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We previously reported that Dot1a�AF9 complex represses
transcription of the epithelial Na� channel subunit � (�-
ENaC) gene in mouse inner medullary collecting duct
mIMCD3 cells and mouse kidney. Aldosterone relieves this
repression by down-regulating the complex through various
mechanisms. Whether these mechanisms are sufficient and
conserved inhumancells or canbe applied to other aldosterone-
regulated genes remains largely unknown.Herewedemonstrate
that human embryonic kidney 293T cells express the three
ENaC subunits and all of the ENaC transcriptional regulators
examined. These cells respond to aldosterone and display ben-
zamil-sensitive Na� currents, as measured by whole-cell patch
clamping. We also show that AF17 and AF9 competitively bind
to the same domain of Dot1a in multiple assays and have antag-
onistic effects on expression of an �-ENaC promoter-luciferase
construct. Overexpression of Dot1a or AF9 decreased mRNA
expression of the ENaC subunits and their transcriptional regu-
lators and reducedbenzamil-sensitiveNa� currents. AF17over-
expression caused the opposite effects, accompanied by redirec-
tion of Dot1a from the nucleus to the cytoplasm and reduction
in histone H3 K79 methylation. The nuclear export inhibitor
leptomycin B blocked the effect of AF17 overexpression on H3
K79 hypomethylation. RNAi-mediated knockdown of AF17
yieldednuclear enrichment ofDot1a andhistoneH3K79hyper-
methylation. As with AF9, AF17 displays nuclear and cytoplas-
mic co-localization with Sgk1. Therefore, AF17 competes with
AF9 to bind Dot1a, decreases Dot1a nuclear expression by pos-
sibly facilitating its nuclear export, and relieves Dot1a�AF9-me-
diated repression of �-ENaC and other target genes.

Failure ofNa� homeostasis contributes to hypertension, car-
diovascular disease, and respiratory diseases such as cystic
fibrosis (1). The importance of the epithelial Na� channel

(ENaC)3 in the regulation of salt homeostasis and blood pres-
sure is demonstrated by the association of gain- and loss-of-
function mutations in its subunits with genetic hypertensive
and hypotensive diseases, such as Liddle syndrome (2) and
pseudohypoaldosteronism type 1 (3). ENaC consists of three
partially homologous subunits (�, �, and �), and their expres-
sion on the cell surface constitutes the rate-limiting step in
active Na� and fluid absorption in the apical membrane of salt-
absorbing epithelia. Aldosterone treatment or hyperaldoste-
ronism caused by Na� limitation induces �-ENaC transcrip-
tion in the aldosterone-sensitive distal nephron. In these cells
synthesis of �-ENaC is believed to be the rate-limiting step in
Na� channel formation. As a major regulator of epithelial Na�

absorption, aldosterone imposes a tight and complex regula-
tion of ENaC atmultiple levels including transcription, traffick-
ing to the cell membrane, and degradation and acts at least
partially through�-ENaC induction in the renal collecting duct
(4, 5).
We recently identified and characterized a new aldosterone

signaling network involving the murine disruptor of telomeric
silencing splice variant “a” (Dot1a) (6), putative transcription
factor AF9, and serum- and glucocorticoid-inducible kinase
isoform 1 (Sgk1). Under basal conditions, Dot1a and AF9 form
a repression complex that binds directly or indirectly to the
�-ENaC promoter, catalyzes H3 K79 hypermethylation at the
promoter, and represses �-ENaC transcription. Aldosterone
relieves this repression by inhibiting Dot1a and AF9 expression
and by weakening their interaction via Sgk1-mediated AF9
phosphorylation (7–9). Because Dot1a and AF9 are highly con-
served and widely expressed and appear to be involved in tran-
scriptional regulation of other genes (7, 8), we hypothesized
that this new aldosterone signaling network exists in human
cells and that additional protein-protein interactions might
regulate the Dot1a�AF9 complex and, thus, the transcription of
ENaC and their transcriptional regulators in an aldosterone-
dependent or -independent manner.
Here, we report the characterization and use of human

embryonic kidney (HEK) 293T cells as a model system to study
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this new aldosterone-signaling network. We provide evidence
showing a novel protein-protein interaction between Dot1a
and AF17 that, like AF9, is a mixed lineage leukemia (MLL)
fusion partner involved in acute myeloid leukemia (10, 11). We
also define AF17 as a new regulator of Dot1a H3 K79 methyl-
transferase activity and, thus, basal transcription of �-ENaC
and other aldosterone-regulated genes.

EXPERIMENTAL PROCEDURES

Reagents—LipofectamineTM 2000 reagent (Invitrogen), Mil-
licell inserts (12 mm in diameter, 0.45 �M pore size, Millipore),
and antibodies against dimethyl histone H3 K79, dimethylated
histone H3 K9 (Upstate), trimethyl histone H3 K79 (Abcam),
GFP, red fluorescence protein (RFP; Clontech), and FLAG
(Sigma)were purchased and used according to themanufactur-
er’s instructions. pGL3Zeocin-1.3-ENaC, pDsRedmonomer-
V5, and pCDNA3.1 derivatives expressing untagged Dot1a and
constructs expressing various Dot1a mutants as GAL4 BD
fusions for yeast or mammalian two-hybrid assays as well as
those for GFP-Dot1a or glutathione S-transferase (GST)-Dot1a
fusions have been described previously (6–9). Human AF17
and its mouse counterpart are equally competent for interact-
ing with Dot1a (see below). For simplicity, AF17 was used to
designate these two proteins throughout the manuscript
unless otherwise stated. pCDNA-AF17 and pFLAG-AF17
expressing untagged or FLAG-tagged human AF17 were
kindly provided by Yoichi Furukawa (12). A 3.2-kb EcoRI/XhoI
fragment encoding full-length human AF17 was isolated
from pCDNA-AF17 and cloned into pGADT7, pCMV-AD,
pGEX6P-1, and pDsRed-monomer-V5 at EcoRI/XhoI sites for
expression of AF17 as GAL4 AD, GST, or RFP fusions, respec-
tively. The cDNA insert expressing mouse AF17 aa 635–786
(referred to as AF17 635–786 hereafter) was released from the
pGAD10-based isolates and cloned into pGADT7 at the EcoRI
site in either forward or reverse orientations. The former was
partially digested with EcoRI/XhoI to release the insert. The
insert was subsequently cloned into various vectors for expres-
sion of AF17 635–786 as FLAG, GST, or GAL4 AD fusions.
Two mouse AF17 target sequences (siRNAi#10, CCCGCTG-
GTCTACTGCGAT, encoding aa 21–26; siRNAi#11, AAGCT-
TGCTATGGCATCGTCC, encoding aa 36–42) were identical
to the corresponding regions of human AF17 except for one
mismatch in siRNA#11. They were annealed and cloned into
pSilencer-2.1-U6-Hygro (Ambion) at BamHI-HindIII accord-
ing to the manufacturer’s instructions. The Sgk1 coding region
was amplified with pCDNA3.1-Sgk1 as template and cloned
into pEGFPC2 at EcoRI/SalI to generate pGFP-Sgk1. pGFP-
AF17 and pGFP-AF9 were created by replacing the Sgk1 frag-
ment with the EcoRI/XhoI fragments encoding these proteins.
The sequences of all inserts in the constructs were verified by
DNA sequencing.
Cell Culture, Transient or Stable Transfections, and RNA

Interference—HEK 293T cells were maintained with Dulbecco’s
modifiedEagle’smedium/F-12plus 10% fetal bovine serum.Tran-
sient transfections were performed using LipofectamineTM 2000
reagent with cells either cultured on tissue culture plates (for
immunoprecipitation/immunoblot (IB) experiments (13–16)),
on cover slips (for confocal or epifluorescencemicroscopy (17–

19)), or on Millicell inserts (for real-time RT-qPCR experi-
ments). To knock down AF17 mRNA levels by RNA interfer-
ence, RNA#10, RNA#11, and the parent vector pSilencer-2.1-
U6-Hygro, as a negative control, were stably transfected into
293T cellswith selection by hygromycin (500 g/ml) as described
(8). Briefly, all colonies resistant to the antibiotics were pooled
and expanded without the process of clonal selection on the
basis of AF17 mRNA expression.
Whole-cell Patch Clamping—Whole-cell patch clamping of

HEK 293T cells grown on poly-D-lysine-coated coverslips was
performed as described with minor modifications (20–23). To
determine the effects of aldosterone, cells were treated with
either 1 �M aldosterone or 0.01% ethanol (a vehicle control) for
24 h. For some experiments, 24 h after transfection with GFP as
vector control or various GFP fusions, fluorescence-positive
cells were selected for recordings. The extracellular solution for
whole-cell recordings consisted of 150 mM NaCl, 0.1 mM KCl,
0.8 mMMgCl2, and 10 mMHEPES, adjusted to a pH of 7.4. The
pipette solution contained 150mMNaCl, 6.2mMMgCl2, 10mM

HEPES, and 10 mM EGTA, adjusted to a pH of 7.2, and elec-
trodes had resistances of 4–6 megaohms after filling. After
making whole-cell contact, cells were held at �40 mV, and 1-s
voltage ramps from �80 to �80 mV were delivered once every
5 s. Once a stable base line was achieved, standard extracellular
solution containing 10�Mbenzamil was superfused. ENaC cur-
rents are defined as the difference between currents obtained in
the absence and presence of 10 �M benzamil as obtained by
digital subtraction. Under these recording conditions, the cur-
rents showed strong outward rectification, and current density
was quantified using currents measured at �80 mV. Quantifi-
cation of evoked currents was done using Clampfit Version 9.0
(Molecular Devices).
Yeast and Mammalian Two-hybrid Screen, Immunoblot,

Immunoprecipitation, GST Pulldown, and Real-time RT-qPCR—
These assays were conducted according to our published pro-
tocols (6, 9).
Epifluorescence and Confocal Microscopy—HEK 293T cells

cultured on coverslips were transfected with various plasmids
as indicated in figure legends. 24 h later cells were analyzed
either by epifluorescence or confocal microscopy. Cells ex-
pressing GFP-Dot1a, RFP-AF17, or both were categorized as
cytoplasmic, nuclear, or both depending on the location of the
fusion proteins detected by epifluorescence microscopy (24).
For confocalmicroscopy, cellswere rinsed briefly in phosphate-
buffered saline and fixed with 1% fresh prepared paraformalde-
hyde for 30 min at room temperature. The nucleus was stained
with 300 nM 4�,6-diamidino-2-phenylindole (DAPI, Sigma) for
15 min at room temperature. Coverslips were mounted onto
microscope slides with Vectashield mounting medium (Vector
Laboratories). A confocal microscope (Olympus FV1000) was
used to observe the specimens and take images. Excitation
wavelengths for DAPI, GFP, and RFP are 405, 488, and 543 nm,
respectively. Sequential scanning mode was used to eliminate
the possibility of cross-talk between channels.
Statistical Analysis—All comparisons were conducted using

unpaired Student’s t test or one-way analysis of variance. p �
0.05 was considered significant.
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RESULTS

ENaC Subunits and All of Their Transcriptional Regulators
Examined Are Expressed and Regulated by Aldosterone in HEK
293TCells—Wehypothesized that themechanisms controlling
�-ENaC transcription by the Dot1a�AF9 complex defined in
our previous work using mIMCD3 cells and mouse kidney as
model systems are applicable to human kidney epithelial cells.
To test this hypothesis, we chose 293T cells because they are
derived from human embryonic kidney, easily transfected, and
widely used in many types of experiments. Several groups have
used 293T cells overexpressing ENaC subunits to study the reg-
ulation of ENaC cell surface expression, ubiquitination, and
activity (13, 19, 25). However, to our knowledge the basal
expression of ENaC subunits and their regulatory factors such
as SGK1,MR, hDot1L, or AF9 and the effects of aldosterone on
their expression have not been documented in 293T cells. As
shown in Fig. 1, RT-PCR of total RNAs isolated from 293T cells
revealed detectable transcripts of ENaC subunits (�, �, and �)
and their regulators SGK1, MR, hDot1L, AF9, and AF17 (see
below). Among the three other aldosterone-regulated genes
(CTGF, preproendothelin-1, and period) that were up-regu-
lated by aldosterone in mIMCD3 cells, only period mRNA was
not expressed. Real-time RT-qPCR of 293T cells treated with
aldosterone (1�M, for 24 h) led to a 400, 100, and 800% increase
in�-,�-, and�-ENaCmRNA, respectively, comparedwith con-
trol (Fig. 1B). Similarly, aldosterone increased SGK1 and MR
mRNA levels to more than 1000 and 200% of control (Fig.
1C). As expected, aldosterone decreased hDot1L and AF9
mRNA expression to about 60% of control and had little
effect on AF17 mRNA abundance (Fig. 1C). The hormone
also significantly induced mRNA for preproendothelin-1 but
not CTGF (Fig. 1D). In brief, 293T cells display expression pro-
files of ENaC subunits and their positive and negative regula-
tors very similar to the corresponding ones in mIMCD3 cells,
suggesting that these cells might share the same or a similar
aldosterone signaling network governing the transcription of
these genes. Accordingly, 293T cells were used for all subse-
quent experiments.
Dot1a Interacts with AF17 via Its AF9-interacting Domain—

We previously reported a specific interaction between Dot1a
and AF9 (8, 9). To identify additional Dot1a-interacting pro-
teins, we screened a yeast two-hybrid cDNA library derived
frommouse kidneywithGAL4-BD-Dot1a as bait and identified
a specific interaction betweenDot1a and a peptide correspond-
ing to aa 635–786 of myeloid/lymphoid or mixed lineage-leu-
kemia (trithorax homolog,Drosophila) translocated to 6 (Mllt6,
GenBankTM accession number AY050217). The latter shares
92% identity with the corresponding region (aa 648–800) of
human AF17 (GenBankTM accession number U07932), which
also strongly interacted with Dot1a in the yeast two-hybrid
assay (Fig. 2A). These and other observations (see below) sug-
gest that human AF17 and its murine counterpart are equally
competent for interaction with Dot1a. Accordingly, AF17 is
used to refer to both human and mouse proteins for simplicity.
We used full-length human AF17 for transfection studies and
mouse AF17 635–786 for GST pulldown and co-immunopre-
cipitation assays to overcome the technical challenges (see

“Discussion”) and assumed that the resulting data were
exchangeable between the two proteins.
To map the domains of Dot1a responsible for AF17 interac-

tion, we performed additional yeast two-hybrid assays using
each of 13GAL4-BD-Dot1a constructs in combinationwith the
GAL4-AD-AF17 fusion. We detected interactions in all assays
involving fragments possessing the previously defined AF9-in-
teracting domain (aa 479–659) of Dot1a (referred to as Dot1a
479–659 hereafter). We observed little or no interaction in all
other assays in which Dot1a 479–659 was missing. Similar
results were obtained whenAF17was replaced with AF17 635–

FIGURE 1. ENaC and ENaC transcriptional regulators are expressed and
regulated by aldosterone in HEK 293T cells. A, total RNA was isolated from
293T cells cultured in Dulbecco’s modified Eagle’s medium plus 10% fetal
bovine serum and analyzed by RT-PCR in the absence (-) or presence (�) of
reverse transcriptase for expression of the genes indicated. B–D, total RNA
isolated from 293T cells treated for 24 h with vehicle (�Aldo) or 1 �M aldo-
sterone (�Aldo) was analyzed by real-time RT-qPCR and examined for expres-
sion of ENaC subunits (B), ENaC transcriptional regulators (C), or CTGF and
preproendothelin-1 (Endo) (D). The mRNA level of each gene was normalized
against �-actin mRNA, which was invariant as measured by real-time PCR and
set to 1 in the vehicle-treated cells. In all cases *, p � 0.05 versus �Aldo. n � 3.
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786 (Fig. 2B and supplemental Fig. S1). Thus, as withAF9, AF17
does not appear to interact with the methyltransferase domain
(aa 1–416), the putative leucine zipper domain (aa 576–597),
or the C-terminal portion (aa 1112–1540) of Dot1a.
To confirm and extend these findings, we conducted mam-

malian two-hybrid assays in 293T cells. Co-expression of
GAL4-BD-Dot1a with GAL4-AD fusions harboring either
AF17 or AF17 635–786 caused a �400-fold activation of a GAL4-
dependent luciferase activity construct compared with GAL4-
BD-Dot1a alone (Fig. 2C), in agreement with the yeast two-
hybrid results.
To verify the interaction biochemically, GST pulldown

assays were performed with GST-AF17 635–786 purified from
Escherichia coli and 293T cell lysates harboring GFP-Dot1a
479–659. Binding was observed only when the two fusions
were combined (lane 2, Fig. 2D). Replacing one or bothwith the
GST and GFP vectors abolished the interaction (lane 3, Fig. 2D
and data not shown), confirming the specificity of the interac-

tion.Wewere unable to express and
purify the GST fusion containing
full-length AF17 from E. coli, possi-
bly due to its toxicity, insolubility, or
both.
Finally, we performed co-immu-

noprecipitation assays with 293T
cell lysates expressing GFP-Dot1a
479–659 with or without FLAG-
AF17 635–786. Precipitation of
GFP-Dot1a 479–659 by a mouse
anti-FLAG antibody was dependent
on the presence of the FLAG-AF17
fusion (compare lanes 7 and 4, Fig.
2E). Moreover, it was not precipi-
tated by the same amount of normal
mouse IgG in a parallel reaction
(lane 8, Fig. 2E). In reciprocal exper-
iments, the FLAG-AF17 fusion was
specifically immunoprecipitated by
a rabbit anti-GFP antibody in the
presence of the GFP-Dot1a fusion
but not GFP tag (supplemental Fig.
S2). Taken together, the yeast and
mammalian two-hybrid, GST pull-
down, and co-immunoprecipitation
experiments indicate that Dot1a
interacts specifically with AF17 in
vitro and in vivo. Moreover, the
AF9-interacting domain of Dot1a
(aa 479–659) is also an AF17 bind-
ing domain. Accordingly, this do-
main is hereafter referred to as the
AF9/AF17-interacting domain.
The AF9/AF17-interacting Do-

main of Dot1a Is Capable of and
Sufficient for Mediating Colocaliza-
tion with AF17 in the Cytoplasm of
293T Cells—To demonstrate the
biological relevance of the Dot1a�

AF17 interaction and to further pursue the theory that theAF9-
interacting domain in Dot1a is also responsible for interaction
with AF17, we co-expressed RFP-tagged AF17 with various
GFP-Dot1a fusions in 293T cells and examined their cellular
distribution by confocal and epifluorescence microscopy. As
shown in supplemental Fig. S3, cells transfected with either
GFP-Dot1a or RFP-AF17 alone were detected only by the cor-
responding filters, confirming the filter specificity. As expected,
the three GFP-tagged Dot1a fusions containing the AF9/AF17-
interacting domain (full-length, 417–1540, or 479–659) co-lo-
calized with RFP-AF17 primarily, if not exclusively, in the cyto-
plasm (Fig. 3A). In contrast, Dot1a 2–478 apparently failed to
co-localize with AF17, although it was highly expressed in the
nucleus as a GFP fusion. In these cells most if not all of the
RFP-AF17 still resided in the cytoplasm. It should be noted that
GFP-Dot1a is apparently easily degraded, as evidenced by mul-
tiple small bands inWestern blot (8, 9) andprogressively dimin-
ished fluorescence intensity. These data indicate that 1) Dot1a

FIGURE 2. The AF9-interacting domain in Dot1a is capable of and sufficient for interaction with AF17 in
vitro and in vivo. A, shown is a yeast two-hybrid analysis revealing that Dot1a interacts with full-length human
AF17 and mouse AF17 635–786 but not with the latter when it is placed in a reverse orientation (AF17 786 –
635). The bars represent the average -fold activation of the LacZ reporter from three independent experiments
(n � 3). *, p � 0.05 versus Vec (pGADT7). B, as in A, mapping by yeast two-hybrid analysis showing that the
AF9-interacting domain in Dot1a (aa 479 – 659) is capable of and sufficient for interacting with AF17; n � 3.
C, shown is a mammalian two-hybrid assay confirming that Dot1a interacts with AF17 or AF17 635–786 in 293T
cells. The bars represent the average -fold activation of a GAL4-dependent luciferase reporter from three
independent experiments (n � 3). *, p � 0.05 versus BD-Dot1a plus Vec (pCMV-AD). D, shown is a GST pulldown
assay showing that specific domains in Dot1a and AF17 are responsible for the interaction. GST and GST-AF17
635–786 were purified from E. coli and incubated with whole-cell lysates of 293T cells expressing GFP-Dot1a
479 – 659. Input (In) of the lysates (5%) and proteins bound to Glutathione-Sepharose 4B beads were examined
by immunoblotting with a mouse anti-GFP antibody. The inputs of GST and GST-AF17 were analyzed by
Coomassie staining (lower panel). E, co-immunoprecipitation assay demonstrating the interaction between
Dot1a and AF17. Whole-cell lysates (WCL) of 293T cells transiently expressing GFP-Dot1a 479 – 659 with or
without FLAG-AF17 635–786 were immunoprecipitated (IP) with a mouse anti-FLAG antibody or equal amount
of normal mouse IgG (mIgG). Immunoprecipitated proteins were eluted from the Protein A/G-agarose beads
and subjected to IB analysis with the mouse anti-GFP antibody. In, input (2%); FT, flow-through (2%); Vec,
vector.
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479–659 is capable of and sufficient for interacting and co-
localizing with AF17, 2) the co-localization of these proteins is
not an artifact due to overexpression of the related proteins,
and 3) the preferential expression of RFP-AF17 in the cyto-
plasm is not caused by overexpression of GFP-Dot1a fusions.
AF17 Competes with AF9 for Interaction with Dot1a—The

fact that the same domain ofDot1a can interact with bothAF17
and AF9 suggests that these two proteins may compete for
binding to Dot1a, as summarized in Fig. 4, A and E. To test this
hypothesis, we performed similar GST pulldown assays as

described above to investigate competition between AF17 and
AF9. As shown in Fig. 4B, increasing the lysate amount contain-
ing FLAG-AF9 from 0 to 1600�l gradually reduced the amount
of theGFP-Dot1a fusion retained by a fixed amount of theGST-
AF17 fusion. The relative Dot1a�AF17 binding efficiency in the
reaction with 1600 �l of FLAG-AF9-containing lysate was
�16% of the control in which FLAG-AF9 was not added (Fig.
4B), indicating that FLAG-AF9 inhibited theDot1a�AF17 inter-
action. To validate this finding in vivo, competitivemammalian
two-hybrid assays were performed. 293T cells were transfected
with a constant amount of pBD-Dot1a with pAD (as vector
control) or with pAD-AF17 in the presence of 0–800 ng of
pFLAG-AF9. The total amount of plasmid DNA transfected
was kept constant by the addition of an empty vector. The lucif-
erase reporter activitywas inversely correlatedwith the amount
of pFLAG-AF9 added; �12 times lower reporter expression
was observed when 800 versus 0 ng of pFLAG-AF9 was applied
(Fig. 4C). Similar experiments were performed to test whether
the competition betweenAF9 andAF17 regulates�-ENaC pro-
moter activity. Transfection of FLAG-AF17 doubled the
expression of an �-ENaC promoter-luciferase construct com-
pared with Vec control, indicating that AF17 up-regulates the
�-ENaC promoter, possibly by facilitating nuclear export of the
endogenous hDot1L (see below). However, this effect was grad-
ually diminished by an increasing amount of FLAG-AF9 that
may competitively bind the endogenous hDot1L and repress
the promoter (Fig. 4D).
In reciprocal assays the Dot1a�AF9 interaction was progres-

sively inhibited by increasing amounts of FLAG-AF17 635–786
as a competitor in GST pulldown assays (Fig. 4F) or by increas-
ing amounts of FLAG-AF17 in mammalian two-hybrid assays
(Fig. 4G). FLAG-AF17 also antagonized FLAG-AF9-mediated
repression of �-ENaC promoter-luciferase construct in a dose-
dependent manner (Fig. 4H).
AF17 Overexpression Enhances Dot1a Cytoplasmic Expres-

sion at the Expense of Its Nuclear Expression—As mentioned
above, GFP-Dot1a and RFP-AF17 co-localized in 293T cells. In
some of the co-transfected cells, both fusion proteins were pri-
marily in the nucleus (Fig. 3B, top panel). However, in the
majority of co-transfected cells, Dot1a andAF17 co-localized in
the cytoplasm (Fig. 3B, low panel, and supplemental Fig. S4).
The third type of expression pattern displayed substantial sig-
nals in both the cytoplasm and the nucleus (supplemental Fig.
S4). These data suggest that overexpression of RFP-AF17 with
GFP-Dot1a leads to preferential localization of both proteins in
the cytoplasm. However, the cellular localization of these pro-
teins might be also regulated in a cell cycle-dependent manner,
resulting in variable levels of H3 K79 methylation throughout
the cell cycle (26).Moreover, given the non-quantitative nature
of the assays, we could not determine whether the expression
level of AF17 directly correlated with the degree of cytoplasmic
localization in patterns two and three.
To control for any effect of the GFP or RFP tags on the cel-

lular distribution of these fusions, 293T cells were co-trans-
fectedwith either of three pairs of plasmids: pGFP/pRFP-AF17,
pGFP-Dot1a/pRFP, or pGFP-Dot1a/pRFP-AF17. In each
transfection we examined only the co-transfected cells and
divided them into three types based on the cellular distribution

FIGURE 3. AF17 colocalizes with Dot1a and enhances Dot1a cytoplasmic
expression at the expense of its nuclear expression. A, representative con-
focal microscopy images show colocalization of transiently expressed RFP-
AF17 with GFP-Dot1a fusions containing full-length, aa 2– 478, 479 – 659, and
417–1540 but not GFP-Dot1a 2– 478 in 293T cells. B, as in A, representative
images show nuclear (top) and cytoplasmic (bottom) colocalization of the
Dot1a and AF17 fusions. C, the bar graph show that AF17 overexpression
causes preferential expression of Dot1a in the cytoplasm. As in B, cells
expressing GFP-Dot1a, RFP-AF17, or both were categorized as cytoplasmic (C)
nuclear (N), or both (C/N) depending on the location of the fusion proteins.
The graphed value (%) is the number of cells of each localization type divided
by the total number of cells examined. At least 200 cotransfected cells per
transfection were examined from three independent experiments (n � 3).
Each percentage was compared with control (Dot1a alone) within the cate-
gory. D, the bar graph shows that AF17 knockdown increased Dot1a nuclear
localization, with the observed localization value given as a percentage of the
total number of cells surveyed. Results are as in B, except that 293T cells were
stably transfected with a control vector (Vec) or one of two RNAi constructs
specific for AF17 (see Fig. 5) followed by transient transfection of pGFP-Dot1a.
n � 3. *, p � 0.05 versus vector in each category.
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of RFP-AF17, GFP-Dot1a, or both. Without GFP-Dot1a, RFP-
AF17 resided in the cytoplasm in almost 80%of cells. Its nuclear
expression was detected in only 5% of cells (Fig. 3C). In the
absence of RFP-AF17, GFP-Dot1awas present in the nucleus in
62% of cells, with only 5% in the
cytoplasm and 33% in both of the
compartments. However, when
the fusion proteins were co-ex-
pressed, the percentage of the cells
displaying Dot1a nuclear expres-
sion was decreased to about 15%
(Fig. 3C), which was accompanied
with a dramatic increase (to 52%)
of cells with Dot1a located in the
cytoplasm. These results suggest
that AF17 overexpression enhances
cytoplasmic and limits nuclear ex-
pression of Dot1a.
To gain additional evidence,

RNAi-mediated depletion of en-
dogenous AF17 was performed.
We established three cell lines
derived from 293T cells stably car-
rying an empty vector or one of
two AF17-specific siRNA con-
structs: siRNA#10 and siRNA#11.
Real-time RT-qPCR revealed that
AF17 mRNA abundance was de-
creased to 55 and 35% in the cells
transfected with these two con-
structs, respectively, compared
with that in the vector-transfected
cells (Fig. 5A). Transfection of
GFP-Dot1a into these cell lines
revealed that the percentage of
cells with cytoplasmic GFP-Dot1a
was decreased from 31% in vector-
transfected cells to 17% in
siRNA#10-transfected cells (Fig.
3D), whereas the cells expressing
nuclear GFP-Dot1a increased from
53 to 70%. In the cells bearing
siRNA#11, which more efficiently
knocked down AF17 expression, a
more dramatic effect was observed.
Only 12% of the cells displayed
cytoplasmic GFP-Dot1a expres-
sion, whereas 78% showed nuclear
expression. In brief, our data are
consistent with the notion that
AF17 overexpression promotes
redistribution of Dot1a from the
nucleus to the cytoplasm and that
endogenous AF17 is important for
Dot1a trafficking.
AF17 Decreases H3 K79 Meth-

ylation in Bulk Histones, Possibly
by Facilitating Dot1a Nuclear

Export—If AF17 shifts Dot1a expression from the nucleus to
the cytoplasm, Dot1a-catalyzed H3 K79 methylation should be
inversely correlated with AF17 expression. To test this hypoth-
esis, we first investigated the effect of AF17 knockdown on H3
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K79 methylation. Western blot analysis of acid extracts pre-
pared from the three cell lines mentioned above were ana-
lyzed by immunoblotting with antibodies specifically recog-
nizing di- or tri-methylated H3 K79, which were designated
as H3 me2K79 and H3 me3K79, respectively. An antibody
against dimethylated H3 K9 (H3 me2K9) was included as a
control. The levels of H3 me2K79 in the vector-transfected
cells was more than doubled or tripled in the 293T cells
stably transfected with siRNA#10 and siRNA#11, respec-
tively. Similar results were observed for H3 me3K79 (Fig.
5B). We did not examine the mono-methylated H3 K79
because the available antibody also recognizes the unmethy-
lated H3 K79 isoform (27). However, AF17 knockdown did
not obviously affect H3 me2K9 (Fig. 5B).

Because the endogenous levels of H3 me2K79 and H3
me3K79 in 293T cells are low, AF17 overexpression may make
their detection and interpretation of experiments difficult.
Therefore, we asked whether AF17 overexpression abolishes
theDot1a overexpression-dependent increase ofH3K79meth-
ylation by promoting Dot1a nuclear export. 293T cells were
transiently transfected with pGFP-Dot1a along with pRFP as a
control or with pRFP-AF17. Cells were treated with methanol
vehicle or the nuclear export inhibitor leptomycin B (LMB,
10 nM). This concentration of LMB has been shown to block
nucleocytoplasmic shuttling of Id1 in other cells (28). In the

vehicle-treated cells, co-expression
of RFP-AF17 with GFP-Dot1a
reduced the levels of H3 me2K79
and H3 me3K79 to about 40 and
30% that of the control level (com-
pare lane 2 with lane 1 in the corre-
sponding blots, Fig. 5C), respec-
tively. However, this effect was
largely abolished by LMB. H3
me2K9 was not measurably affected
by RFP-AF17 overexpression re-
gardless of the addition of LMB (Fig.
5C). Together, these data indicate
that AF17 limits Dot1a methyl-
transferase activity, probably by
promoting Dot1a nuclear export.
Like AF9, AF17 Displayed Cyto-

plasmic and Nuclear Colocalization
with Sgk1—Our previous studies
suggest that Sgk1 phosphorylates
AF9 in vitro and in vivo in mIMCD3

cells and in mouse kidney and that Sgk1 is associated with the
�-ENaC promoter (9). However, whether these two proteins
co-localize within cells has not been addressed. Given the fact
that AF17 contains three potential consensus Sgk1 phosphory-
lation sites (see “Discussion”), AF17 might also be a phosphor-
ylation target of Sgk1. As a first step toward addressing this
question, we transfected 293T cells with GFP-Sgk1 along with
RFP-AF9 as a control or with RFP-AF17 and examined their
cellular distribution by confocal microscopy. Sgk1 co-localized
with AF9 in the nucleus and cytoplasm. Similar results were
obtained when AF9 was replaced with AF17 (Fig. 6A), raising
the possibility of a complex regulation of AF9 and AF17 by
Sgk1, possibly by phosphorylation.
Because Sgk1 and AF17 positively regulate �-ENaC tran-

scription, we sought to determine whether the potential Sgk1-
AF17 interaction has a synergistic effect on �-ENaC promoter
activity. Luciferase assay revealed that whereas the activity of
the�-ENaCwas elevated by 150 or 80% versus control in AF17-
or Sgk1-transfected cells, respectively, it was increased by 470%
when these two proteins were co-expressed, indicating a syner-
gistic effect (Fig. 6B). These observations are consistent with
the notion that Sgk1 may regulate AF17 function by phosphor-
ylation. Future studies are required to fully address this
question.

FIGURE 4. AF17 and AF9 competitively bind Dot1a. A and E, shown are diagrams of AF9 or AF17 preventing its competitor from binding Dot1a. B and F, shown
is a GST pulldown assay demonstrating the inhibitory effect of AF9 on Dot1a�AF17 or AF17 on Dot1a�AF9 interactions. GST pulldown assay was performed
similar to Fig. 2D except that various amounts of lysates containing FLAG-AF9 (B) or FLAG-AF17 635–786 (F) were premixed with 1 ml of GFP-Dot1a cell lysate
as indicated. The total volume of the lysates was equalized by the addition of a mock-transfected lysate. The GFP-Dot1a fusion in the input (5%) or bound to the
beads was determined by IB with the anti-GFP antibody. The GST fusions eluted from the columns were examined by Coomassie staining. The FLAG fusions in
the flow-through were examined by IB with a mouse anti-FLAG antibody. The amount of bound GFP-Dot1a fusion was normalized to that of the GST-AF17 (B)
or the GST-AF9 (F) fusions to calculate the binding efficiency. It was further normalized to the control in which the competitor was omitted. The average of three
independent experiments is shown at the bottom. C and G, competitive mammalian two-hybrid assays show that AF9 and AF17 mutually impair their
interactions with Dot1a in vivo. Data are similar to Fig. 2C except that varying amounts (ng) of pFLAG-AF9 (C) or pFLAG-AF17 (G) were included in the
transfection. The total amount of DNA was normalized by adding an empty vector. In all cases n � 3; *, p � 0.05 versus control, where either no FLAG-AF9 (C)
or FLAG-AF17 (G) was added. D and H, AF9 and AF17 mutually antagonize the effect of their competitor on the �-ENaC promoter. 293T cells were transfected
with an �-ENaC-promoter luciferase construct with pCDNA3.1 vector (Vec), or pFLAG-AF17 with a range of 0 – 800 ng of pFLAG-AF9 as competitor (D) or
pFLAG-AF9 with 0 – 800 ng of pFLAG-AF17 as competitor (H) followed by luciferase assay. Luciferase activity was set to 1 in vector-transfected cells. For all cases,
n � 3. *, p � 0.05 versus vector. Note: the reporter in D and H was repressed by AF9 and activated by AF17. However, activation of the reporter in C and G is
Dot1a�AF17 or Dot1a�AF9 interaction-dependent.

FIGURE 5. AF17 down-regulates H3 K79 methylation in bulk histones. A, AF17 expression was substantially
decreased by transfection of AF17-specific RNAi constructs. 293T cells were stably transfected with pSilencer-
2.1-U6-Hygro vector (Vec) or its derivatives bearing AF17-specific siRNA#10 or siRNA#11. Total RNA was iso-
lated and examined by real-time RT-qPCR for AF17, which was normalized to �-actin. n � 3. *, p � 0.05 versus
vector. B, AF17 knockdown increases H3 K79 methylation. As in A, acid extracts of 293T cells were analyzed by
IB with antibodies recognizing di- and trimethylated H3 K79 (H3me2K79 and H3me3K79), dimethylated H3 K9
(H3 me2K9), or �-tubulin. Coomassie staining was performed with an identical gel. C, AF17 overexpression
impairs H3 K79 di- and trimethylation in an LMB-sensitive manner. pGFP-Dot1a was transfected into 293T cells
along with pRFP vector or RFP-AF17. 16 h later the cells were treated with vehicle or nuclear export inhibitor
LMB (10 nM) for another 16 h followed by IB of the acid extracts as shown in B.
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AF17 Up-regulates Transcription of ENaC and Several Other
Aldosterone-regulated Genes—Because AF17 impairs Dot1a
nuclear expression and, thus, H3 K79 methylation in the bulk
histones, we anticipated that AF17 would relieve Dot1a�AF9-
mediated repression. We have reported that overexpression of
Dot1a and/or AF9 reduced mRNA expression of �-ENaC and
three other aldosterone-regulated genes in mIMCD3 cells
(7–9). Whether such regulation is conserved or can be ex-
tended to other aldosterone-regulated genes in 293T cells
remains unknown. Because AF17 impairs H3 K79methylation,
we anticipated that AF17 would relieve Dot1a�AF9-mediated
repression of the �-ENaC promoter. Accordingly, 293T cells
were transiently transfected with pcDNA3.1 (Vec) or its deriv-
atives encoding Dot1a, AF9, or AF17 and examined by real-
time RT-qPCR. �-ENaCmRNA was observed at �54, 28, 250,
or 143%of the control levels in cells overexpressingDot1a, AF9,
AF17, or Dot1a/AF17, respectively (Fig. 7A). A similar pattern
was obtained for the expression of several other aldosterone-
regulated genes examined, including �- and �-ENaC, SGK1,
and CTGF. There were two exceptions to this pattern; Dot1a
failed to significantly inhibit mRNA expression of MR (Fig. 7B)
and preproendothelin-1 (Fig. 7C). We did not examine the
expression pattern of period because its basal level was unde-
tectable in 293T cells (Fig. 1A).
Transcriptional Changes in ENaCGenes Are Correlated with

Changes in ENaCActivity—To determine whether the changes
in the expression of ENaC genes at the mRNA level are associ-
ated with the corresponding changes in ENaC activity, we per-
formed patch clamp experiments first with 293T cells treated
with vehicle or aldosterone (1 �M) for 24 h. We then measured

currents evoked by ramp voltage commands before and after
superfusion of cells with 10�M benzamil, an inhibitor of ENaC.
Benzamil-sensitive cation currents were then obtained by dig-
ital subtraction. Under these conditions (symmetrical NaCl in
bath and recording pipette), ENaC gives rise to strongly out-
wardly rectifying currents. Representative examples of record-
ings from single cells are shown in Fig. 8, A and B, and mean
results determined at �80 mV are shown in Fig. 8C. The basal
level of benzamil-sensitive Na� current density was signifi-
cantly increased by aldosterone treatment (Fig. 8C), a result
that is consistent with the increased mRNA expression of all
ENaC subunit genes (Fig. 1B).
To determine whether the effects of Dot1a, AF9, or AF17

overexpression on ENaC mRNA expression elicit correspond-
ing changes in ENaC activity, similar experiments were con-
ductedwith 293T cells transfectedwithGFP vector or plasmids
encoding the related GFP fusion proteins. With this design,
transfected cells can be identified by fluorescence during the
recordings. Representative examples of benzamil-sensitive cur-

FIGURE 6. AF17 and Sgk1 colocalize and synergistically activate the
�-ENaC promoter. A, as in Fig. 3A, representative images of confocal micros-
copy demonstrate colocalization of Sgk1 with AF9 as control or with AF17 in
293T cells. B, luciferase assay indicates a synergistic effect of AF17 and Sgk1 on
�-ENaC promoter. 293T cells transfected with an �-ENaC promoter luciferase
construct along with pCDNA3.1 vector (Vec) or its derivatives encoding AF17
or Sgk1 were analyzed as in Fig. 4D. *, p � 0.05 versus Vec.

FIGURE 7. Dot1a, AF9, and AF17 differentially regulate mRNA expression
of ENaC and other target genes. As in Fig. 1B, 293T cells were transiently
transfected with pCDNA3.1 (Vec) or its derivatives expressing Dot1a, AF9,
AF17, or Dot1a/AF17. Total RNA from these cells was analyzed by real-time
RT-qPCR for expression of ENaC subunits (A), ENaC regulators (B), or CTGF and
preproendothelin (Endo) (C). The relative abundance of mRNA of each gene
was set to 1 in vector-transfected cells and used for comparison. n � 3. *, p �
0.05 versus vector for each gene.
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rents are shown in Fig. 8D. The benzamil-sensitiveNa� current
density was significantly decreased in Dot1a- or AF9-overex-
pressing cells compared with GFP controls. However, it was
significantly elevated in cells overexpressing AF17 (Fig. 8E).
Thus, multiple and independent lines of data indicate that
Dot1a, AF9, and AF17 regulate ENaC activity, at least partially
through regulation of ENaC gene expression at the mRNA
level.

DISCUSSION

In this report we characterized and used HEK 293T cells as a
model system to study the aldosterone-signaling network con-
trolling the transcription of ENaC genes, their regulators, and
ENaC activity.We demonstrate for the first time the physiolog-
ical importance of Dot1a and AF9 in suppressing basal ENaC-
mediatedNa� transport asmeasured by patch clamp analysis of
transfected HEK 293T cells. We also describe a novel compet-
itive interaction betweenAF17with a region ofDot1a known to
bind AF9 that antagonizes the epigenetic repressor effects of
Dot1a�AF9 on �-ENaC transcription and augments ENaC-me-

diated Na� transport under basal
conditions to levels comparable
with those found with aldosterone
induction. The positive regulatory
effect of AF17 on �-ENaC tran-
scription appears to involve, at least
in part, enhanced nuclear export of
Dot1a to the cytoplasm, where we
postulate it is degraded. The result-
ing reduction in nuclear Dot1a
expression leads to H3 K79 hypo-
methylation and de-repression of
�-ENaC transcription. Therefore,
these studies show that AF17, like
two otherMLL fusion partners AF9,
(8) andAF10 (29), is aDot1a binding
partner and regulator. Dot1a and,
thus, H3 K79 methylation is regu-
lated by competition between AF9
and AF17 for binding sites on
Dot1a. These data show thatAF17 is
a regulator of ENaC transcription
and ENaC activity, and they sup-
port the hypothesis that mistar-
geting of hDot1L may play a role in
some types ofMLL fusion-mediated
leukemogenesis.
ENaC is expressed in many epi-

thelial tissues including the aldoste-
rone-sensitive distal nephron of
kidney, distal colon, lung airway,
urinary bladder, and ducts of sali-
vary and sweat glands (30) and is
subjected to complex regulation to
meet the need for rapid, dynamic
changes in salt and water secretion
and reabsorption. The channel
expression and synthesis, intracel-

lular channel trafficking,maturation and activation, and single-
channel properties such as open probability (Po) are controlled
by a variety of extrinsic and intrinsic factors (31, 32). Extrinsic
factors include mechanical stretch, proteolytic cleavage, and
hormones such as aldosterone (33), arginine vasopressin (34),
atrial natriuretic peptide (35), insulin, and endothelin (36, 37).
Intrinsic regulation may be due to intracellular trafficking,
ubiquitination/de-ubiquitination, various kinases, sodium, and
metabolic substrates (for review, see Ref. 31). Many proteins
have been identified that play a role in these diverse pathways.
Among them are Sgk1 (38), Nedd4-2 (39), 14-3-3 (40), ubiq-
uitin-specific protease Usp2–45 (41), glucocorticoid-induced
leucine zipper protein (GILZ) (19), small G protein K-Ras2A
(42), channel-activating protease CAP1 (43), and furin (44).
For example, Sgk1 is thought to regulate ENaC abundance at

the cell surface, in part through phosphorylation of the ubiq-
uitin ligase Nedd4-2 (45). Nedd4-2 phosphorylation reduces its
affinity with and, hence, binding to ENaC and induces its inter-
action with 14-3-3 (40). The concerted actions of Sgk1 and
14-3-3 appear to disruptNedd4-2-mediated ubiquitination and

FIGURE 8. Aldosterone and ENaC transcriptional regulators regulate ENaC current. A and B, representative
traces of whole-cell recordings from cells 24 h after the onset of exposure to equal volume of ethanol as a
vehicle control (�Aldo) or 1 �M aldosterone (�Aldo) as indicated. Currents were recorded during a 1-s voltage
ramp (�80 to �80 mV) delivered from a holding potential of �40 mV (shown as the inset above the current
traces). Currents were obtained in normal external saline and after superfusion of saline containing 10 �M

benzamil, as shown in the traces to the left. For each cell, benzamil-sensitive currents were then computed by
digital subtraction and are shown in the traces on the right. Under these recording conditions, benzamil-
sensitive currents show strong outward rectification. C, mean current density is shown of benzamil-sensitive
currents at �80 mV from HEK293 cells treated with vehicle (n � 12) or aldosterone (n � 13). *, p � 0.05 versus
�Aldo. pF, picofarads. D–E, effects are shown of transcriptional regulators on ENaC currents in HEK 293T cells.
D, representative examples are shown of whole-cell recordings of benzamil-sensitive currents from HEK 293T
cells 24 h after transient transfection with expression plasmids encoding GFP (Vec) or one of the GFP-tagged
transcriptional regulators (GFP-Dot1a, GFP-AF9, and GFP-AF17) as indicated. Benzamil-sensitive currents
recorded from fluorescent cells during application of voltage ramps were obtained by digital subtraction as
described above. E, mean densities of benzamil-sensitive currents at �80 mV are compiled from 12 cells in each
group. *, p � 0.05 versus vector (Vec).

AF17 Up-regulates �-ENaC Transcription

DECEMBER 18, 2009 • VOLUME 284 • NUMBER 51 JOURNAL OF BIOLOGICAL CHEMISTRY 35667



subsequent degradation of ENaC, leading to accumulation of
ENaC channels at the cell surface.
Our recent work suggests that aldosterone down-regulates

the Dot1a�AF9 complex by reducing Dot1a (7) and AF9 expres-
sion (8) or by decreasing Dot1a�AF9 interaction via Sgk1-medi-
ated phosphorylation of AF9 (9). Here, we provide evidence
showing that AF17 competes with AF9 to bind Dot1a and
enhances Dot1a cytoplasmic expression at the expense of its
nuclear expression. Although AF17 mRNA expression was not
significantly changed by aldosterone treatment, overexpression
of AF17 increased the mRNA abundance of all genes examined
(�-, �-, and �-ENaC, SGK1, MR, preproendothelin-1, and
CTGF). It can be speculated that this novel epigenetic mecha-
nism most likely regulates the Dot1a�AF9 complex and, thus,
H3 K79 methylation in an aldosterone-independent manner.
However, the possibility of aldosterone-dependent mecha-
nisms cannot be completely ruled out. Our data do highlight
the fact that this epigenetic pathway may govern up to 50% of
ENaC-mediated Na� transport in HEK 293T cells as measured
patch clamp analysis (Fig. 8).
Examination of the human AF17 sequence revealed three

potential Sgk1 phosphorylation sites with Ser-222, -423, and
-662 as the putative phosphorylation acceptors. The first two
sites are located outside the Dot1a-interacting domain and
are 100% conserved in mouse and rat, whereas Ser-662 is
within this domain. The equivalent regions of the mouse and
rat homologs share a single amino acid substitution, com-
pared with AF17, which disrupts the consensus sequence
motif for Sgk1 phosphorylation. These observations raise the
possibility that aldosterone and/or Sgk1 might regulate
AF17 function in balancing Dot1a nuclear/cytoplasmic ex-
pression and formation of Dot1a�AF17/Dot1a�AF9 com-
plexes. Consistent with this hypothesis, AF17 and Sgk1
exhibit nuclear and cytoplasmic co-localization, indicating
that they may be in the same protein complexes and interact
either directly or indirectly.
Endogenous AF17 was observed at the mRNA level in 293T

cells, as evidenced by RT-PCR (Fig. 1A) and the significant
effect of RNAi-mediated AF17 depletion on Dot1a cellular dis-
tribution and H3 K79 methylation (Figs. 3D and 5B). Similarly,
FLAG- or RFP-AF17 were expressed and detected in immuno-
fluorescence, epifluorescence, and confocalmicroscopy studies
by others (12) and us (Fig. 3). However, all of these proteins
remained undetectable by IB analysis with antibodies against
FLAG, RFP, or AF17 (data not shown). To our knowledge, no
reports exist showing immunoblots with detectable endoge-
nous or overexpressed full-lengthAF17 in the literature. There-
fore, it is very difficult to verify the Dot1a and AF17 interaction
or the competitive binding of Dot1a between AF9 and AF17 at
the endogenous protein levels orwith overexpressed full-length
proteins by co-immunoprecipitation/IB assays. This limitation
may also prevent the determination of the relative abundance
of the endogenous or recombinant full-lengthAF17 in the cyto-
plasm and in the nucleus by IB, the confirmation ofDot1a�AF17
co-localization at the endogenous protein level, the definition
of AF17 association with �-ENaC promoter or other DNA
sequences, and the evaluation of Dot1a preference with AF9
over AF17 under basal conditions and the influence of chroma-

tin context on such preference. Furthermore, the function of
Dot1a�AF17 complex in the cytoplasm remains unknown. We
repeatedly observed that FLAG-AF17 635–786 was readily
detected when expressed alone or with GFP but was barely
detectable when co-expressed withGFP-Dot1a 479–659 in the
whole-cell lysate by IB (supplemental Fig. S2). Similarly, the
biological significance of the cytoplasmic Sgk1-AF17 or Sgk1-
AF9 colocalization is elusive. Further studies are needed
to address these questions. It is also known that the pheno-
typic properties of polarized cells may differ depending on
whether they are grown on solid substrates or permeable
supports. The fact that several of our assays were performed
with cells grown on plates or coverslips represents another
potential limitation of our studies. Although 293T cells
offered practical advantages in the analysis of the effects of
overexpression of heterologous genes in a kidney epithelial
cell type, they are not specifically derived from the collecting
duct (the physiological site of ENaC-mediated Na� trans-
port in the kidney). Characterization of the renal physiolog-
ical phenotype of the mutant mice in which Dot1, AF9, or
AF17 is disrupted will provide the ultimate proof of the phys-
iological relevance of the current study.
The AF17 gene was originally isolated as a less frequent

fusion partner of theMLL gene in t(11;17)(q23;q21) transloca-
tions present in some acutemyeloid leukemias (10, 11). Limited
information exists about its function. AF17 is thought to func-
tion as a transcriptional regulator (10) and a downstream target
of the �-catenin/T-cell factor pathway and plays a role in G2-M
progression (12). Although AF17 can interact with PC2 gluta-
mine/q-rich-associated protein (PCQAP) and CCAAT/en-
hancer binding protein (C/EBP) in yeast two-hybrid assay (46),
the biological relevance and function of these protein-protein
interactions remains to be characterized.
Although more than 40 MLL fusion partners have been

cloned (47), a common structural motif or biochemical func-
tion has not been defined in most of the proteins encoded by
these genes. As an exception, similarities betweenAF9 andENL
and between AF10 and AF17 (48, 49) exist. As mentioned ear-
lier, we and others have reported that AF9 and AF10 interact
with Dot1a or its human homolog hDot1L. AF17 and AF10
share significant homology within their respective LAP/PHD
finger domains at the NH2 termini and leucine zipper domains
toward theCOOHtermini anddiffer outside those regions (48).
The fragments responsible for interaction with Dot1a or
hDot1L (AF17 635-786 and AF10 635-1068) harbor the highly
conserved leucine zipper domains. However, the lack of a
leucine zipper domain in AF9 and no requirement for the puta-
tive leucine zipper domain in Dot1a for its interaction with
eitherAF9orAF17argues against anotion that a leucine zipper-
dependent dimer configuration is necessary for the interactions
of Dot1a or hDot1L with AF9, AF10, or AF17. Because all of
these MLL fusion partners (AF9, AF10, and AF17) can interact
withDot1a and the domains responsible for the interactions are
retained in the corresponding MLL fusions, our data further
support the hypothesis that mistargeting of hDOT1L may play
an important role in some types of MLL fusion-mediated leu-
kemogenesis (29).
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