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Abstract
In clinical practice, renal cancer diagnosis is performed by manual quantifications of tumor size and
enhancement, which are time consuming and show high variability. We propose a computer-assisted
clinical tool to assess and classify renal tumors in contrast-enhanced CT for the management and
classification of kidney tumors. The quantification of lesions used level-sets and a statistical
refinement step to adapt to the shape of the lesions. Intra-patient and inter-phase registration
facilitated the study of lesion enhancement. From the segmented lesions, the histograms of curvature-
related features were used to classify the lesion types via random sampling. The clinical tool allows
the accurate quantification and classification of cysts and cancer from clinical data. Cancer types are
further classified into four categories. Computer-assisted image analysis shows great potential for
tumor diagnosis and monitoring.

I. INTRODUCTION
It is estimated that a quarter of a million people in the USA are living with kidney cancer and
their number increases by 51000 yearly [11]. Contrast-enhanced CT has proven exceptionally
useful to improve diagnosis due to the ability to differentiate tumors from healthy kidney tissue
[2,23]. Fig. 1 shows an example of how normal kidney parenchyma and lesions change intensity
in contrast-enhanced CT. The level of enhancement in a tumor is an crucial indicator of
malignancy; equally important is the growth/regression rate of tumors for a well targeted
therapy.

As manual measurements are time consuming and show high intra- and inter-operator
variability, computer-assisted radiology shows great promise in assisting the monitoring of
renal tumors. Moreover, the two-dimensional (2D) bias toward the image acquisition plane
manifested during the manual measurement of cancer can be removed by the 3D quantification
allowed by computer analysis.

Most work in renal image analysis is related to kidney segmentation [3,9,15,18]. The
quantification and classification of kidney tumors was seldom addressed. Notably, a marker-
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controlled watershed algorithm segmented both renal and lesion volumes in 2D data using
three manual contours and granulometry [19]. A homogeneous region growing from a seed
point was presented in [10].

Recently, feature extraction from statistical information of basic image descriptors showed
promising results in image processing and computer vision applications. Image features may
include edge and gradient descriptors. Representative methods include Scale-Invariant Feature
Transform (SIFT) [13], Shape Context [1] and Histograms of Oriented Gradient (HOG) [6].
Inspired by HOG, in this paper we propose using a set of shape descriptors called Histograms
of Curvature Features (HCF) to describe renal lesions for cancer classification. HCF was
previously used for colon polyp matching [21]; we employ it to classify renal tumors. HCFs
are statistical descriptors that can capture the intrinsic properties of lesions. We utilize multi-
phase CT values and curvature-related descriptors as basic image descriptors, i.e. shape index,
curvedness, Gaussian and mean curvatures. The advantage of these curvature related
descriptors is that they are rotation, translation and scale invariant. After feature extraction,
non-linear dimensionality reduction is applied to HCF features to characterize lesions.

Our study proposes the semi-automated quantification and classification of renal tumors for
the assertive management of tumor diagnoses and monitoring. First, it quantified the three-
dimensional size, volume and enhancement of renal tumors. Then, combined histograms of
curvature-related features and lesion intensity were used to classify the lesion types via random
sampling. This is, to our knowledge, the first semi-automated method that quantifies and
classifies renal tumors using serial enhancement.

II. Materials and Methods
A. Data and Materials

Contrast-enhanced CT data consisted of two serial acquisitions. The first image was obtained
before contrast administration. Then the patients were injected with 130ml of Isovue-300 and
a contrast-enhanced acquisition was completed during the portal venous phase. Data were
collected using LightSpeed Ultra and QX/i (GE Healthcare) and MX 8000 scanners (Philips
Healthcare). Image resolution ranged from 0.64×0.64 mm2 to 0.97×0.97mm2 in the axial plane
with 1 mm slice thickness.

Data from 40 patients with renal tumors were analyzed with a total of 116 lesions. Lesion
diameter varied from 5.3 to 43.3 mm. There were 41 cysts and 75 cancers: 22 Von Hippel-
Lindau (VHL) syndromes, 13 Birt-Hogg-Dube (BHD) syndromes, 19 hereditary papillary
renal cell (HPRC) carcinomas, and 21 hereditary leiomyomatosis and renal cell cancers
(HLRCC). Twelve lesions of mixed types were segmented manually by two observers.

The method for lesion analysis can be subdivided into two major steps: quantification and
classification via HCF.

B. Segmentation/Quantification
The segmentation and quantification of tumors follows the algorithm in [12]. Lesions were
segmented in the venous phase, when they appear better differentiated from the enhanced renal
tissue. Data from the two-phase scans are first automatically aligned by the image position
relative to the body. The pre-processing of images includes an intra-patient inter-phase
registration and data smoothing. The Perona-Malik anisotropic diffusion [16] was employed
for smoothing and the demons non-linear algorithm for registration [20]. The images before
contrast enhancement were registered to the venous phase data. Although the contrast-
enhanced CT data are intra-modal, the organ enhancement requires the use of a multimodal
similarity measure, e.g. mutual information [14].
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The segmentation of renal lesions used a combination of fast marching and geodesic active
contour level sets [5,17]. A fast marching level set initializes the segmentation expanding from
a seed point provided by the user. The sigmoid of the gradients computed from the portal venous
phase CT scan supplied the edge image. Then, a level set based on geodesic active contours
refines the fast marching segmentation [5]. The level set parameters were automatically
adapted to image characteristics for segmentation robustness [12].

The quantification allows computing linear and volumetric measurements of a lesion from its
segmentation. Moreover, the lesions’ volumes and CT values can be extracted for subsequent
classification.

C. Histograms of Curvature-related Features
Renal lesions appear to be spherical with smooth surfaces. However, their shape may be
influenced by the location in/on the kidney, the solidity of the tumor, and the properties of the
surrounding tissue. Most importantly, the CT values characterizing the lesion at different stages
of the contrast enhancement are key features for the characterization of tumors. Hence, we
propose computing histograms that combine morphological and multi-phase (4D) intensity
(including enhancement) features for each lesion to classify cysts and types of cancer.

Intuitively, curvature measures the extent that a geometric object deviates from flat. For a two-
dimensional iso-surface embedded in R3, the intersection of the surface with a plane containing
the normal vector and one of the tangent vectors at a point on the surface is a plane curve and
has a curvature called normal curvature. The maximum and minimum values of the normal
curvature at a point are called the principal curvatures, k1 and k2. The directions of the
corresponding tangent vectors are called principal directions. The Gaussian curvature is
defined as the product of the principal curvatures: kGaussian=k1k2. A surface is locally convex
when the Gaussian curvature is positive; it is locally saddle when the Gaussian curvature is
negative. The mean curvature is one-half of the sum of the principal curvatures: kmean=
(k1+k2)/2. Besides Gaussian and mean curvatures [8], shape index (SI) and curvedness (CV)
can also describe the shape of a lesion [22]. At a given voxel p, SI and CV features can be
defined as

where k1(p)>k2(p) are two principal curvatures.

To make full use of curvature information and capture internal texture information of renal
lesions, we utilize histograms of curvature features to characterize the tumors. In Table I, we
list seven curvature-related features (including the gradient magnitude) used in our HCF
method. Additionally, a feature based on the CT values (here CT value = Hounsfield units +
1024) was used to help to characterize lesions. For each feature, we choose a range and divide
it into 98 equally-spaced bins. Voxels whose feature values are smaller than the lower limit or
larger than the upper limit are counted in two additional bins. We concatenate the eight
histograms and get a feature vector with 800 dimensions for each lesion for each phase. The
size of the curvature computation kernel had σ=5.

Due to the large number of features and limited sample data, it is prohibitive to learn a good
decision boundary. Dimensionality reduction of data can assist training a good classifier in the
low dimensional space. Principal component analysis (PCA) is a classic technique for
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dimensionality reduction [7]. It is an orthogonal linear transformation in essence and projects
the data to a new coordinate system with low dimensions which can retain the variance of
original data to the maximum extent. Given a dataset which contains n samples X = {x1, x2,
…, xn}, PCA finds the first q principal axes wj, j = {1,…,q} which are orthonormal and can
retain variance of samples to maximal extent. The principal vectors are given by the q dominant

eigenvectors of the sample covariance matrix , where x̄ is the data
sample mean. The q principal components of the observed samples xn are given through linear
mapping tn = WT(xn − x̄), where W = {w1, w2,…, wq}

After PCA dimension reduction, the kidney data were mapped into a 10 dimensional linear
subspace according to the distribution of eigenvalues. Random sampling was used to train and
test the algorithm and a support vector machine [4] to perform the classification.

Comparative tests using only the mean CT value of a lesion at different enhancement phases
were performed, as in clinical practice [23]. In our approach we used CT values before contrast
enhancement and at portal venous phases.

III. Results
On registered data, the computer segmentations of lesions from the portal venous phase were
used to estimate the mean intensity of lesions in the non-contrast phase. Fig. 2 shows an
example of multi-phase segmentation of lesions. Although there is insufficient intensity
information for the direct segmentation of tumors from the non-contrast phase, our method
allows their accurate quantification.

The inter-observer manual measurements of lesions showed a volume overlap of 0.8±0.06,
while the overlaps between the computer segmentation and each of the observers were 0.8
±0.06 and 0.8±0.05 respectively.

Fig. 3 shows the distribution of SI as an example of feature selection for lesion classification.
Although a priori lesions are approximately spherical, this is not a generally valid assumption,
as seen in the rendering in Fig. 2. Note in Fig. 3 the similarities between SI distributions of
two cysts versus the morphological discrepancies between a benign and a malignant lesion.
Using HCF, these structural differences are quantifiable to classify between cysts and cancers.

Based on clinical observations of renal tumors in CT [23], we analyzed the patterns of tumor
enhancement to differentiate between different types of lesions. The enhancement analysis was
compared to the HCF classification, which encompassed both 4D intensity and morphological
information. Fig. 4 shows the receiver operating characteristic (ROC) curves for classifying
renal lesions. Each point on the ROC is the average result of 50 random tests. First, we separate
benign and malignant lesions. Then VHL/BHD cancers (typically solid tumors) are separated
from HPRC/HLRCC. Finally, all categories of cancers are classified into VHL, BHD, HPRC
and HLRCC. Areas under the curve (AUC) were computed for the results shown in Fig. 4 and
ROC curves using HCF were compared with those obtained from employing only the mean
CT values of lesions. Statistical results are presented in Table II. The sensitivity and specificity
of tumor classification are reported using HCF.

IV. Discussion
A method for the semi-automated quantification and classification of renal tumors was
presented, to assist in the clinical management of tumor diagnoses and monitoring. We
quantified the 3D size and volume of renal tumors with errors comparable to the manual inter-
observer variability. Additionally, our method analyzes the enhancement and morphology of
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segmented lesions via histograms of curvature-related features (HCF). The HCF method
utilizes the distributions of various morphological features inside the lesions combined with
multi-phase intensity (CT values) information. In order to capture the intrinsic dimensions of
the high-dimensional HCF feature, dimensionality reduction was employed after feature
extraction. Experimental results on a CTC dataset of 116 renal lesions showed that the HCF
method is superior to the typical clinical method based on mean CT values. Moreover, our
approach found quantifiable discrepancies between morphologies of benign and malignant
lesions.

Five types of renal lesions were analyzed: benign cysts, von Hippel-Lindau (VHL) syndromes,
Birt-Hogg-Dube (BHD) syndromes, hereditary papillary renal cell (HPRC) carcinomas, and
hereditary leiomyomatosis and renal cell cancers (HLRCC). The automated classification of
tumors showed significant separation between benign and malignant tumors and allows the
further classification into types of cancer. The differentiation between VHL and BHD
syndromes had the poorest results, as both types of cancer have similar appearance properties.

The automated analysis for renal tumor classification and shows great promise toward
computer-assisted kidney diagnosis. The method has the potential to allow the serial analysis
of tumors for disease monitoring, drug trials and noninvasive clinical surveillance.
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Fig. 1.
Multi-phase abdominal 4D CT data. 2D slices of 3D volumes: (a) before contrast and (b) at
portal venous enhancement phase.
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Fig. 2.
Segmentation of renal lesions. The top row shows a VHL tumor segmented in the portal venous
phase and its 3D rendering. The bottom row presents the segmentation from the non-contrast
data. Note the irregular shape of this cancer.
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Fig. 3.
Distribution of shape indexes between two benign lesions (left) and a benign and malignant
lesion (right).
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Fig. 4.
Classification ROC curves using HCF vs. mean multi-phase CT values.

Linguraru et al. Page 10

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Linguraru et al. Page 11

TABLE I

Features used by the HCF descriptor

Lower limit Upper limit

Shape index 0 +1
Curvedness 0 +1
Gaussian curvature −1 +1
Mean curvature −1 +1
Max curvature −1 +1
Min curvature −1 +1
Gradient magnitude 0 300
CT value 0 1500

Lower and upper limits are listed for each feature used in the histograms. These limits are selected according to the distributions of features. The number
of bins used for each feature was 100.
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TABLE II

ROC analys for the classification of renal lesions

AUC-HCF AUC-CT SE (%) SP (%)

Benign vs. malignant (p=
0.45)

0.99 0.99 97.8 93.7

VHL/BHD vs. HPRC/
HLRCC (p<0.001)

0.99 0.96 97.7 93.8

VHL vs. BHD (p<0.001) 0.61 0.5 51.2 61.4
HPRC vs. HLRCC (p<0.001) 0.9 0.77 80 83.7

Areas under the curve (AUC), sensitivity (SE) and specificity (SP) values are presented for the ROC curves used to classify renal tumors. SE and SP
reflect the best results obtained using HCF. p values were computed between comparative ROC curves using HCF or mean CT values.
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