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shift assays and luciferase reporter constructs.  Results:  A 
significant increase in homozygosity for the minor allele was 
found in patients with SZ (genotype distribution  �  2  = 7.32,
p = 0.03) but not in BD (genotype distribution  �  2  = 0.52, 
p = 0.77). Molecular studies demonstrated modest, but sta-
tistically significant allele-specific differences in protein 
binding and promoter function.  Conclusion:  The findings 
suggest that homozygosity for rs725588 could be a risk ge-
notype for SZ.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Neuregulin 1 ( NRG1 ) was first identified as a candi-
date gene for schizophrenia (SZ) in Icelandic and Scottish 
families several years ago  [1, 2] . Since then, the associa-
tion has been replicated in other populations  [3–11] . 
However, some studies fail to support a role for  NRG1 , 
consistent with the heterogeneity of SZ  [12–14] . Most of 
the positive studies point to associations within a block 
of markers in the 5 �  end of the gene referred to as the Ice-
landic haplotype.
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 Abstract 

  Background/Aims:  Neuregulin 1 ( NRG1 ) is a positional can-
didate gene in schizophrenia (SZ). Two major susceptibility 
loci in the  NRG1  gene approximately one million nucleotides 
apart have been identified in genetic studies. Several candi-
date functional allelic variants have been described that 
might be involved in disease susceptibility. However, the 
findings are still preliminary. We recently mapped active 
promoters and other regulatory domains in several SZ and 
bipolar disorder (BD) candidate genes using ChIP-chip (chro-
matin immunoprecipitation hybridized to microarrays). One 
was the promoter for the  NRG1  isoform,  SMDF , which maps 
to the 3 �  end of the gene complex. Analysis of the SNP data-
base revealed several polymorphisms within the approxi-
mate borders of the region immunoprecipitated in our ChIP-
chip experiments, one of which is rs7825588.  Methods:  This 
SNP was analyzed in patients with SZ and BD and its effect 
on promoter function was assessed by electromobility gel 
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  In addition, investigators have provided evidence for 
associations to distal  NRG1  markers in SZ,  � 1 Mb down-
stream, in Asians, African-Americans and some Euro-
pean populations  [4–6, 8, 10, 15–21] . This region contains 
the promoter for the heregulin isoforms, which map to 
 � 32,525,000, and the sensory and motor neuron-derived 
factor (SMDF) isoform at  � 32,624,000.

  The various isoforms constituting the NRG1 family – 
at least 15 have been described – influence neurite out-
growth, adhesion, apoptosis, neuron migration, astro-
cyte differentiation and survival of oligodendrocytes by 
activating the receptor tyrosine kinase ErbB family  [20, 
22–26] . NRG1 also has a post-development effect on neu-
ral function by mediating signaling pathways at NMDA 
receptor-rich postsynaptic densities  [27] . There is also ev-
idence that ErbB4 increases AMPA receptor-mediated 
synaptic currents, CA1 dendritic spine density and GABA 
release in response to depolarizing concentrations of po-
tassium  [28] . NRG1 proteins also increase  �  7  nicotinic 
acetylcholine receptors (nAchR), and modulate both hip-
pocampal GABAergic interneurons and CA1 neurons  [6, 
29, 30] . A decrease in  �  7  nAchR expression correlated 
with an  NRG1  promoter SNP (rs6994992) has been de-
tected in the dorsolateral prefrontal cortex of SZ patients 
 [31] .

  Mouse knockout studies also support a role for  NRG1  
in SZ pathogenesis. Mice heterozygous for either  Nrg1  or 
 ErbB4  have a deficit in prepulse inhibition, an SZ endo-
phenotype  [1] .

  Although  NRG1  has been viewed as an SZ candidate 
gene since 2002, the functional allelic variants responsi-
ble for the positive association signals have not yet been 
unequivocally identified. However, several candidates 
have been targeted, including SNP8NRG243177, which 
maps to the Icelandic haplotype that appears to affect 
 NRG1  type IV expression and is associated with cortical 
activation  [11, 32–35] . Recently, homozygosity for the mi-
nor allele of a nonsynonymous SNP at 32,572,900 
(rs3924999) has been found to be associated with pre-
pulse inhibition defects in patients with SZ, although the 
sample size was relatively small  [9] . In addition, a muta-
tion in the Ig-like domain, which cooperates with the 
EGF-like domain to bind ErbB receptors, was associated 
with impaired latent inhibition  [36, 37] .

  Although these studies point to several functional 
SNPs as promising candidate alleles, it is likely, given the 
size of the  NRG1  gene and the multitude of positive as-
sociation and linkage findings in various populations to 
different portions of the  NRG1  gene locus, as well as the 
small effect sizes so far found in suspected candidate 

variants and haplotypes, that many disease-causing func-
tional mutations exist in the gene. If so, genetic variation 
in regulatory domains would be reasonable places to 
search for novel functional alleles.

  We have recently begun to analyze  NRG1  and other SZ 
and BD candidate genes using chromatin immunopre-
cipitates hybridized to microarrays – ChIP-chip – to 
identify potential regulatory elements. We screened tiled 
arrays containing the entire  NRG1  gene locus with im-
munoprecipitates made from human fetal brain chroma-
tin enriched for histone H3 acetylated at lysine 9 (H3K9Ac) 
and monomethylated at lysine 4 (H3K4me1), which are 
enriched in promoters and enhancers  [38–42] . In so do-
ing, we identified several potential regulatory domains in 
 NRG1, DISC1, JARID2, DTNBP1, PDE4B, DAO, DAOA 
 and the  COMT/ARVCF  locus on 22q11 [Pedrosa et al., in 
press]. One was the promoter of the  NRG1  isoform, SMDF 
(also known as type III neuregulin). We analyzed an SNP 
in this region, rs7825588, in a cohort of patients with SZ 
and BD, and carried out molecular studies to assess its 
role in promoter function. Evidence is presented showing 
that homozygosity for the minor allele associates with 
SZ.

  Patients and Methods 

 Subjects 
 Patients with BD from the Czech Republic were unrelated sub-

jects recruited from in- and outpatient units at the Prague Psychi-
atric Center, Psychiatric Hospital Bohnice, Psychiatric Clinic
(n = 167). Patients were diagnosed on the basis of either a Schedule 
for Affective Disorders and Schizophrenia-Lifetime Interview
(n = 68) or by unstructured clinical interview modified from this 
Schedule using research diagnostic criteria for the diagnosis of 
either BD I or II (n = 99)  [43, 44] . Control subjects from the Czech 
Republic were blood bank donors and patients hospitalized for 
medical reasons (n = 211). Seventy-one control subjects did not 
have underlying psychiatric illness based on a brief psychiatric 
clinical interview. In the remaining controls, all from blood bank 
donors, no formal testing procedure was used to screen for per-
sonal history of mental illness. However, the blood bank only ac-
cepted subjects who were not being treated for a psychiatric illness 
and had no family history of mental illness.

  Patients with SZ (n = 176) were recruited from the Rockland 
State Hospital. Diagnosis was established by research diagnostic 
criteria using a Structured Clinical Interview for DSM or clinical 
interview. US controls (n = 175) were Caucasian blood bank do-
nors. No formal testing procedure was used to screen these sub-
jects to rule out individuals who had a personal or family history 
of mental illness, although the frequency of BD and SZ in a popu-
lation of blood donors would be expected to be  ̂  1% for each. All 
patients signed an informed consent approved by the Ethical 
Committee on Clinical Investigation (Czech samples) and the Al-
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bert Einstein College of Medicine Institutional Review Board (US 
samples). In the SZ sample, 31% were female, with a mean age of 
42  8  10 years. In the control group for this sample, 45% were fe-
male, with a mean age of 48  8  13 years. In the Czech bipolar co-
hort, 54% were female, with a mean age of 49  8  17 years, while 
in the control group for this samples, 40% were female, with a 
mean age of 47  8  16 years.

  Polymorphism Detection and Genotyping 
 DNA was genotyped for rs7825588 using the TaqMan allelic 

discrimination technique according to the manufacturers in-
structions. Samples were amplified with PCR in 384-well plates 
using an Applied Biosystems Model 7900HT thermal cycler. Sam-
ples were genotyped twice. 

 Electromobility Gel Shift Assay (EMSA) 
 EMSA was performed according to published procedures  [45] . 

Briefly, double-stranded oligonucleotide probes containing the 
polymorphic variants were constructed. The primers were an-
nealed and end-labeled with  32 P deoxynucleotides using Klenow 
polymerase to fill in 5 �  overhangs, which generated double-
stranded probes that were used for protein binding experiments. 
Nuclear protein extract was isolated from fetal (whole brain) and 
adult brains (parietal lobe). Protein (10  � m) was mixed with probe 
(1 ng,  � 10 6  counts) and incubated for 20 min at room tempera-
ture. Probes containing the different alleles were labeled simulta-
neously using the same amount of DNA and radioactive nucleo-
tides. DNA-protein complexes were resolved by electrophoresis in 
a non-denaturing gel system containing 6% acrylamide and 1.6% 
glycerol. Specificity of the resulting binding activity was demon-
strated by competition with non-radioactive probe added in 100-
fold excess. Autoradiograms in the linear range of exposure were 
scanned and quantified by normalizing against unused probe. 
Differences between the two alleles for each sample were analyzed 
using a paired t test (two tailed).

   EMSA  primers:
  SMDF-forward G agtgtgggtagagagc   G gggagtgggggtt 
  SMDF-reverse G ccaacccccactccc C gctctctacccaca 
  SMDF-forward A agtgtgggtagagagc A gggagtgggggtt 
  SMDF-reverse A ccaacccccactccc T gctctctacccaca

  Cloning of SMDF Promoter and Transfection in 
Neuroblastoma Cells 
 A 754-bp fragment from the SMDF promoter region contain-

ing the two different rs7825588 alleles (A or G) was cloned into 
the pGL2 basic plasmid (Promega), which contains the luciferase 
reporter gene. These were introduced into SH-SY5Y neuroblas-
toma cells using the liposomal transfection reagent, GeneCarrier-
2 (3  � g/ � g DNA; Epoch Biolabs; Sugar Land, Tex., USA). Follow-
ing transfection, the cells were incubated for another 24 h, after 
which they were treated with 5  �  M  retinoic acid. Cells were har-
vested 24 h later and assayed for luciferase activity using a lucif-
erase assay kit (Promega catalogue No. E4030); luminescence was 
measured in triplicate using a luminometer (Berthold Lumat 
LB9501). Experiments were carried out in three independent 
transfection assays. Prior to each transfection, plasmid integrity 
with respect to the relative amount of supercoiled material pres-
ent in the preparation was separated by gel electrophoresis and 
quantified.

  Statistical Analysis 
 A statistical program, StatXACT-5 (Cytel Software, Cam-

bridge, Mass., USA), was used to compute the  �  2  and Fisher sta-
tistics. The level of significance was set at p  !  0.05. Hardy-Wein-
berg equilibrium (HWE) was computed using a goodness-of-fit 
 �  2  determination.

  Results 

 Genotyping Analysis of rs7825588 
 In a previous ChIP-chip analysis of several candidate 

genes for SZ and BD using antibodies to histone H3 acet-
ylated at lysines 9 and 14 (H3K9/14Ac) and monometh-
ylated at lysine 4 (H3K4me1), a number of active pro-
moters and putative enhancers were identified in fetal 
brain (in press). One was on chromosome 8 between
 � 32,623,000–32,626,000, which contains the promoter 
for the  NRG1  isoform  SMDF  (transcription start site, 
32,624,071)  [46] . The ChIP-chip peak encompassed the
TATA-less and GC-rich promoter, the 5 �  untranslated re-
gion, and exon 1, and includes 10 conserved transcription 
factor binding sites (TFBS track, UCSC); TFBS are often 
found in conserved regulatory elements. Among the 
TFBS in this promoter are several that are developmen-
tally regulated, including the homeodomain-containing 
transcription factor Nkx and the forkhead transcription 
factor Fox04, as well as Cdc5, which has been implicated 
in dopaminergic and glutamatergic signaling  [47] . Six 
known SNPs are found within the approximate boundar-
ies of the peaks, including rs7825588 at 32,623,942, which 
is 128 bp upstream of the  SMDF  transcription start site 
and 837 bp from the translation start, rs4389886, a rare 
variant in the 5 �  UTR, and three relatively rare nonsyn-
onymous SNPs found primarily in African-Americans 
[rs34918173 (A34E); rs34822181 (P127A); rs35641374 
(L133V)], and one, rs3735774 (A46G), found in Asian 
populations. In this study, we genotyped a cohort of Eu-
ropean Caucasian patients from the New York Metropol-
itan area and controls, as well as a cohort of patients with 
BD from the Czech Republic and controls for rs7825588. 
We chose this SNP primarily because it is the most infor-
mative in our population. In addition, a potential binding 
site for the MZF1 transcription factor is found in the G-
allele for rs7825588 (TFSEARCH)  [48] .

  In the BD and control cohorts from the Czech Repub-
lic, allele and genotype frequencies were not significantly 
different ( table 1 ), and the frequencies were similar to 
those reported for the HapMap-CEU population. In ad-
dition, the genotype distribution did not deviate from 
that expected in the sample assuming HWE. By contrast, 
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there was a significant difference in the genotype distri-
bution between patients with SZ and controls in the US 
sample ( �  2  = 7.32, p = 0.03), although there was no sig-
nificant difference in allele frequencies. When a Bonfer-
roni correction is applied to the data to account for mul-
tiple testing (analysis of SZ and BD data sets), the asso-
ciation falls just short of significance at the p = 0.025 
level (0.05 divided by 2 tests). There was a significant de-
viation from the HWE in the patient sample due to the 

excessive number of homozygotes for the minor allele 
(HWE, p = 0.04). Since deviation from HWE can be 
caused by genotyping error, we reanalyzed the samples; 
no genotyping errors were detected. Copy variation is an-
other cause for HWE deviation. However, none has been 
reported in this region by array analysis (Database for 
Genomic Variants: http://projects.tcag.ca/variation/) or 
by SNP arrays in  1 1,000 controls [Dr. Tamim Shaikh, 
submitted and pers. commun.].

  EMSA 
 As a first step towards determining whether rs7825588 

has functional significance, EMSA experiments were 
carried out. Crude nuclear protein extracts from fetal 
brain samples were annealed to allele-specific, double-
stranded oligonucleotide probes and separated by non-
denaturing gel electrophoresis. As seen in  figure 1  ,  a 
DNA-protein complex was detected in the 9-week-old fe-
tus for both the A- and G-containing probes [ fig. 1a , 
bands in the first lanes of each set (A, G); bottom bands 
in  fig. 1b  show an unused probe]. The binding was spe-
cific since the signal was markedly attenuated when un-
labeled competitor was added during the annealing phase 
(last two lanes labeled 9 weeks). As seen in  figure 1 , there 
is a decrease in signal intensity during fetal development 
(15–24 weeks) in adult brain tissue (adult lanes). We 

Table 1. Analysis of SMDF promoter SNP rs7825588

Genotypes Alleles

GG GA AA G A

Controls 131 (0.76) 42 (0.24) 0 304 (0.88) 42 (0.12)
SZ 129 (0.77) 32 (0.19) 6 (0.04) 290 (0.86) 44 (0.13)
Controls 172 (0.82) 35 (0.17) 2 (0.01) 379 (0.91) 39 (0.09)
BD 127 (0.79) 31 (0.19) 2 (0.01) 285 (0.89) 35 (0.11)

BD vs. controls: allele frequency, �2 = 0.52, p = 0.47; genotype 
distribution, �2 = 0.52, p = 0.77; HWE controls, p = 0.69; BD, p = 
1.0. SZ vs. controls: allele frequency, �2 = 0.16, p = 0.68; genotype 
distribution, �2 = 7.32, p = 0.03; HWE controls, p = 0.08; SZ, p = 
0.04.
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  Fig. 1.  Assessment of rs7825588 function by EMSA. Crude nucle-
ar extracts from fetal brains and an adult were combined with 
labeled oligonucleotides containing rs7825588 (A is minor allele; 
G is major allele).  a  DNA-protein complexes (exposure time: 8 h). 
 b  Unused probe (exposure time: 30 s). Last two lanes show com-
petition experiment with 100-fold excess of unlabeled probe add-
ed to protein extracted from 9-week brain tissue. There is a 30.3% 
decrease in signal intensity for the oligonucleotide probe contain-
ing the minor allele (A) compared with the G allele (p = 0.0271,
t test). 
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  Fig. 2.  Assessment of rs7825588 using luciferase promoter assay. 
Fragments (754 bp) from the SMDF promoter region containing 
the two different rs7825588 alleles (A or G) were cloned into 
pGL2. Low basal activity for pGL2 is seen on the left. Luciferase 
activity for promoters containing the ‘A’ and ‘G’ alleles are shown. 
Experiments were carried out 3 times on separate cell passages in 
triplicate. Means  8  SE.  *  p = 0.02 vs. G-containing promoters 
(paired t test; two tailed). 
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scanned bands in the linear range of exposure and found 
a 30.3% decrease in signal intensity for the oligonucle-
otide probe containing the minor allele (A) compared 
with the G-allele (p = 0.0271, t test).

  Reporter Gene Transfection Assay to Assess rs7825588 
Function 
 In order to determine whether the different rs7825588 

alleles affect SMDF promoter activity, a 754-bp segment 
of the promoter containing one or the other allele was 
cloned into a luciferase reporter plasmid and transfected 
into SH-SY5Y neuroblastoma cells. As seen in  figure 2 , 
promoter activity increased  � 17- to 18-fold compared 
with that found in pGL2-basic, which has low intrinsic 
promoter activity. A 9.8% increase in promoter activity 
was detected for the minor allele. Although the difference 
between the two alleles was small, it was statistically sig-
nificant (two-tailed paired t test, p = 0.02 for fold increase 
in A-allele compared with G-allele).

  Discussion 

 The different isoforms produced by transcription ini-
tiation at various  NRG1  promoters have distinct roles in 
neuronal and glial function. What accounts, therefore, 
for the positive association findings spanning the entire 
 � 1.2-Mb  NRG1  gene locus, which suggest that several iso-
forms may influence disease pathogenesis? The initial ge-
netic finding, subsequently confirmed by several groups, 
showed an association to the Icelandic haplotype, which 
encompasses the GGF2 (glial growth factor-2 or type II 
neuregulin) promoter, the most 5 �   NRG1  coding element. 
However, more distal association signals have been iden-
tified in other studies  � one million bases 3 �  to the Ice-
landic haplotype, which incorporates the promoters and 
5 �  exons for several isoforms, including  SMDF . One pos-
sibility is that despite distinct roles for  NRG1  isoforms
in synaptogenesis, neuronal development, migration, 
Schwann cell and oligodendrocyte differentiation and 
myelination, there is convergence on a common func-
tional or structural pathway. One possibility is glutama-
tergic signaling mediated by the NMDA complex, which 
may be disrupted in SZ  [49–53] . Thus, genetic variation 
affecting any one of several different isoforms could con-
ceivably have a common effect on glutamate transmis-
sion and behavioral phenotype, albeit through different 
molecular pathways.

  Thus, our finding of a modest association between a 
functional  SMDF  promoter variant in SZ is compatible 

with the positive association signals that implicate more 
5 �  regions of the  NRG1  gene complex. In addition, our 
findings could explain other positive association signals 
that point to this  NRG1  region. In 2005, Petryshen et al.  
[6] , for example, demonstrated an association to several 
markers in the 3 �  end of  NRG1 , including one, rs2466058, 
which is only  � 2 kb from rs7825588. Also, in 2003, Yang 
et al.  [4]  identified several individual SNPs and 3 �  hap-
lotypes in a Han Chinese SZ population, including 
rs2954041, which is only  � 18 kb from the  SMDF  promot-
er. Finally, in 2007, Thomson et al.  [10]  found haplotypes 
associated with both SZ and BD in a Scottish cohort that 
incorporates the  SMDF  promoter region. These findings 
could be due to linkage disequilibrium with rs7825588. 
Our results are also compatible with the finding that dif-
ferences in leukocyte  SMDF  expression exist in SZ-dis-
cordant siblings  [6] .

  SMDF regulates Schwann cell membrane growth and 
differentiation, and triggers myelination in sensory and 
motor neurons  [23, 54] . Recent work suggests that SMDF 
influences myelination in the CNS too  [55] . Altered 
SMDF expression and myelination in the CNS in SZ 
would be compatible with imaging studies, which show 
abnormalities in subcortical white matter density in pa-
tients compared with controls  [34, 56] . In addition, oligo-
dendrocyte and myelin abnormalities have been suggest-
ed to occur in SZ on the basis of array expression, in situ 
hybridization and morphological studies  [7, 57–60] . A 
role for SMDF is also consistent with recent findings 
showing that mice heterozygous for a disruption in type 
III  Nrg1  have enlarged lateral ventricles, decreased den-
dritic spine density on subicular pyramidal neurons, hy-
pofunction in the medial prefrontal cortex, impaired 
performance on delayed alternation memory tasks and 
deficits in prepulse inhibition  [61] . Finally, SMDF was 
found to affect  �  7  nAChR-mediated synaptic responses 
and targeting of the receptor on presynaptic membranes; 
 �  7  nAChR affects cognitive function and has been impli-
cated in SZ  [62–64] . Stimulation of NRG1 type III in-
creased the surface levels of axonal  �  7  nAChR from a pre-
existing intracellular pool via a phosphatidylinositol 3-
kinase signaling pathway  [63] . Interestingly, treatment 
with a partial  �  7  nAChR agonist was recently shown to 
improve negative symptoms and working memory in a 
phase 2 clinical trial  [65] .

  These studies and our findings suggest that SMDF 
dysregulation may be an underlying pathogenic process 
in a subset of patients with SZ.

  A significant limitation of this study is the relatively 
small sample size available to us for the case-control as-
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sociation analysis. Thus, type I error is a distinct possibil-
ity and the findings need to be replicated in a larger data 
set. In addition, more extensive analysis of rs7825588 is 
indicated. The EMSA findings strongly suggest that bind-
ing to an unknown protein is affected by the polymor-
phism. However, the promoter assay was equivocal show-
ing statistically significant, albeit marginal allele-specific 
differences. It should be noted that while promoter activ-
ity was higher with the disease-associated ‘A’ allele, there 
was a decrease in signal in the DNA-protein complex seen 
on EMSA. One possibility is that the unknown protein 
binding to the SNP may be a transcriptional repressor 
(i.e. less binding, higher transcription). Another is that 
the minor allele leads to an increase in transcription in 
neuroblastoma cells, but a decrease in the developing 
brain. The latter is more consistent with the findings by 
Chen et al.  [61] , who showed that a decrease in type III 
expression in a knockout model had behavioral and 
structural changes that mimicked clinical SZ.

  Despite these limitations, the findings presented here, 
as well as other studies implicating a defect in myelina-
tion in SZ, suggest that rs7825588 and other genetic vari-
ants affecting  SMDF  expression should be viewed as 
plausible candidates in SZ susceptibility.
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