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Purpose: To evaluate the relationship between vascular endothelial growth factor (VEGF) and extracellular superoxide
dismutase (EC-SOD) in vitreous body and serum in patients with proliferative diabetic retinopathy (PDR), and investigate
the role of EC-SOD in PDR by evaluating its angiostatic effect, using an in vitro angiogenesis model. To investigate the
role of EC-SOD in PDR by evaluating its angiostatic effect, using an in vitro angiogenesis model.
Methods: EC-SOD and VEGF concentrations in vitreous and serum samples from PDR and macular hole (MH) were
measured by ELISA. The effects of EC-SOD on VEGF-induced proliferation, migration, and tube formation were
evaluated using human umbilical vein endothelial cells (HUVECs). Moreover, the effects of EC-SOD on VEGF-induced
proliferation and migration were evaluated in HUVECs and primary normal human retinal microvascular endothelial cells.
Results: Intravitreal concentrations of EC-SOD were significantly higher (p<0.01) in PDR (58.0±23.8 ng/ml, mean±SD)
than in MH (29.3±6.6 ng/ml). Intravitreal concentrations of VEGF were dramatically higher (p<0.01) in PDR (798.2±882.7
pg/ml) than in MH (17.7±15.5 pg/ml). The serum concentrations of EC-SOD and VEGF did not differ between the two
patient groups. The vitreous concentrations of VEGF correlated with those of EC-SOD in all patients (rs=0.61, p<0.001).
In HUVECs, EC-SOD at 100 ng/ml significantly suppressed VEGF-induced proliferation and tube formation, but not
VEGF-induced migration.
Conclusions: EC-SOD was increased together with VEGF in the vitreous body from PDR patients, suggesting that EC-
SOD may play a pivotal role in the pathogenesis of angiogenesis.

Proliferative diabetic retinopathy (PDR) is characterized
by extensive neovascularization and vessel intrusion into the
vitreous body, with subsequent bleeding around the new
vessels that leads to severe visual impairment. This process
depends on the local production of vascular endothelial
growth factor (VEGF) and other angiogenic factors. VEGF, a
potent activator of angiogenesis, enhances collateral vessel
formation and increases the permeability of the
microvasculature [1,2]. VEGF expression is induced by high
glucose levels and by hypoxia, and this growth factor plays
important roles in both normal and abnormal angiogenesis
[3,4]. Its levels markedly increase in the vitreous and aqueous
fluids in the eyes of patients with PDR [5,6].

Oxidative stress is defined as a condition in which tissue
damage results from an imbalance between an excessive
generation of oxidant compounds and inadequate antioxidant
defense mechanisms [7]. In diabetic eye disease, oxidative
stress clearly plays a key role in the initial insult, and there is
a strong relationship between oxidative stress and

Correspondence to: Hideaki Hara, Department of Biofunctional
Evaluation, Molecular Pharmacology, Gifu Pharmaceutical
University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan; Phone:
+81-58-237-8596; FAX: +81-58-237-8596; email: hidehara@gifu-
pu.ac.jp

hyperglycemia [8]. Oxidative stress has been correlated with
an increased production of VEGF under in vitro conditions,
and is thought to be involved in the upregulation of VEGF
expression that occurs during diabetes [9,10]. In addition,
several studies involving animal and tissue culture models
have indicated that oxidative stress is also a critical mediator
in the transduction of the mitogenic effects of VEGF [11,12].

Antioxidant systems occur naturally within mammalian
tissues, where they serve to protect against the harmful side
effects of reactive oxygen species (ROS) by counteracting free
radical reactions. Extracellular superoxide dismutase (EC-
SOD), one of the SOD family enzymes, has the scavenging
capacity of superoxide anion. The heparin-binding domain of
EC-SOD anchors the protein to endothelial cell surfaces and
to the extracellular matrix of blood vessels. Fattman and
colleagues [13] have shown that EC-SOD activity is
decreased in both anterior and posterior tibial arteries of
diabetic patients. However, the relationship between the
concentration of EC-SOD and its function in the vitreous body
on PDR remains unclear.

The aim of our study was to investigate the alteration of
EC-SOD concentration in the vitreous and serum from PDR
patients. Macular hole (MH) patients served as controls. We
also measured the levels of VEGF in vitreous body and serum
samples obtained from patients with PDR. The function of
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EC-SOD as an angiogenesis antagonist was also investigated
by examining the effects of EC-SOD in VEGF-induced
proliferation, and wound healing assays in human umbilical
vein endothelial cells (HUVECs) and human retinal
microvascular endothelial cells (HRMVECs). Moreover, we
investigated the effect of EC-SOD using in vitro tube
formation in HUVECs.

METHODS
Preparation of vitreous body and serum samples: This study
was conducted according to the tenets of the Declaration of
Helsinki and received approval from the institutional review
committee of Osaka Medical College. Informed consent was
obtained from all patients after an explanation of the purpose
and procedures of the study.

A total of 12 PDR patients and 14 MH patients were
recruited. The PDR patients included five men and seven
women, who were 52.9±10.6 years old (mean±standard
deviation, SD). The MH patients consisted of one man and 13
women, who were 63.5±10.6 years old. Undiluted vitreous
samples were collected from 28 eyes of 26 individuals from
14 PDR patients and 14 MH patients, who were undergoing
pars plana vitrectomy for the treatment of diabetic retinopathy
(DR) and other retinal disorders at Osaka Medical College
Hospital. Samples with repeat vitrectomy were excluded.

Simultaneously, serum samples were collected from nine
PDR patients and nine MH patients. The vitreous and serum
samples were collected by same patients with PDR and MH.
PDR patients with or without macular edema and traction
membrane were included. MH patients without neovascular
disease and vitreous hemorrhage were used as controls,
because this disorder is caused by vitreomacular traction
occurring before a posterior vitreous detachment and exhibits
no signs of ischemia, proliferation or inflammation.
Therefore, we believe that vitreous body from patients with
MH is the most similar in constitution to normal eyes that can
be obtained. Details of the patients with PDR and MH are
shown in Table 1.

Before intraocular infusion of a balanced salt solution,
the vitreous core was cut and aspirated via the pars plana, with
a vitreous cutter. The vitreous body samples (0.6–0.8 ml) were
spun for 10 min at 15,000× g in a refrigerated centrifuge at
4 °C to remove particles and then were stored in aliquots in
polypropylene tubes at −80 °C until assay. Serum (2.0 ml)
samples were also collected into sterile tubes simultaneously
with vitreous surgery, and rapidly frozen at −80 °C.
Cells and chemicals: HUVECs, fibroblast cells, VEGF-A,
mouse anti-human CD31 antibody, goat anti-mouse IgG
alkaline phosphatase-conjugated antibody, 5-bromo-4-
chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/

TABLE 1. DATA FOR PATIENTS WITH PROLIFERATIVE DIABETIC RETINOPATHY OR MACULAR HOLE.

Characteristic
Macular hole
(14 patients)

Proliferative diabetic retinopathy
(12 patients)

Age (years) 63.5±10.6 52.9±10.6
Number of women 13 7
Diabetes duration (years) - 7.7±1.6
Clinical findings
Macular edema - 4
Proliferative membrane - 1
Traction membrane - 1
Alone - 2
Vitreous hemorrhage - 7
Traction membrane - 6
Proliferative membrane - 8
Tractional retinal detachment - 5
Alone - 3
Pretreatments
Insulin - 6
Hypoglycemic drug - 6
Macular hole Stage 2 6 -
Macular hole Stage 3 8 -

The table indicates the baseline characteristics and the complications of proliferative diabetic retinopathy and macular hole
patients. Complications of each patient are shown in “clinical findings,” and “pretreatments” indicates therapies until vitreous
surgeries. In proliferative diabetic retinopathy, majority of complications were macular edema, vitreous hemorrhage, and
proliferative membrane. 50% of the patients were pretreated with insulin, and the others were hypoglycemic drugs in proliferative
diabetic patients. In macular hole patients, 6 patients were macular hole stage2, and 8 patients were macular hole stage3. “Age”
and “Duration” data are mean±SD.
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NBT), and angiogenesis growth medium were all purchased
from Kurabo (Osaka, Japan). HRMVECs, CS-C medium, a
growth medium optimized for HRMVECs, and culture boost
were purchased from DS Pharma Biomedical (Osaka, Japan).
The cell culture kit-8 (CCK-8) was from Dojindo (Kumamoto,
Japan).
Cell cultures: HUVECs were cultured in HuMedia-EB2
(Kurabo) supplemented with 2% (v/v) fetal bovine serum
(FBS), 50 µg/ml gentamicin, 50 ng/ml amphotericin B, and
endothelial growth factors at 37 °C in a humidified
atmosphere of 5% CO2 in air. The endothelial growth factors
contained 10 ng/ml human epidermal growth factor (hEGF),
1 µg/ml hydrocortisone, 5 ng/ml human basic fibroblast
growth factor (hFGF-B), and 10 µg/ml heparin. HRMVECs
were cultured in CS-C medium supplemented with 10% (v/v)
FBS, 50 µg/ml gentamicin, 50 ng/ml amphotericin B, and
culture boost (growth factors) at 37 °C in a humidified
atmosphere of 5% CO2 in air.
Measurement of EC-SOD: To measure human EC-SOD, we
used the ELISA method previously described [14]. An 80 ml
portion of 50 mg/l monoclonal antibody dissolved in sodium
carbonate buffer, 50 mM, pH 9.5, containing 0.02% sodium
azide, was added to each well of the immunoplates and left to
stand overnight at 4 °C. Each well was washed with sodium
phosphate buffer, 10 mM, pH 7.4 containing 150 mM NaCl,
0.05% Tween-20 (washing buffer). The remaining protein-
binding site were blocked with 300 ml of sodium phosphate
buffer, 10 mM, pH 7.4 containing 150 mM NaCl, 1% BSA,
0.05% Tween-20 (blocking buffer). The plate was then left to
stand at 4 °C until use. Sample or standard (70 ml) dilute d
with the blocking buffer was added to the wells. The plate was
incubated for 2 h at room temperature and washed three times
with the washing buffer. Then 80 ml of alkaline phosphatase-
labeled monoclonal antibody diluted with the blocking buffer
were added to each well, and the plate was incubated for 2 h
at room temperature, followed by washing three times with
the washing buffer. Substrate solution (0.1 M diethanolamine
hydrochloride, pH 9.8, containing 0.5 mM MgCl2, 0.02%
sodium azide and 2.7 mM p-nitrophenyl phosphate) was then
added to each well and the plate was incubated for 30 min at
room temperature. The enzyme reaction was stopped by the
addition of 50 ml of 5 M NaOH, and the absorbance at 415
nm was measured.
Measurement of VEGF: The VEGF concentrations in vitreous
body and serum were measured using a human VEGF ELISA
kit (Pierce Biotechnology, Rockford, IL). In brief, 50 μl of
sample diluent and 50 μl of either the standard control or a
fivefold diluted vitreous body or serum sample were added to
each well of the ELISA plate, incubated for 2 h at room
temperature, and washed three times at room temperature
(Endogen VEGF ELISA Kit). Then, 100 μl of anti-human
VEGF biotinylated antibody reagent was added to each well,
incubated for 1 h at room temperature, and washed three times

at room temperature (Endogen VEGF ELISA Kit).
Streptavidin- horseradish peroxidase (HRP) reagent was
added to each well, incubated for 30 min at room temperature,
and then washed three times at room temperature (Endogen
VEGF ELISA Kit). Next, 100 μl TMB substrate solution was
added to each well, and the plate was developed in darkness
at room temperature for 30 min. Finally, 100 μl of stop
solution was added, and concentrations were determined at
450 nm (correction 550 nm) using a microplate reader.
Proliferation assay: HUVECs or HRMVECs were seeded at
2×103 cells per well into a 96-well plate, then incubated for
24 h at 37 °C in a humidified atmosphere of 5% CO2 in air.
HUVECs were rinsed twice with PBS (137 mM sodium
chloride, 2.7 mM potassium chloride, 10.1 mM disodium
hydrogen phosphate 12 hydrate, and 1.8 mM potassium
dihydrogenphosphate), then exposed for 6 h to HuMedia-EB2
containing 2% FBS. HRMVECs were rinsed twice with PBS,
then exposed for 6 h to CS-C medium containing 2% FBS.
The HUVECs and HRMVECs were incubated with 10 ng/ml
VEGF with or without 100 ng/ml EC-SOD. Cell viability was
determined by CCK-8 to count living cells by combining 2-
(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl) −5-(2,4-
disulfophenyl)-2H-tetrazolium (WST-8) and 1-methoxy-
phenazine methosulfate (1-methoxy-PMS).
In vitro wound healing assay: An in vitro wound healing assay
was performed to measure unidirectional migration of the
endothelial cells. HUVECs or HRMVECs were seeded at
4×104 cells per well into a 12-well plate and incubated for 48
h at 37 °C in a humidified atmosphere of 5% CO2 in air.
Afterwards, HUVECs or HRMVECs were washed with PBS
twice and incubated in HuMedia-EB2 or CS-C medium with
1% FBS. After 24 h incubation, the monolayers of the
endothelial cells were scratch-wounded to a 1 mm depth in a
straight line using a 10 to 200 µl micro-tip. The HUVECs/
HRMVECs were then incubated with 10 ng/ml VEGF with or
without 100 ng/ml EC-SOD for 24 h. Images were taken at
the time of wounding and at 24-h intervals thereafter, using a
phase-contrast microscope (Olympus, Tokyo, Japan).
Migration was estimated by counting the cell numbers within
the wounded region, and the migrating cells were counted in
a masked fashion by a single observer (H.I.).
In vitro tube formation assay: HUVECs and fibroblasts were
cocultured in angiogenesis growth medium supplemented
with 10 ng/ml VEGF with or without 100 ng/ml EC-SOD at
37 °C in a humidified atmosphere of 5% CO2 in air. In the
control group, HUVECs were incubated with angiogenesis
growth medium. This treatment was repeated every four days.
After 11 days of incubation, cells were fixed with 70%
ethanol, then stained with 1:4,000 mouse anti-human CD31
antibody for 1 h, and thereafter treated with 1:500 goat anti-
mouse alkaline phosphatase-conjugated antibody for 1 h.
BCIP/NBT solution was then applied until HUVECs were
stained deep purple. Images were collected using a digital

Molecular Vision 2009; 15:2663-2672 <http://www.molvis.org/molvis/v15/a283> © 2009 Molecular Vision

2665

http://www.molvis.org/molvis/v15/a283


camera (CoolPix 4500; Nikon, Tokyo, Japan). Tube formation
was estimated by measurements of joint and path using
software for tube formation analysis (Kurabo). A joint is
where two different tubes intersect each other. Path means the
tubes that branch from a joint.
Statistical analysis: Statistical analyses were performed with
the aid of SPSS 15.0J for Windows software (SPSS Japan Inc.,
Tokyo, Japan). Data are presented as means±SD. Statistical
comparisons of in vitro experiments were made using a one-
way ANOVA (ANOVA) followed by a Tukey test. Statistical
comparisons of clinical samples were made using a Kruskal–
Wallis test and Spearman rank-correlation test. Spearman’s
rho correlation coefficient was described as “rs.” A value of
p<0.05 was considered to indicate statistical significance.

RESULTS
EC-SOD levels in vitreous and serum samples from PDR and
MH patients: In each group, the levels of EC-SOD in vitreous
and serum were measured using ELISA (Figure 1).
Intravitreal levels of EC-SOD were significantly higher
(p<0.01) in PDR (58.0±23.8 ng/ml, mean±SD) than in MH
(29.3±6.6 ng/ml). In contrast, the serum levels of EC-SOD

were not significantly different between the PDR group
(85.3±18.4 ng/ml) and the MH group (85.0±12.3 ng/ml;
p=0.96).
VEGF levels in vitreous and serum samples from PDR and
MH patients: We evaluated VEGF concentrations in vitreous
body and serum using ELISA (Figure 2). For the statistical
analysis, any VEGF level below the limit of detection was set
to zero. Intravitreal concentrations of VEGF were much
higher (p<0.01) in PDR (798.2±882.7 pg/ml) than in MH
(17.7±15.5 pg/ml). Serum VEGF did not differ between the
PDR group (177.9±155.5 pg/ml) and the MH group
(151.3±96.8 pg/ml; p=0.83).
Association between EC-SOD and VEGF in vitreous and
serum: We performed association-based analysis on EC-SOD
and VEGF levels in vitreous and serum. In all patients
(grouped together), intravitreal VEGF showed a significant
correlation with intravitreal EC-SOD (rs=0.61, p<0.001;
Figure 3A). On the other hand, we did not detect any relation
between serum VEGF and serum EC-SOD (rs=-0.03, p=0.46;
Figure 3B).
Effects of EC-SOD on in vitro tube formation in HUVECs:
For insight into the role that might be performed by the

Figure 1. EC-SOD levels in vitreous
body and serum samples from PDR and
MH patients. In the vitreous body from
PDR patients, there was abundant EC-
SOD compared to vitreous bodies from
MH patients. In contrast, the serum
concentration of EC-SOD was not
significantly different between the two
groups. Double asterisk (**) denotes
p<0.01 based on the Kruskal–Wallis
test.
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upregulated EC-SOD in the vitreous body in PDR patients,
we examined the effects of EC-SOD on angiogenesis using
an in vitro tube formation model. When treated with VEGF,
HUVECs became organized into complex tubular networks,
and 100 ng/ml EC-SOD apparently inhibited this effect of
VEGF (Figure 4). Two kinds of parameters (joint and path)
were increased more than twofold by VEGF treatment (versus
control). EC-SOD significantly reduced two parameters of
VEGF-induced tube formation. The relative intensities of
joint were significantly decre ased in EC-SOD treated group
(3.56±0.19) than those of vehicle (4.31±0.21), and the relative
intensities of path were significantly decreased in EC-SOD
treated group (2.37±0.09) than those of vehicle (2.71±0.11).

Effects of EC-SOD on VEGF-induced proliferation and
migration in HUVECs and HRMVECs: To investigate the
mechanism underlying the above effect of EC-SOD against
VEGF-induced tube formation, we examined VEGF-induced
cell proliferation and migration in vascular endothelial cells.
In the proliferation assay, cell viability in HUVECs and
HRMVECs (measured by CCK-8; see Methods) were
increased 1.6 fold and 2.1 fold by VEGF (versus control).
Despite having no effect by itself, 100 ng/ml EC-SOD
significantly suppressed the VEGF-induced cell viability in

HUVECs (Figure 5A). Similarly, 100 ng/ml EC-SOD
suppressed VEGF-induced cell proliferation in HRMVECs
(Figure 5B). Next, we evaluated vascular endothelial cell
migration using a wound healing assay. Numbers of HUVECs
and HRMVECs increased 1.8 fold and 1.5 fold following
VEGF treatment (versus control), but 100 ng/ml EC-SOD did
not significantly alter VEGF-induced cell migration (Figure
5D,E).

DISCUSSION
In the present study, we examined the concentrations of EC-
SOD and VEGF in vitreous and serum samples taken from
PDR and MH patients. The intravitreal concentrations of EC-
SOD and VEGF were significantly higher in PDR patients
than in MH patients, and showed a positive correlation with
each other (in the whole patient group). However, there were
no significant differences between PDR and MH in the serum
concentrations of either EC-SOD or VEGF. To investigate
possible role performed by the increased intravitreal EC-SOD
in PDR, we evaluated the effect of EC-SOD using an in vitro
angiogenesis model. We found that EC-SOD significantly
suppressed VEGF-induced cell proliferation in HUVECs and
HRMVECs, and in vitro tube formation in HUVECs.

Figure 2. VEGF levels in vitreous body
and serum samples from PDR and MH
patients. The vitreous levels of VEGF
were higher (p<0.01) in PDR
(798.2±882.7 pg/ml; n=14) than in MH
(17.7±15.5 pg/ml; n=14). On the other
hand, the serum levels of VEGF were no
significant differences (p=0.83)
between PDR (177.9±155.5 pg/ml; n=9)
and MH patients (151.3±96.8 pg/ml;
n=9). Double asterisk (**) denotes
p<0.01 based on the Kruskal–Wallis
test.
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In this study, intravitreal EC-SOD and VEGF were
significantly higher in PDR patients than in MH patients
(Figures 1 and Figure 2). However, the two factors did not
correlate (Figure 3). These results suggest that the increase of
EC-SOD and VEGF were separately regulated in vitreous
body in PDR patients. So, why was EC-SOD increased in the
vitreous body in PDR patients? Expression of EC-SOD has
been localized to specific cells and tissues, with the highest
expression occurring in lung, heart, kidney, and vasculature
[15]. Since new vessel formation is promoted in ocular tissue
in PDR patients compared with MH patients, upregulation of
EC-SOD in ocular tissue is to be expected. However, Coral et
al. noted intravitreal levels of homocysteine, a metabolite of

methionine, are increased in PDR patients [16]. It has been
reported that homocysteine suppresses heparin binding
activity of EC-SOD connected with vascular endothelial cells
[17]. These results indicate that upregulation of EC-SOD is to
be expected in the solution of ocular tissue in PDR patients
via increment of newly vessels formation and decrement of
heparin binding activity of EC-SOD.

Neovascularization of the retina is a diagnostic feature of
PDR and is well correlated with the intravitreal level of VEGF,
although the serum VEGF does not change [5,6]. Our data in
the present study are in agreement with these previous data
[5,6]. The details of the mechanism responsible for the
hundredfold elevation of intravitreal VEGF levels in PDR

Figure 3. Correlations between EC-
SOD and VEGF levels (for vitreous
body and serum). A: Intravitreal EC-
SOD showed a significant correlation
with intravitreal VEGF. The correlation
coefficient was 0.61, and the p value was
p<0.001. B: In the serum, there was no
significant correlation between EC-
SOD and VEGF. For vitreous body data,
open circles represent MH patients and
closed circles indicate PDR patients. For
serum data, open triangles represent MH
patients and closed triangles indicate
PDR patients. Correlations were
examined using Spearman rank-
correlation coefficient, and the number
of each group was follow: the vitreous
samples of PDR (n=14) and MH (n=14),
the serum samples of PDR (n=9) and
MH (n=9).
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patients compared to nondiabetic controls remain unclear, but
it is certain that this type of increase in VEGF in the vitreous
body is related to the development of PDR.

A strong relationship exists between diabetic retinopathy
and oxidative stress [18]. Verdejo et al. reported that lipid
peroxidation markers (malondialdehyde-like metabolites and
4-hydroxynonenal) are increased in the vitreous body of the
PDR patient [19]. Oxidative stress is known to be regulated
by various redox enzymes (e.g., SOD, catalase, and
glutathione-S-transferase) and antioxidants (e.g., vitamin E
and coenzyme Q10). In the present study, we detected a
twofold increase in EC-SOD levels in the vitreous of PDR
patients (versus MH). From this result, we hypothesized about
the possible role played by the elevated intravitreal level of
EC-SOD in PDR, as follows: 1) increased EC-SOD may serve
to maintain the equilibrium between oxidative stress and
antioxidative activity, a condition in which there is
upregulation of lipid oxides in the vitreous body in PDR; or
2) EC-SOD may serve as a inhibitor of angiogenesis. Wheeler
et al. noted that overexpression of EC-SOD suppressed
implanted B16-F1 tumor cell growth and tumor
vascularization in mice [20]. In the present study, EC-SOD
suppressed VEGF-induced in vitro angiogenesis by inhibiting
cell proliferation (Figures 4 and Figure 5). The effects were
confirmed not only in HUVECs but also in HMVECs (Figure
5). It is known that VEGF-induced angiogenesis is mediated
by ROS, and various antioxidants suppress the angiogenesis

[21]. Taken together, EC-SOD may suppress ROS generation
playing the signal pathway, but the detailed mechanism is
unclear.

In the present study, external application of EC-SOD at
100 ng/ml partially suppressed VEGF-induced tube formation
(both joint and path parameters) in HUVECs (Figure 4), and
proliferation in HUVECs and HMVECs (Figure 5). EC-SOD
at 100 ng/ml exhibits angiostatic effect in an in vitro
experiment, the concentration of which consistents with the
intravitreal concentration in PDR patients (20 to 100 ng/ml).
Hence, the angiostatic effect of EC-SOD was weak, but the
effect may reflect the acute intravitreal environment of PDR
patients.

The loss of EC-SOD from the vasculature of diabetic
patients may have implications with regard to the interaction
of superoxide and nitric oxide (NO) in blood vessels.
Although glycation of EC-SOD does not affect enzymatic
activity [22], glycation does inhibit the activity of the CuZn-
SOD [23]. Heparin affinity of EC-SOD can be reduced in
diabetic conditions, because of high blood glucose, through
nonenzymatic glycation of EC-SOD at lysine residues located
in the heparin-binding domain [22]. Our present study
revealed that intravitreal levels of EC-SOD were increased in
PDR compared with nondiabetic MH patients. This increase
may reflect the alteration of EC-SOD from the extracellular
matrix to the interstitium in the diabetic condition.

Figure 4. Effects of EC-SOD against in
vitro tube formation in HUVECs. A: In
vitro tube formation was achieved using
an in vitro angiogenesis kit. Briefly,
HUVECs and fibroblasts were
incubated with 10 ng/ml VEGF with or
without 100 ng/ml EC-SOD. In the
control group, HUVECs were incubated
with culture medium. After 11 days,
they were stained with anti CD31
antibody, an endothelial cell marker.
Scale bar represents 0.5 mm. Tube
formation was evaluated by
measurements of (B) joint and (C) path,
as described in “Methods.” Data
represent means and standard error
(n=8), with “Control” being given the
value 1.0. Double sharp (##) denotes
p<0.01 versus Control based on the
Tukey test. Asterisk (*) denotes p<0.05
versus VEGF alone based on the Tukey
test. The number of each group was 8.
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The mediating roles that oxidants play between VEGF
overexpression and diabetic retinopathy are well established.
Substances that decrease ROS levels may well prove to be
useful in treating diabetic retinopathy. For example, low
molecular weight SOD and catalase mimetics are highly
effective at catalyzing the transformation of superoxide and
hydrogen peroxide [24]; however, tempol, a SOD mimetic,
can reverse endothelial dysfunction in diabetic rats [25], and
FP15, a peroxynitrite decomposition catalyst, has been
reported to protect against both leukocyte adhesion within
retinal vessels and vascular dysfunction in diabetic mice
[26]. As ocular tissues may be heavily exposed to free radicals
in diabetic and nondiabetic conditions, treatment aimed at

increasing antioxidative activity may have beneficial effects
against diabetic retinopathy.

NO promotes cell migration in endothelial cells. NO
reacts at an almost diffusion-controlled rate with superoxide
resulting in loss of NO bioactivity [27]. Hence, EC-SOD may
be important role for maintaining the NO bioactivity. In the
present study, EC-SOD suppressed VEGF-induced cell
proliferation and tube formation, but not migration, in
HUVECs (Figures 4 and Figure 5). At the present time it is
unclear why EC-SOD did not affect VEGF-induced migration
in HUVECs and HRMVECs, and thus further investigations
are warranted.

Figure 5. Effects of EC-SOD against
VEGF-induced cell proliferation and
migration in HUVECs and HRMVECs.
In the proliferation assay, (A) HUVECs
and (B) HRMVECs were incubated
with 10 ng/ml VEGF with or without
100 ng/ml EC-SOD for 72 h. EC-SOD
significantly suppressed VEGF-induced
proliferation in HUVECs and
HRMVECs. Data represent means and
standard error. The number of Control
group (n=12), EC-SOD alone (n=12),
VEGF alone (n=18), and VEGF plus
EC-SOD (n=18). The value of
“Control” defines as 100%. Double
sharp (##) denotes p<0.01 versus
Control based on the Tukey test.
Asterisk (*) and double asterisk (**)
denotes p<0.05 and p<0.01 versus
VEGF alone based on the Tukey test.
C, D: HUVECs and (E) HRMVECs
migration were assessed using a wound-
healing assay. Briefly, 90% confluent
monolayer cells were scratch-wounded,
then incubated for 24 h. Images of this
type of wounded monolayer are shown
for 0 h and 24 h after treatment with 10
ng/ml VEGF with or without 100 ng/ml
EC-SOD. C: These pictures indicated
the migration cells after stimulated
VEGF with or without EC-SOD in
HUVECs. Scale bar represents 250 µm.
Horizontal lines indicate wound edges.
D, E: EC-SOD had no effect by itself,
and no effect on VEGF-induced
migration (versus VEGF alone) in
HUVECs and HRMVECs. Data
represent means and standard error
(n=4). Double sharp (##) denotes
p<0.01 versus Control based on the
Tukey test.
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In the present study, we measured the intravitreal
concentrations of VEGF in PDR patients. Some patients with
PDR also experienced vitreous hemorrhage. To investigate
the effects of vitreous hemorrhage, we compared intravitreal
levels of VEGF from PDR patients with or without the
hemorrhage condition. However, we found no significant
differences between hemorrhage and nonhemorrhage groups.
Similarly, intravitreal levels of EC-SOD did not differ
significantly between the hemorrhage and non-hemorrhage
groups (data not shown). Hence, intravitreal levels of VEGF
and EC-SOD were not influenced by vitreous hemorrhage in
PDR patients.

In conclusion, our clinical study revealed that EC-SOD
and VEGF were increased in the vitreous body from PDR
patients. EC-SOD may be related to upregulation of VEGF
levels in the vitreous body during PDR, suggesting that EC-
SOD may play a pivotal role in the pathogenesis of
angiogenesis.
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