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Abstract

Background: The human chromosome 8p23.1 region contains a 3.8–4.5 Mb segment which can be found in different
orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms
(SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of
large genomic orientations in the individuals.

Results: We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by
fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using
this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found
differentially expressed (p,0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels
of mosaicism for the orientation of the 8p23.1 as determined by FISH.

Conclusion: By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH
experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype
stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion
occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this
region have statistically significant different expression levels depending on the inversion status. FISH results in
lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.
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Introduction

Among the different classes of structural variations, the under-

standing of the prevalence and spectrum of the inversions in the

human genome is still scarce. One of the reasons is that most genome-

wide technologies used to discover structural variations are designed

to detect gains and losses of genomic material. Only recently, several

studies based on fosmid cloning and paired-end sequencing have

succeeded in mapping inversion breakpoints in a genome-wide

fashion [1–4]. As revealed by these and other studies, which include

comparing genomes assembled from different individuals and

targeted analyses, the total number of inversion regions in the human

genome is now close to 500 (http://projects.tcag.ca/variation/), but

this figure will likely increase with deep sequencing data coming from

the 1000 genomes project (www.1000genomes.org).

An indirect approach to delineate human inversions, which was

first described on Drosophila studies [5], is the characterization of

extended blocks of linkage disequilibrium (LD) that are created

due to the lack of recombination in heterozygous individuals [6].

Following this criterion, haplotype subgroups can be defined in

polymorphic inversions because different alleles are maintained in

the different orientations. Such is the case for the polymorphic

inversion on chromosome 17q21.31, for which one of the

haplotypes associated to one of the conformations has been found

to be under positive selection in Europeans [7,8].

Human chromosome 8p23.1 encompasses a 3.8–4.5 Mb poly-

morphic segment flanked by two large blocks of segmental

duplications (SDs). The whole region extends up to 6.5 Mb, which

includes the SDs and contains at least 50 genes. This inversion was

first described to have a frequency of 26% in the European [9] and

27% in the Japanese [10] populations, assuming that the assembly

of the reference sequence corresponds to the non-inverted

conformation. However, different studies have found an increased

frequency of the inversion, around 60%, in populations of European
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ancestry, indicating that the human reference assembly corresponds

to the minor allelic orientation of the region [4,11,12]. Moreover,

the 8p23.1 region is an intricate DNA segment flanked by two large

sets of SDs, named REPP (proximal) and REPD (distal), containing

several genes that vary in copy number, such as defensins or

FAM90A [13–22]. The 8p23.1 region has recently been reported to

also contain a high concentration of structural variants in fosmid

end-sequencing experiments [4]. Thus, the sizes of the flanking SDs

are variable and not fully sequenced (both are defined as gaps in the

assembled genome sequences), and it seems plausible that this

variability at the SDs could play a key role in the distinct

rearrangements affecting the 8p23.1 region.

Although initially considered a neutral polymorphism, the

8p23.1 inversion has been found in mothers of children with an

associated phenotype suffering from different rearrangements

involving the 8p23.1 region. This phenomenon has also been

described in the parents of children carrying other genomic

disorders [23] such as Hunter syndrome [24], Williams-Beuren

syndrome [25,26], and Prader-Willi or Angelman syndromes [27].

With the aim to identify single nucleotide polymorphisms

(SNPs) that could be used as surrogate markers for the 8p23.1

inversion, we performed a genotyping analysis of six individuals

that were analyzed by fluorescent in situ hybridization (FISH) and

were found to be homozygous for the 8p23.1 inversion (with

respect to the reference genome sequence). We have identified two

small tracts of SNP in homozygosity, which perfectly correlate

with the inversion status of this genomic region. Thus, we

predicted the genotype of the inversion for 150 HapMap

individuals using the genotype of these SNPs, and we confirmed

our predictions by FISH analysis in a subset of these samples.

Interestingly, we have detected a variable degree of mosaicism

with respect to the inversion within all the samples analyzed by

FISH. This phenomenon suggests that the region is mitotically

unstable. Finally, we have explored the effect of the inversion

rearrangement on 8p23.1 gene expression levels and have found

that four genes from this region have statistically significant

different expression levels depending on the inversion status.

Methods

Genotype Data and the Delineation of Homozygosity
Tracts

A deep SNP genotyping analysis of the 8p23.1 region was

performed using the HumanCNV370-Duo chip from Illumina in

a sample of six Spanish individuals of the general population that

were found to be homozygous for the 8p23.1 inversion FISH, and

the HapMap sample NA10861 was used as a control for genotype

concordance. Among all markers covered by the array, we focused

on 770 SNPs spanning the 8p23.1 region, where two tracts of

homozygosity containing 16 SNPs could be defined between 8.5–

8.7 Mb and 10.8–11 Mb in the six homozygous inverted

individuals. Genotyping was carried out following manufacturer’s

protocol (Illumina Inc.) at the Barcelona CeGen genotyping

center. Illumina’s HumanCNV370-Duo chip includes common

variation described for the CEU, CHB/JPT, and YRI populations

based on HapMap Phase I and II data, and also contains probes

that are enriched in CNV and SDs.

Genotype data of 210 unrelated HapMap individuals, including

60 parents of 30 trios from Utah residents with ancestry from

northern and western Europe (CEU), 60 parents of 30 trio samples

from Yoruba in Ibadan, Nigeria (YRI), 45 unrelated Han Chinese

from Beijing, China (CHB), and 45 Japanese from Tokyo,

Japanese (JPT) individuals, were also used in the analysis. Due

to the significant genetic similarity between Chinese and Japanese

groups, we pooled CHB and JPT data and denoted these

individuals as Asian (ASN) as in other studies [28].

HapMap phase II data was downloaded from the website

(HapMap Data Rel23a/phaseII Mar08; www.hapmap.org).

Phased haplotypes were used to predict the genotype of the 150

individuals with respect to the 8p23.1 inversion based on the

conserved homozygosity tracts previously described. The 150

individuals analyzed included the 60 parents from CEU samples

and the 90 ASN individuals.

FISH Analysis
FISH was performed on metaphase chromosomes prepared

from lymphoblastoid cell lines obtained from 24 unrelated Spanish

individuals using BAC-derived DNA probes. Two BAC clones

that fall within the 8p23.1 inversion and that are free of SDs

(RP11-399J23 and RP11-589N15) were used for the experiments.

DNA from BAC clones was isolated by standard procedures and

labeled with Spectrum green for RP11-399J23, and with Spectrum

orange for RP11-589N15. Labeled probes were precipitated and

resuspended following standard protocols. Metaphase chromo-

somes and probes were denatured and hybridized overnight at

37uC. Chromosomes were counterstained with 49, 6-diamino-2-

phenylindole (DAPI). Images were analyzed using the Isis software

from Metasystems. At least 20 metaphases with clearly interpret-

able signals on both chromosomes were counted per individual.

Elongated chromosomes were obtained adding 10 ml of

bromodeoxyuridine (10 mg/ml) for three hours incubation time,

followed by a 75 minutes incubation time with 10 ml of ethidium

bromide (10 mg/ml). This treatment was used for individuals LCL

345, LCL 247, LCL 384, LCL 339, LCL 221, LCL 137, LCL 342,

LCL 340, LCL 198, LCL 179, LCL 182, LCL 240 and LCL 195.

HapMap cell lines were obtained from Coriell Repositories

(Camdem, NJ). FISH analysis following the same procedure was

performed in 9 HapMap samples to confirm the predictions for

the 8p23.1 inversion based on the described surrogate SNP

markers. Individuals NA11992, NA12057 and NA11839 were

used for confirmation of the non-inverted orientation of 8p23.1.

NA11993, NA06993 and NA11994 were the heterozygous

individuals. Finally, the homozygous status of the inversion was

confirmed in individuals NA11831, NA12815 and NA12155.

Association Study of 8p23.1 Inversion and Gene
Expression Levels

Normalized gene expression values from CEU and CHB/JPT

(ASN) were downloaded from the Sanger Genevar webpage

(http://www.sanger.ac.uk/humgen/genevar/). Data retrieved by

31 IlluminaTM different probes targeting 26 genes located around

the 8p23.1 region (Table S2) were used to explore the correlation

between gene expression levels and the three different genotypes of

the inversion region (non-inverted homozygous, heterozygous, and

homozygous inverted). Individuals included in this analysis were the

150 samples corresponding to the CEU and ASN populations

where the status of the inversion could be predicted using surrogate

markers. The association between gene expression values and the

genotype for the inversion was tested for different genetic models. P-

values were derived from likelihood ratio tests, and a significance

level of 5% (two sided) was used for the analyses. All these analyses

were performed using the SNPassoc R package [29].

Results

Frequency of 8p23.1 Inversion in the Spanish Population
To determine the frequency of 8p23.1 inversion in the Spanish

population, we genotyped a total of 24 Spanish control individuals

Impact of 8p23.1 Inversion
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by FISH. We used BAC clones RP11-399J23 and RP11-589N15,

localized at each end of the 3.8 Mb inversion on chromosome 8

and outside the SDs flanking 8p23.1 [10]. Based on the human

reference assembly Human NCBI Build 36 we consider the

telomere-to-centromere orientation RP11-399J23 (Green) and

RP11-589N15 (Red) as the non-inverted conformation. The

hybridizations were performed using several slides per individual.

For 13 of the 24 individuals we obtained elongated and non-

elongated metaphase chromosomes.

From the 24 individuals that were genotyped, 50% (N = 12)

were heterozygous for the inversion, 29% (N = 7) homozygous for

the inverted conformation, and 21% (N = 5) homozygous for the

Build 36 genome assembly conformation (Figure 1). Thus, the

8p23.1 inversion was found in ,80% of control individuals and

consequently the reference assembly exemplifies the less frequent

orientation of this genomic segment in the Spanish population.

The study also revealed that although a predominant genotype

could be established for each studied sample, metaphases

Figure 1. FISH analyses for the human chromosome 8p23.1 inversion in control samples. DNA probes were generated from BAC clones
RP11-399J23 (Green) and RP11-589N15 (Red). A Frequencies of each of the three genotypes for the 8p23.1 inversion obtained in 24 Spanish control
samples. B Metaphase FISH of three of these samples, LCL227 is ‘‘Build-36-non-inverted’’; LCL136 is heterozygous for the 8p23.1 inversion, and
LCL182 corresponds to homozygous ‘‘Build36-inverted’’.
doi:10.1371/journal.pone.0008269.g001

Impact of 8p23.1 Inversion
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corresponding to different genotypes were observed in the 24

individuals analyzed (a subset of these samples is shown on

Table 1). Therefore, from the 12 samples heterozygous for the

inversion, the percentage of metaphases homozygous for either the

normal or the inverted conformation ranged from 14% to 38%.

Among the seven individuals homozygous for the inversion, 4% to

32% of the metaphases resulted homozygous for the non-inverted

conformation or heterozygous for the inversion. Finally, among

the 5 individuals that were found to be homozygous for the non-

inverted conformation, up to 18% of the metaphases had a

heterozygous genotype.

These results suggest instability of this genomic region, probably

due to intrachromosomal recombination between the two sets of

large SDs at both 8p23.1 extremes of the inversion polymorphism

region. The data also highlights the difficulty when interpreting

the genotype for the 8p23.1 inversion using FISH. According to

our results, a predominant genotype can be assigned to each

sample, but somatic mosaicism seems to be common, at least in

samples derived from lymphoblastoid cell lines.

Homozygosity Blocks in 8p23.1 Inverted Alleles
If we consider that haplotype subgroups are created by

suppression of recombination in the 8p23.1 inverted fragment, we

should be able to describe surrogate markers for 8p23.1 inversion.

To disclose the surrogate markers, six of the Spanish control

individuals, that were found to be homozygous for the 8p23.1

inversion by FISH analysis, were genotyped using the Illumina’s

HumanCNV370-Duo chip. Homozygous-inverted individuals were

chosen as the presence of homozygosity tracts simplifies haplotype

estimation and avoids phasing errors. By this procedure we were

able to delineate two different homozygosity tracts composed by a

total of 16 SNPs within the inverted region, in the proximity of the

REPP and REPD duplicons. The first homozygosity tract expands

,172 kb and contains 8 SNPs present in the HumanCNV370-Duo

chip and corresponds to the ‘‘CGTCGAGG’’ haplotype in all 6

individuals (Table 2). This genetic ‘‘signature’’ is located at

chromosome position 8.5 Mb, close to the REPD distal SDs that

flank the 8p23.1 segment. A second block of 8 homozygous SNPs

spans ,181 kb, and in this case the conserved haplotype is

‘‘TCACGAGA’’ (Table 2) and lays at 10.8 Mb, close to REPP, the

proximal set of SDs on 8p23.1 (Figure 2A).

Assuming that these 16 SNPs remain as a ‘‘signature’’ which

resulted from the recurrent recombination processes that lead to

the inversion of the 8p23.1 region, we postulate that these two 8-

SNP haplotypes can be used as proxies for the 8p23.1 inversion.

We downloaded the phased haplotypes from the 210 HapMap

samples (only the parents from the CEU and YRI trios were used)

to predict the status of the inversion in these samples. In the

population of European ancestry we found that 50% of the

individuals are heterozygous for the inversion, 8% are homozy-

gous, and 42% do not have the inverted allele (Figure 2B). Among

the population of Asiatic origin the presence of the inversion is

extremely high, with 37% of the samples being heterozygous and

48% homozygous for the 8p23.1 inversion (Figure 2). Finally,

these two 8-SNP haplotypes were not detected in the YRI samples.

This is probably because our predictions are based on Caucasian

ancestry individuals, and YRI samples might have different LD

patterns and the inversion could not be tagged with these SNPs.

Therefore, the profiles segregating with the inversion could not be

assessed by our approach, although it has recently been reported

that ,60–76% of YRI individuals have the inversion [4,12].

Confirmation of the Predictions for 8p23.1 Inversion by
FISH Analysis

In order to confirm the validity of the two 8-SNP haplotypes

proxies for the presence of 8p23.1 inversion in Caucasian samples,

we have genotyped the inversion by FISH in a subset of HapMap

CEU samples. We choose three individuals predicted to be

homozygous for the 8p23.1 inversion (NA11831, NA12815 and

NA12155), three heterozygous (NA11993, NA06993 and

NA1994) and three homozygous for the non-inverted status

(NA11992, NA12057 and NA11839) (Figure S1). The predicted

genotype was confirmed in the 9 samples, although again some

degree of mosaicism was detected but with a predominant

genotype (Table 3). These findings are in agreement with the

large number of discordant fosmids per individual found in

HapMap samples by Kidd et al. (2008), in the 8p23.1 region

(Figure S2 and Table S1). Although the discordant fosmid clones

could be due to a mapping artifact due to the presence of the SDs

Table 1. FISH analysis of 8p23.1 inversion in Spanish control
individuals.

METAPHASES

Samples
Homozygous
non-inverted Heterozygous

Homozygous
inverted

LCL159 87% 10% 3%

LCL183 82% 18% -

LCL198 92% 8% -

LCL146 14% 62% 24%

LCL161 19% 75% 6%

LCL184 13% 84% 3%

LCL241 5% 86% 9%

LCL247 20% 70% 10%

LCL194 4% 8% 88%

LCL339 - 22% 78%

Percentages of each of the three possible genotypes observed within each
Spanish individual in a subset of 10 representative samples from the 24
individuals analyzed. The predominant genotype is represented as a grey box.
doi:10.1371/journal.pone.0008269.t001

Table 2. Tracts of homozygosity in 8p23.1 region extracted
from the whole genome scan data performed in homozygous
inverted individuals.

REPD REPP

SNP
Homozygous
inverted haplotype SNP

Homozygous
inverted haplotype

rs17627505 C rs1178061 T

rs10503393 G rs1178247 C

rs2428 T rs3885690 A

rs11774860 C rs2409691 C

rs3827811 G rs13266785 G

rs17154769 A rs10282848 A

rs1876836 G rs10503417 G

rs1039916 G rs2409719 A

The 8 SNPs that serve as surrogate markers close to the REPD duplicons are
shown on the left. The 8 SNPs that serve as surrogate markers close to the REPP
duplicons are shown in the right.
doi:10.1371/journal.pone.0008269.t002
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at both ends of the inverted region, several of the fosmid end-

sequences are clearly different, unambiguously mapping to the

regions reported by Kidd et al. (2008). The results reported here

and the fosmid end-sequencing data suggest mitotic rearrange-

ments leading to different population of cells regarding the

orientation of the 8p23.1 polymorphic segment.

Our FISH analysis showed that in individuals NA11992,

NA12057 and NA11839 the predominant genotype is the non-

inverted status. Individuals NA11993, NA06933 and NA11994

have most metaphases heterozygous for the 8p23.1 inversion. In

samples NA11831, NA12815 and NA12155 the most observed

genotype is the homozygous inverted. We propose that the

alternative conformations for the 8p23.1 region arise by

intrachromosomal homologous recombination at mitosis and that

these two 8-SNP haplotypes are reliable markers to infer the

genomic structure of the 8p23.1 region.

Gene Expression Analysis of 8p23.1 Genes in HapMap
Populations

Another aim of this study was to investigate if the inverted

conformation has an effect on the expression of the genes contained

Figure 2. Scheme of the localization of the homozygosity tracts used as surrogate markers to predict the status of the human
chromosome 8p23.1 inversion in HapMap samples (Homozygsity tract__REPD and Homozygosity tract__REPP). Genes differentially
expressed on the association analysis and SDs are also depicted. B Frequencies predicted for the 8p23.1 inversion in CEU (white bars) and ASN (black
bars) populations based on haplotypes for two blocks of 8 SNPs inside the region of the polymorphic inversion.
doi:10.1371/journal.pone.0008269.g002

Table 3. FISH analysis in HapMap samples.

HapMap sample
Homozygous
non-inverted Heterozygous

Homozygous
inverted

NA11992 95% 5% -

NA12057 67% 33% -

NA11839 97% 3% -

NA11993 - 96% 4%

NA06933 - 91% 9%

NA11994 - 75% 25%

NA11831 - 38% 62%

NA12815 - 35% 65%

NA12155 - 46% 54%

DNA probes were made from BAC clones RP11-399J23 (Green) and RP11-
589N15 (Red).
doi:10.1371/journal.pone.0008269.t003

Impact of 8p23.1 Inversion
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in the 8p23.1 region. For this purpose we made use of gene

expression levels in lymphoblastoid cells of HapMap individuals

[30] and we performed an association study with respect to the

inversion status. We used gene expression values from 26 genes

(Table S2) located around and within the 8p23.1 region and we

searched for any association between gene expression levels and the

presence of the inversion. These analyses were carried out with the

SNPassoc R package on the CEU and ASN populations, where the

two 8-SNP haplotypes signature predicts the inversion status.

Interestingly, four genes, NEIL2 (p = 0.0003), MSRA (p = 0.001),

CTSB (p = 3.4661025) and BLK (p = 2.0861025) exhibited

statistically significant expression level differences after Bonferroni

correction for multiple testing (p,0.001) (Figure 2A). Box-plots of

the different expression levels for the four genes are shown on

figure 3. The model of inheritance under which the differential

expression was detected was with the additive model, with the

exception of NEIL2, which follows a dominant inheritance pattern.

Under the additive model the effect of the inversion on gene

expression is higher in individuals without the inversion than in the

heterozygous samples, than in turn show higher levels that the

homozigoulsy inverted individuals for CTSB, and the contrary is

observed for BLK and MSRA genes. This data suggest that the

inverted conformation has some effect on the expression of the

genes embedded in the inverted fragment.

Discussion

Although not as abundant as other structural variations,

inversions are common genomic variants in the human genome

[1,3,4,31]. A recent study has described that there are at least 35

recurrent inversions that are visible by light microscopy, six of

which are known to disrupt a gene [32]. An important issue

emerging from these studies is the mechanism underlying such

common variants. It is well known that the presence of highly

identical genomic sequences (low copy repeats or SDs), arranged

in opposite orientations, flanking certain regions of the genome,

predispose to inversion events by non-allelic homologous recom-

bination (NAHR). It has also been demonstrated that little

requirement for long, identical homology blocks between para-

logous DNA fragments is needed to produce exchanges by ectopic

recombination [33]. What it is not so often taken into

consideration is the presence of mitotic recombination leading to

mosaicism in regions showing this type of genomic architecture.

Mitotic recombination is an important mechanism under study

that can complicate the interpretation of the rearrangements

mediated by complex SDs, specially when the material used for

study are transformed lymphoblastoid cell lines which could

exhibit a high mitotic ratio. This may be the reason why several

studies on the 8p23.1 region have lead to some discrepancies

[4,12]. In this regard, a recent study on mouse stem cells has

shown that CNVs involving gains or losses of millions of base pairs

occur frequently during mitotic cell culture divisions, supporting

the idea that somatic tissues are composed of variants of the

mitotic genome [34]. Similarly, a study of several tissues from

different individuals has shown that somatic mosaicism is present

for a subset of CNVs [35]. Finally, the analysis of concordant and

discordant monozygotic twins has revealed mosaicism for CNVs,

indicating somatic mosaicism for some CNV regions [36].

Figure 3. Box-plot representation for the differentially expressed CTSB, NEIL2, BLK and MSRA genes, according to the predicted
inversion genotypes. The underlying distributions of expression levels for each of the three possible inversion genotypes: homozygous inverted
(inv/inv), heterozygous inverted (inv/non-inv) and homozygous non-inverted (non-inv/non-inv) are shown. On the top of each panel R-squared values
derived from general linear model regressions and p-values under the most significant model of inheritance are represented.
doi:10.1371/journal.pone.0008269.g003

Impact of 8p23.1 Inversion
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Our FISH results in lymphoblastoid cells prepared from

Spanish control individuals as well as HapMap lymphoblastoid

cell lines, points out the presence of a wide range of mosaicism

regarding the 8p23.1 inversion that could have arisen during the

lympholastoid cell cultures. Although previous data on this subject

suggest that the effects of lymphoblastoid cells generation, as well

as the effects of passage, on genotype and genetic architecture are

minimal [37], it has been reported that somatic events occur

during cell culture and that the mitotic events are responsible for

these changes [38,39]. It is clear that the locus analyzed here has a

very complex genomic architecture due to the complex SDs it

contains. Despite somatic rearrangements are a priori expected

events due to the extension and high level of identity between the

SDs flanking the 8p23.1 inversion polymorphism, little is known

about the incidence of these events in the genome. Several studies

have suggested that this phenomenon, exemplified in the case of

the alpha-globins where somatic deletions encompassing these

genes arise by intrachromosomal homologous exchange, is

common in blood and sperm [33]. Results from Flores [40] also

indicate that some cells within blood samples from normal

individuals can undergo genomic rearrangements such as

inversions and create genomic structural mosaicism. These

findings should expand our current view about the plasticity of

the genome and the homogeneity of the genetic material that we

characterize in genetic studies at the SNP level.

Another aspect that arises from our study of the 8p23.1

inversion is the high frequency of the inverted allele. The

possibility of these results being a misinterpretation of FISH

signals due to the scarcely ,3.5 Mb of distance between the two

probes it is unlikely, since no differences regarding the levels of

mosaicism were observed when the chromosomes were elongated

with ethidium bromide. By means of dense SNP genotyping of the

region, haplotype-based computational analyses and FISH

experiments we could infer and verify the orientation status of

alleles in the 8p23.1 region. Chromosomes were initially studied

by FISH and surrogate markers for the inversion were identified

by analyzing allelic association of 16 SNPs, which delineated two

tracts of homozygosity, in a group of individuals with known status

for the 8p23.1 inversion. These 16 SNP markers tag the inversion

and perfectly correlate in European and Asian ancestry HapMap

samples. These 16 markers were initially selected from a sample of

Spanish individuals, but they were also useful to predict the

inversion in individuals of CEU and ASN origin. Thus, these SNPs

can be used in CEU and ASN population to tag the inversion.

However, in the YRI population, which exhibits a higher SNP

diversity [31], the absence of LD at these 16 surrogate markers

does not allow to use them to predict the inversion in these

subjects. This argues in favor of several origins for this genomic

rearrangement or of an ancient origin of it. The fact that the SNP

haplotype ‘‘signature’’ is not maintained in the YRI population is

probably due to the overall higher genetic diversity carried by

individuals of African descent.

We should also take into consideration that the number of SNPs

found in LD with the inversion is subjected to the polymorphisms

that share in common the two resources that have been used, the

Illumina’s HumanCNV370-Duo chip for the Spanish individuals

in first instance, and subsequently the genotyping data present in

the HapMap database. Thus, the 16 SNP ‘‘signature’’ that we

have identified is based on SNPs shared by both resources,

meanwhile tracts of homozygosity comprising as much as ,100

SNPs in individuals predicted to be inverted in both populations

(CEU and ASN), do overlap with the distal and proximal

homozygosity tracts that we describe when we only consider the

high coverage data present on HapMap phase III (data not

shown). These observations do support the presence of large

homozygosity tracts that are in LD with the inverted conformation

of 8p23.1 region and the reliability of these 16 surrogate markers.

The analysis performed on HapMap individuals revealed that

37% of ASN population and 50% of the CEU samples were

heterozygous for the inverted allele. This frequency is similar to

the findings in the Spanish controls genotyped by FISH, where

50% are heterozygous for the inversion, and it is in accordance

with previous published results [4,12]. Regarding the homozygous

status of the inversion, this is present in 48% of the ASN HapMap

individuals, in 8% of the CEU HapMap samples and in 29% of

Spanish control samples.

The fact that there is not a long stretch of SNPs along the

,3.8 Mb region that is flanked by the SDs that involve this

polymorphic inversion, and only a region of about 170 kb on both

sides showing homozygosity for the SNPs, indicates that the

inversion has likely been generated many generations ago, leading

to many recombination events within the region. It is unknown if

these stretches of homozygosity are just relics of the ancestral

haplotypes in which the inversion arose or if they might have a

role in facilitating its recurrence. The results presented here

indicate that the recurrence of the 8p23.1 inversion is much more

frequent than previously reported [9], at least in an European

population, and that the current human genome reference

assembly (Build 36) corresponds to the less common orientation

of the 8p23.1 region, as it has been reported for several other

structural variants [31].

Although inversions are generally considered as neutral variants

regarding phenotype, there are several exceptions where specific

genes at the breakpoints are interrupted [41–46]. Moreover, little

is known about the effects on the regulation of the transcription of

the genes close to the breakpoints where inversions occur. To

investigate the possible effects on the genes of 8p23.1 region on the

allelic variation of the inverted and non-inverted forms, we

performed and association study of gene expression levels and the

genotype of the inversion in 150 HapMap individuals. We found

four genes (NEIL2, MSRA, CTSB and BLK) that show statistically

significant different expression levels (p,0.0005). Two of these

genes, NEIL2 and MSRA, are related to repair of oxidative damage

[47,48], and CTSB has been suggested to play a role in

Alzheimer’s disease [49]. To which extent these gene expression

differences can influence the function of the respective proteins

and if they are directly related to the inversion of the region

remains to be proved. We cannot exclude that the degree of

mosaicism present in the lymphoblastoid cell lines can modulate

the overall tissue-specific expression levels of these genes. In

addition we still have no evidences on how this inversion

accompanied by any degree of mosaicism can affect the regulation

of the transcription of the genes contained in the region. Another

possibility would be that these linkage disequilibrium blocks may contain

regulatory variants which are influencing the expression level of these genes.

In summary, using dense SNP genotyping analysis of the

chromosome 8p23.1 region in homozygous inverted samples

previously genotyped by FISH, we have been able to describe

surrogate markers that tag the 8p23.1 inversion in CEU and ASN

populations. Moreover, among the 26 genes we analyzed we have

observed gene expression differences in four genes depending on

the alternative genomic conformation of the region. We also

highlight the presence of mosaicism regarding the inversion in

most of the individuals genotyped by FISH. This mosaicism will

agree with the different types of discordant fosmid clones with an

inverted orientation detected for this region in the analysis

performed by Kidd et al. [30]. We postulate that this is a

phenomenon that could also involve other regions of the genome
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flanked by complex or high level identity SDs and L1 transposons,

as previously described [35,50,51]. It is currently unknown if the

genomic isoforms and their variable levels of expression have

consequences at the phenotypic and functional levels of the

individual, deserving future investigation.

Supporting Information

Figure S1 FISH analysis of the human chromosome 8p23.1

inversion in HapMap samples. Metaphase FISH of three HapMap

individuals, NA12057 as an example of non-inverted individual;

NA06993 is heterozygous for the 8p23.1 inversion and NA12815

corresponds to a homozygous inverted individual.

Found at: doi:10.1371/journal.pone.0008269.s001 (1.20 MB TIF)

Figure S2 Scheme of the different sizes of 8p23.1 inversion

within nine human cell lines as a result of fosmid-end cloning and

sequencing. For each cell line fosmid library (ABC7 to G248)

several end-sequenced fosmid clones were discordant for the

mapping of the end sequences, showing an inversion with respect

to the reference genome, and also showing different mapping

positions. The abundance of each fosmid clone and the

approximate sizes of the rearrangements are shown in Supple-

mentary Table 1 (data extracted from Kidd et al., 2008). The filed

orange-yelow boxes correspond to the segmental duplications (SD)

that flank and are within the inverted polymorphic region.

Nucleotide positions are in megabases (Mb).

Found at: doi:10.1371/journal.pone.0008269.s002 (0.62 MB TIF)

Table S1 Sizes of large inversions detected in human cell lines in

fosmid-end cloning and sequencing

Found at: doi:10.1371/journal.pone.0008269.s003 (0.03 MB

XLS)

Table S2 8p23.1 Gene expression levels. Genes analyzed in the

association study between gene expression levels and the genotype

for the 8p23.1 inversion, and their corresponding probes (http://

www.sanger.ac.uk/humgen/genevar/).

Found at: doi:10.1371/journal.pone.0008269.s004 (0.03 MB

DOC)

Acknowledgments
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