and mitochondria. Disruption of their

structural properties can, therefore, have dire consequences

for cellular function. Peroxidation of lipids has traditionally

been a major effect of free radicals. As a result of this,

many of the assay methods to establish free radical-induced

injury have measured by-products of the reaction of these

molecules with lipids (Fig. 1).

Reactive oxygen and nitrogen species (ROS and RNS,

respectively; Fig. 2) are produced by normal cellular

metabolism with beneficial effects such as cytotoxicity

against bacteria and other pathogens. In fact, there are

enzymes whose functions are to produce ROS/RNS, such as

nicotinamide adenine dinucleotide phosphate (NAD(P)H)

oxidases, nitric oxide synthases (NOS), and myeloperoxid-

ases. Since these free radicals may also damage normal

tissue, the balance between antioxidants and prooxidants is

critical for normal function. An imbalance favoring proox-

idants is defined as oxidative stress. Oxidative stress is

proposed to be critical in various diseases including liver

diseases.

Alcoholic liver disease and free radicals

The World Health Organization has reported recently that

alcohol-related diseases are the third cause of death and

disability in most developed countries and are one of the

leading causes in several of the developing countries of

Central and South America, Eastern Europe, and East Asia

[1]. It is interesting to note that the pharmacological

treatment of alcohol liver disease is associated with free

radicals.

Di Luzio [2] in 1966 was the first to observe lipid per-

oxidation after alcohol exposure; this was confirmed by

other researchers [3]. The capacity of ethanol to increase

both ROS/RNS and peroxidation of lipids, DNA, and

proteins was demonstrated in a variety of systems, cells,

species, including humans (Fig. 3). A lot was learned about

alcohol metabolism, the various pathways and enzymes

involved, and how alcohol directly via its solvent action

affects cellular membranes or indirectly via its metabolism

alters cell function. A major mechanism is lipid peroxi-

dation and oxidative stress in alcohol toxicity. Several

routes have been suggested to play a key role in the

mechanism of alcohol-induced oxidative stress [4, 5]. It is

likely that many systems contribute to the ability of alcohol

to induce oxidative stress.

There are several studies that show that antioxidants

administration or chelators of iron or reduced glutathione

(GSH)-replenishing agents can ameliorate or prevent the

toxic effects of ethanol. In the intragastric infusion of eth-

anol, liver damage was associated with enhanced lipid per-

oxidation, formation of 1-hydroxyethyl radical, decreased

formation of protein carbonyl in GSH, and formation of lipid

radicals [6–10]. Replacement of polyunsaturated lipids
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Fig. 1 Lipid peroxidation (LPO). X0 and X0• are free radicals,

causing initiation and termination of the LPO sequence, respectively.

L0•, lipid radical; LOO•, lipid peroxide; LOOH, lipid hydroperoxide
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(necessary for peroxidation of lipids to occur) with medium-

chain triglycerides or saturated lipids in the diets fed to rats

intragastrically prevented or lowered the peroxidation of

lipids and the alcohol-induced hepatic damage [9, 11].

Therefore, polyunsaturated lipids plus alcohol are needed

for the production of liver damage. Iron is known both to

produce •OH and to induce liver damage; importantly,

addition of iron to these diets exacerbated hepatic damage

[12]. Interestingly, administration of antioxidants, such as

ebselen, vitamin E, superoxide dismutase (SOD), and pre-

cursors of GSH prevented alcohol-induced hepatic damage

in rats [8]. Since ethanol-induced liver injury was linked

to oxidative stress, Cederbaum and co-workers [13, 14]

investigated the effect of a compromised antioxidant

defense system, copper–zinc SOD1 knockout mice, in an

alcohol-induced hepatic damage model. A moderate ethanol

consumption induced oxidative stress and liver damage in

these mice, indicating that compromised antioxidant

defense exacerbates alcohol liver damage.

The previous in vivo studies were confirmed by in vitro

studies with hepatocytes. Studies with isolated hepatocytes

from long-term ethanol-fed rats and corresponding controls

showed that ethanol metabolism via alcohol dehydrogenase

leads to increased ROS production, hepatocyte damage,

and apoptosis; these reactions were prevented by antioxi-

dants [15, 16]. Studies with HepG2 cell lines expressing

CYP2E1 indicated that addition of iron, polyunsaturated

fatty acids, or ethanol or depletion of GSH resulted in
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hepatocytes toxicity, increased oxidative stress, and mito-

chondrial injury, events blocked by antioxidants [17].

CYP2E1 plays an important role in ethanol-induced oxi-

dant stress—topic reviewed in depth recently by Lu and

Cederbaum [10].

The role of free radicals in alcohol-induced hepatic

injury and the capacity of ethanol to promote oxidative

stress are important areas of research, in particular, because

such information may possess very important therapeutic

significance to prevent the hepatotoxic effects of ethanol by

antioxidants, inhibitors of CYP2E1, iron chelators, or GSH

replenishment among others.

Fibrosis/cirrhosis and free radicals

Liver fibrosis is the result of an exacerbated wound-healing

process after chronic hepatic damage and is characterized

by the activation of hepatic stellate cells (HSC) and excess

production of extracellular matrix (ECM) components by

these cells. The activation of HSC involves the transdif-

ferentiation from a quiescent state into myofibroblast-like

cells. The activated HSC are characterized by the enhanced

production of ECM and accelerated proliferation.

Hepatic stellate cells

The embryologic origin of stellate cells has been elusive.

Currently, the bulk of evidence supports their origin from

either the endoderm or the septum transversum, as it forms

from cardiac mesenchyme during invagination of the

hepatic bud [18]. A separate issue pertains to whether

stellate cells and sinusoidal endothelial cells derive from a

common precursor cell, a likely possibility given their

shared mesenchymal phenotype, close proximity in situ,

and joint expression of some angiogenic factors, for

example, vascular endothelial cell growth factor [19].

The source of activated stellate cells and myofibroblast

in liver injury has provoked extensive study and debate

[20], specially the notion that bone marrow contributes a

substantial fraction of these cells.

ROS generated within cells or, more generally, in a tissue

environment may easily turn into a source of cell and tissue

injury. ROS and other oxidative stress-related intermediates

contribute to death, the perpetuation of chronic inflamma-

tory responses, fibrogenesis, with a major focus on hepatic

chronic wound healing and liver fibrogenesis [21, 22].

Cross-talks between parenchymal and nonparenchymal

cells are the most important event in liver injury and

fibrogenesis. Soluble factors such as cytokines [23] and

ROS are the most important factors in these cross-talks

and are possible targets for therapeutic consideration.

ROS are involved in necrosis and apoptosis of hepato-

cytes and HSC activation [24, 25]. Several major classes of

free radical scavengers, such as catalase, superoxide SOD,

and glutathione peroxidase (GSH-P), were investigated in

various types of liver damage, and they afforded effective

protection against the oxidative insults to hepatic paren-

chyma [26].

High levels of ROS, from phagocytic cells, such as

Kupffer cells (KC), protect the organism from external

pathogens; however, lower amounts of ROS mainly from

HSC actively participate in the regulation of intracellular

signaling [25, 27]. Platelet-derived growth factor (PDGF)

is the most potent mitogen of HSC and is, therefore, likely

to be an important mediator during liver fibrogenesis [28].

Interestingly, NAD(P)H is expressed in HSC and produce

ROS, which, in turn, induces the production of PDGF;

again, this molecule increases mitosis of HSC [27]. These

results strongly suggest that ROS play an important role in

fibrogenesis increasing PDGF throughout.

Hepatocellular carcinoma and free radicals

Hepatocellular carcinoma (HCC) is one of the most

malignant and frequent worldwide spreading diseases; it is

the third most common cause of cancer deaths [29, 30].

This disease occurrence is increasing in developed Western

countries such as the United States, with an incidence ratio

of 2.8 and 6.2 (whiteand African American, respectively)

per 100,000 habitants [31]; it is endemic in Korea, Taiwan,

China, and sub-Saharan Africa [32]. The major risk factors

for HCC are chronic hepatitis B and C viruses (HBV and

HCV), accounting for 80% of HCC cases; other risk factors

are dietary aflatoxin B1 consumption, cigarette smoking,

and heavy drinking [33].

Most HCC occur in cirrhotic livers, and the common

mechanism for hepatocarcinogenesis is chronic inflamma-

tion associated with severe oxidative stress [34]. There is a

large body of evidence indicating that ROS play a patho-

genetic role in carcinogenesis [35]. During the initiation

phase of this process, ROS may interact directly with

DNA, damaging specific genes that control cell growth and

differentiation, among others [36]. They can also increase

the activity of carcinogenic xenobiotics by facilitating their

activation to reactive compounds [37]. During the pro-

gression phase of carcinogenesis, ROS can directly stim-

ulate the growth of cancer cells [38]. The hydroxyl radical

is, among all the ROS produced during the inflamma-

tion phase, the most damaging; it has been proved that

it is responsible for a number of base modifications,

including the formation of thymine and thymidine glycol,

8-hydroxydeoxyguanosine, and 5-hydroxylmethyluracil [35].

8-Hydroxydeoxyguanosine is a guanine modification that
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induces a point mutation in the daughter DNA strand and is

commonly used as an indicator of DNA damage [39].

Chronic alcohol exposure elicits hepatocyte hypere-

generation due to the activation of survival factors and

interference with retinoid metabolism. Direct DNA damage

results from acetaldehyde, which can bind to DNA, inhibit

DNA repair systems, and lead to the formation of carcin-

ogenic exocyclic DNA ethenoadducts. Long-term alcohol

abuse also interferes with the methyl group transfer and

may alter gene expression [40].

The network linking HCV infection, inflammation, free

radical production, and carcinogenesis applies very well to

HCV-mediated chronic liver damage, just as it applies to

any chronic inflammatory condition [41]. Research into the

role of structural and nonstructural proteins of HCV and

the changes induced in cytokine expression oncogenes,

antioncogenes, and intracellular kinases shows that HCV is

by itself and not only through inflammation able to induce

ROS, an effect specific to this virus [42]. This free radical

production, accompanied by oxidative genomic injury,

constitutes the first step of a cascade of genomic and

postgenomic events that play an important role in HCC

[43]. More information is necessary from recently intro-

duced technologies for proteomics that will hopefully close

the gap between hypothesis and understanding.

Ischemia/reperfusion liver injury and free radicals

Interruption of blood flow of an organ with its subsequent

lack of nutrient and oxygen supply is an inherent effect

during various surgical processes. In hepatic surgery, there

are situations in which the ischemic periods can be very

long; this is the case during the resection of large hepatic

tumors, vascular reconstructions, management of hepatic

trauma from various origins, and hepatic procedure for

transplantation [44, 45]. When the flow of oxygen and

blood is re-established, reperfusion increases the damage

induced during the ischemic period, worsening the injury

produced at the cellular level [44, 46]. This process called

ischemia–reperfusion (IR) injury affects directly on hepa-

tocyte viability, particularly during transplantation and

hepatic surgery [45, 47]. In the ischemic period, various

modifications occur at the cellular level, which promote

cell injury. A decline in oxidative phosphorylation leads to

ATP depletion and loss of calcium homeostasis [48].

The detrimental effects of ATP catabolism are rein-

forced by the production of various compounds, including

cytokines vasoactive agents, and specially ROS. These

effects are associated by a decline in cytoprotective com-

pounds such as prostacycline, nitric oxide, and others [49].

Liver cell death occurs due to both apoptosis and necrosis

[50].

Aerobic metabolism produces ROS that are normally

inactivated through diverse antioxidant mechanisms.

However, during oxidative stress conditions, the balance

between ROS and antioxidants shifts toward the former,

resulting in liver damage [51].

Some of the process that participate both directly and

indirectly in IR injury by ROS include the formation of

xantine oxidase from xantine dehydrogenase (an oxygen-

dependent process that releases ROS, hydrogen peroxide,

and superoxide and produces uric acid) [52], induction of

NADPH oxidase by activated KC and neutrophils (ROS

production is blocked when NADPH oxidase is inhibited),

and NO formation and its conversion to peroxynitrite (both

are RNS) [53]. The cytotoxic effects of ROS and RNS in

the liver translate into tyrosine residues, lipid peroxidation,

inactivation of the heme group, and nitrosylation of iron–

sulfur group [44, 53].

Strong evidence indicates that KC (the resident macro-

phages of the liver) may cause hepatic injury in various

disease processes, including cold [54] and warm [55]

ischemic injury. Ischemia activates KC, which are the main

source of ROS during the reperfusion period [53]. Various

studies show that newly recruited nonocytes and leukocytes

are partially responsible for the ischemic damage. They

play an important role in the synthesis of ROS such as

superoxide and hydrogen species [55]. In hepatocytes,

proinflammatory cytokines, such as TNF-a, IL-1, or inter-

feron-c, can induce the production of ROS [56]. In addi-

tion, ischemic cell damage leads to intracellular oxidant

stress during reoxygenation [57]. Mitochondria are recog-

nized as the major intracellular source of ROS that are

produced by cellular respiration [57].

Since antioxidants can inhibit ROS, various studies have

aimed at modulating the severity of IR damage utilizing

different mechanisms, including pharmacological allopu-

rinol [58, 59], a-tocopherol [60], N-acethylcysteine [61],

and enzymatic catalase [62, 63] and SOD [57]. Endogenous

antioxidant concentrations decrease significantly during

reperfusion [60, 64]; thus, administration of antioxidants,

especially in the early stages of reperfusion, may signifi-

cantly diminish IR injury in transplanted livers.

Genetic, pharmacological, and surgical approaches to

decrease liver IR damage have been applied and are

increasingly being used. Therapeutic approaches include

ischemic preconditioning and the pharmacological treat-

ment with N-acetylcysteine, prostaglandins, and prostacy-

cline [44].

Paracetamol-induced liver damage and free radicals

Paracetamol (acetaminophen; N-acetyl-p-aminophenol

[APAP]) is a safe and effective analgesic and antipyretic
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drug when used at therapeutic doses. However, an overdose

can induce severe liver injury both in experimental animals

and in humans [65]. In the past, researchers studying the

toxic action mechanism of APAP focused on metabolic

activation of the drug, depletion of glutathione, and cova-

lent binding of the reactive metabolite N-acetyl-p-benzo-

quinone imine (NAPQI) to cellular proteins as the main

cause of hepatic cell death [66]. More recently, it was

discovered that covalent binding is not sufficient to kill

liver cells but is a signal for the toxicity that requires

amplification in the cell [67]. Intracellular steps critical for

cell death include mitochondrial dysfunction and, impor-

tantly, the formation of ROS and peroxynitrite (Fig. 4).

Oxidant stress of mitochondria triggers the mitochondrial

membrane permeability transition pore, loss of the mem-

brane potential of the mitochondria, depletion of ATP, and

release of intermembrane proteins that are responsible for

the typical nuclear DNA fragmentation of APAP-induced

cell death [67]. We have found that antioxidants, such as

silymarin [68], protect the liver of rats intoxicated with

APAP [69]. Reduced glutathione can effectively protect the

liver both by scavenging NAPQI and by detoxifying ROS

and RNS, such as peroxynitrite. This mechanism is the

basis for the rational clinical use of N-acetylcysteine, a

GSH precursor, as antidote against APAP toxicity [70].

Viral hepatitis and free radicals

Infection with HCV is associated with increased levels of

ROS/RNS and decreased antioxidant levels in patients

[71–74]. Patients infected with HCV show increases in

lipid peroxidation levels in liver samples, serum, and

peripheral blood mononuclear cells [72, 75–80]. In addi-

tion, other indicators of oxidative stress such as 4-hy-

droxynonenal and 8-hydroxydeoxyguanosine were found

to be increased in HCV [72, 74, 80–83]. The content of

GSH decreased in the blood, liver, and lymphatic system,

whereas that of GSSG increased, indicating a high glu-

tathione turnover [83].

The presence of ROS and RNS is, interestingly, more

pronounced with HCV than with HBV [75]. The mecha-

nisms for more severe increases of oxidative and nitrosa-

tive stresses during HCV disease may include chronic

inflammation (i.e., phagocytic NAD(P)H oxidase activa-

tion) and overload of iron, which is more specific to HCV

[72, 75, 84]. Furthermore, the production of ROS in the

hepatocytes may lead to the activation of KC [85]. These

cells, when activated, produce and secrete cytokines;

cytokines may be proinflammatory, such as TNF-a and IL-

1, or profibrotic, such as TGF-b. These proteins can further

increase ROS and play important roles in the mediation of

hepatic injury [23, 85–87], such as fatty liver, by inhibiting

lipase of lipoprotein and adiponectin and fibrosis as a result

of HSC activation [88–90].

In addition, proteins of HCV can increase ROS and RNS

in the infected cells; proteins of the HCV core have been

shown to augment the oxidative and nitrosative stress, lipid

peroxidation, oxidized thioredoxin, and antioxidant gene

expression such as that of metallothionein family proteins

and manganese superoxide dismutase (MnSOD) as well as

to enhance sensitivity to toxins such as ethanol and CCl4
[81, 91–95]. HCV core gene expression diminishes the

intracellular GSH levels and the mitochondrial NADPH

content that are associated with increased uptake of cal-

cium and oxidative stress generation at complex I in

mitochondria, providing an action mechanism for HCV-

induced ROS production [42, 91, 92, 96]. On the contrary,

core protein modulates the production of cytokines and

host enzymes, such as cyclooxygenase-2 and inducible

nitric oxide synthase (iNOS), which can increase ROS and

RNS [97–103].

Nonstructural proteins may also modulate the host redox

status by HCV. Host antioxidant defenses, such as GSH,

catalase, MnSOD, and heme oxygenase-1, are augmented,

suggesting adaptation to ROS/RNS stress [92, 104, 105].

Stress produced by ROS/RNS has been implicated in

HCV-induced hepatic cancer. HCV core-induced iNOS

generates RNS, which may cause damage to the DNA, and

augments mutations within the immunoglobulin and tumor
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suppressor genes [103, 106]. The genotoxic effects of ROS/

RNS may contribute to the development of B-cell lym-

phoma or HCC during HCV infection. In fact, this asso-

ciation was documented in vivo in HCV core-transgenic

mice [42, 107]. Other mechanisms by which core protein

increases HCC include the modulation of tumor suppressor

genes and proto-oncogenes as well as the inhibition of

apoptosis [83]. In this regard, it should be noted that oxi-

dative and nitrosative stress may possess diverse effects on

cell growth and apoptosis [108]. As a consequence, anti-

oxidants have been proposed as an adjunct therapy for

chronic hepatitis C [109].

Nonalcoholic fatty liver and free radicals

Oxidative stress in nonalcoholic steatohepatitis (NASH)

may be associated with potential etiologic mechanism.

Three factors have been proposed: lipid peroxidation,

hepatic iron, and hyperinsulinemia.

Lipid peroxidation

Increased lipid peroxidation was demonstrated in both

animal models of fatty liver [110–112] and patients with

nonalcoholic fatty liver diseases (NAFLD) [113–117].

NASH patients have increased levels of oxidative stress as

compared with patients with steatosis alone [113, 115].

In these patients, free fatty acids (FFA) are the likely

source of oxidative stress. Patients with NAFLD show

increased lipolysis and augmented delivery of FFA to the

liver [113, 118], the concentration of which are associated

with more severe liver disease [119]. Elevated FFA in the

liver [120] act as ligands for the transcription factor PPAR-

a, which upregulates the oxidation of FFA inside the

mitochondria, microsomes, and peroxisomes [121]. The

FFA oxidation products (lipid peroxides and superoxide

and hydrogen peroxide radicals) can generate oxidative

stress and subsequent lipid peroxidation.

Insulin

Increased insulin is a frequently occurring finding in

NAFLD; however, it is frequently overlooked in its path-

ophysiology. Insulin can damage the liver directly and

indirectly [122, 123]. Patients with long-term ambulatory

dialysis develop fatty liver, but only when insulin is added

to the peritoneal fluid dialysate [124–126]. The steatosis is

seen only at the surface of the liver and sometimes has the

histological appearance of NASH [124]. This direct effect

may be due to the ability of insulin to produce ROS [123].

In addition, insulin seems to posses direct profibrogenic

effects by stimulating connective tissue growth factor,

especially in the presence of hyperglycemia [124]. This

may explain the observation that patients with NAFLD and

type 2 diabetes mellitus have a very poor prognosis [127–

129]. Evidence [130] indicates that insulin may be directly

involved in causing endoplasmic reticulum stress along

with the unfolding protein response and apoptosis. This

may exacerbate insulin resistance [131].

Iron

Some evidence [132, 133] suggests that iron is important in

inducing ROS and lipid peroxidation. However, most

studies do not [134–138]. On the contrary, 30% of the

patients with NAFLD have elevated ferritin levels [139–

141], and there is an association between insulin resistance

and liver iron [142, 143]. Therefore, it sounds rationale that

iron causes oxidative stress because it is a well-known pro-

oxidant and possesses negative effects upon the mito-

chondria [144, 145]. However, ongoing additional studies

at present indicate that iron is likely to be important in only

a minority of patients with NAFLD.

Conclusions

Reactive oxygen and nitrogen species are involved in liver

damage induced by several conditions such as alcohol

abuse, fibrosis/cirrhosis of various etiologies, HCC, IR

liver injury, paracetamol overdose, and viral hepatitis.

Oxygen and NO radicals may affect the energetic, respi-

ratory, and regenerative pathways in hepatocytes. The

imbalance of proinflammatory/anti-inflammatory cytokine

in immune and inflammatory cells, the expression of col-

lagen genes, and angiogenesis in endothelial and stellate

cells aggravates the disease. On the basis of these facts,

antioxidant therapy alone or in combination with other

pharmacological strategies appears as the most reasonable

treatment of a variety of liver diseases.
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