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The epidermal growth factor recep-
tor (EGF-R) constitutes one of the 

most broadly targeted antigens in tumor 
therapy since it is commonly expressed on 
many epithelial cancers, as well as on glio-
blastomas. Both EGF-R-directed tyrosine 
kinase inhibitors and monoclonal anti-
bodies have been approved, but clinical 
response rates are often limited. A more 
detailed understanding of the mechanisms 
underlying sensitivity or resistance against 
EGF-R inhibitors may assist in identify-
ing patient populations who optimally 
benefit from currently available reagents. 
In addition, these insights may guide the 
development of more effective molecules. 
In this short review, we will summarize 
some of the current knowledge in this rap-
idly evolving field with particular empha-
sis on EGF-R-directed antibodies.

EGF-R as Target for Cancer 
Therapy

Scientific background and clinical sta-
tus of EGF-R inhibitors. The epidermal 
growth factor receptor (EGF-R) belongs 
to the family of ErbB molecules, which 
constitute type I transmembrane tyrosine 
kinases. Upon binding of ligand, the recep-
tor undergoes a conformational change 
from a tethered to an un-tethered con-
figuration, which allows homo- or hetero-
dimerization with other members of the 
family,1 and leads to receptor activation 
and recruitment of downstream signal-
ing molecules.2 Transgenic expression of 
mutated EGF-R in mice induced tumors 
that resembled their human counterparts 
in many respects.3,4 Overexpression or gene 

amplification of EGF-R is indeed found in 
many human tumor types.5 Results such 
as these have underscored the importance 
of EGF-R to tumorigenesis, and have lead 
to wide-spread study of EGF-R inhibitors 
as anti-cancer agents.

So far, two classes of EGF-R inhibitors 
have obtained regulatory approval for the 
treatment of cancer patients: orally avail-
able, small molecule tyrosine kinase inhibi-
tors (TKI) and monoclonal antibodies 
(mAbs) (Tables 1 and 2).6 Many other mol-
ecules, and also different approaches (e.g., 
immunotoxins, vaccination), are under 
clinical evaluation. To date, TKI have been 
particularly effective in non small-cell lung 
cancer (NSCLC), but ineffective in col-
orectal cancer (CRC). On the other hand, 
EGF-R antibodies are approved for treat-
ment of CRC, as well as head and neck can-
cer, but evidence for efficacy in NSCLC is 
just emerging. Interestingly, several studies 
to combine TKI with cytotoxic chemother-
apy failed, while the approved mAb thera-
peutic cetuximab is regularly combined 
with chemo- or radiotherapy. Here, we 
focus on EGF-R antibodies cetuximab and 
panitumumab as treatments for NSCLC 
and CRC. More detailed discussion about 
the clinical status of EGF-R inhibitors can 
be found in the literature.7-9

Predictors of Response or  
Resistance to EGF-R-Directed 

Therapies

The concept of personalized medicine is 
based on the identification of patient-specific 
tumor characteristics that can be targeted 
by highly selective drugs.10 Considering side 
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in ref. 15). Interestingly, nimotuzumab, an 
EGF-R antibody against a specific EGF-R 
epitope,16 appeared not to trigger this type 
of toxicity.

Immune Activation  
Markers—FcγR Polymorphisms

Contribution of the immune system to the 
efficacy of several mAb therapeutics has 
been suggested by studies in mice lacking 
activating Fcγ receptors.17 Further analy-
ses of the underlying mechanisms revealed 
macrophages to be the relevant effector 
cell population for B cell depletion after 
anti-CD20 therapy.18 Interestingly, similar 
studies in animals have not been reported 
for EGF-R antibodies. Clinical evidence 
for the contribution of the immune sys-
tem is derived from studies that correlated 
Fcγ receptor polymorphisms with the 
therapeutic outcome of antibody therapy. 
For the EGF-R antibody cetuximab, two 
studies reported associations between the 
expression of certain Fcγ receptor allo-
forms and therapeutic outcome. In one of 
these studies, cetuximab was reported to 
have superior activity in patients carrying 
FcγRIIa-131H or FcγRIIIa-158V alleles, 
a result that has previously been reported 
for other therapeutic antibodies.19 Similar 
correlations for FcγRIIa, but surprisingly 
different results with respect to FcγRIIIa, 
were reported in a second study.20 Since 
FcγRIIa is predominantly expressed by 
myeloid effector cells, i.e., monocytes, 
polymorphonuclear leukocytes (PMN), 
and natural killer (NK) cells predomi-
nantly express FcγRIIIa, these results may 
suggest that both NK cells and myeloid 
cells serve as effectors for EGF-R anti-
bodies. Alternatively, Fcγ receptor alleles 
may be genetically linked, an issue that is 
controversially discussed.21,22 Importantly, 
panitumumab, a human IgG2 antibody 
that has been considered not to mediate 
antibody-dependent cellular cytotoxicity 
(ADCC), also effectively triggered cyto-
toxicity by myeloid, but not by NK cells.23 
Studies on the impact of FcγR polymor-
phisms for the outcome of panitumumab 
therapy have not been reported.

Clinical Parameters

Clinical markers for response to tumor 
therapy typically include parameters like 
tumor stage and grading, histology, gender, 
ethnicity, co-morbidities and performance 
status. The impact of these parameters 
for conventional tumor therapy is well 
established. Analyses of early trials with 
EGF-R-directed TKI indicated that Asian 
origin, female gender, non-smoker status 
and adenocarcinoma/bronchoalveolar car-
cinoma (BAC) histology were strong pre-
dictors for response to these molecules in 
NSCLC.13 Interestingly, selected patients 
with mutated EGF-R responded to gefi-
tinib, even if they had a low performance 
status that rendered them poor candidates 
for conventional chemotherapy.14 This 
latter observation suggested that conven-
tional parameters for response prediction 
may not apply for targeted therapies.

Both EGF-R-directed TKI and anti-
bodies induce a typical “acneiform” skin 
rash, but several other skin reactions are 
also commonly observed. These dermato-
logic side effects negatively affect the “qual-
ity of life” of patients treated with EGF-R 
inhibitors. On the other hand, their occur-
rence has repeatedly been reported to cor-
relate with better response rates (reviewed 

effects and the high costs of these targeted 
therapies, the identification of markers that 
predict response or resistance to these novel 
reagents is crucial. Typically, prognostic 
and predictive markers are distinguished. 
According to this concept, prognostic 
markers should relate to intrinsic charac-
teristics of the tumor and should be inde-
pendent from specific therapy. In contrast, 
predictive markers are defined for a specific 
type of therapy, and may vary depending 
on the therapy under evaluation. In clinical 
practice, distinguishing these two types of 
markers may be difficult and identification 
and verification of predictive markers con-
stitutes a considerable task.11

Although the need to identify biomark-
ers for EGF-R-directed therapy is widely 
acknowledged, there is considerable dis-
cord among studies regarding the suit-
ability of individual markers (see below). 
Discrepancies between different studies 
may, in part, be explained by variations 
in assays and technologies, which make 
comparisons difficult. In the future, these 
problems may be overcome by standard-
ization of biomarker.12

Table 1. EGF-R-directed antibodies in clinical development

Antibody Isotype Type Target Epitope/
Domain

Status

Panitumumab IgG2 Human ErbB1 III Approved

Cetuximab IgG1 Chimeric ErbB1 III Approved

Nimotuzumab IgG1 Humanized ErbB1 III Approved

Zalutumumab IgG1 Human ErbB1 III Phase II/III

IMC-11F8 IgG1 Human ErbB1 III Phase I/II

Ch806 IgG1 Chimeric Mutated ErbB1 II/III Phase I

Matuzumab IgG1 Humanized ErbB1 III Terminated

Table 2. Tyrosine kinase inhibitors targeting the EGF-R pathway

Drug name Target Status

Gefitinib EGF-R Approved

Erlotinob EGF-R Approved

Vandetanib EGF-R, VEGFR-2, VEGFR-3, RET Phase III

BMS-690514 Pan-HER; VEGFR-2 Phase II

XL647 VEGFR-2, EGF-R, ErbB-2, EPHB4 Phase I/II

AEE-788 EGF-R, ErbB-2, VEGFR-2 Phase I

PKI-166 EGF-R, ErbB-2 Phase I

RET, Rearranged during transfection; EPHB4, ephrin receptor B4.
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wild-type, EGF-R triggered ligand-inde-
pendent cell proliferation. Importantly, 
kinase mutated receptors were signifi-
cantly more sensitive to EGF-R-directed 
TKI like gefitinib and erlotinib than wild-
type EGF-R. Furthermore, site-directed 
expression of mutated EGF-R in trans-
genic mice induced murine tumors that 
resembled human lung cancer, while wild-
type EGF-R was not oncogenic under 
these conditions.3,4 In vivo, these differ-
ences translated into improved responses 
to TKI in animal models of EGF-R 
mutated compared to wild-type tumors. 
Together, these studies suggested that 
mutated EGF-R may be an “oncogenic 
driver”, while wild-type EGF-R appeared 
to rather act as a “passenger” under these 
conditions.40 Interestingly, the mutational 
status of EGF-R did not affect effec-
tor mechanisms of EGF-R antibodies in 
vitro41 or in animal models.42

Clinically, EGF-R kinase mutations 
have been demonstrated to be strong pre-
dictors for response to therapy with EGF-
R-directed TKI.43 Interestingly, exon 19 
deletions were associated with better clini-
cal outcomes compared with L858R muta-
tions,44 as suggested by their respective 
sensitivity against TKI in vitro.41 These 
mutations have been found in lung cancer 
patients, but were very rare in colorectal or 
other EGF-R expressing tumor types. In 
lung cancer patients, mutations are more 
prevalent in Asian compared to non-Asian 
populations, in non-smokers, in females 
and in tumors with adenocarcinoma or 
BAC histology. Retrospective analyses of 
large TKI trials in lung cancer patients 
revealed a significant positive correlation 
between the presence of these mutations 
and response to TKI therapy.45 This cor-
relation was stronger for gefitinib than 
for erlotinib,46,47 which may be explained 
by different dosing schedules and sensi-
tivities of the different receptors for the 
two drugs. In fact, remarkable response 
rates in the range of 50–80% have been 
reported from prospective trials with 
EGF-R-directed TKI in EGF-R-mutated 
lung cancer patients.48

However, as expected from clinical 
experience with TKI in other tumor enti-
ties, these responses were not durable.49 
After a median of 12 months, patients 
typically develop secondary resistance 

While some studies using IHC for analy-
sis reported an impact,13 other studies did 
not observe similar correlations (reviewed 
in ref. 12). As analyzed by IHC, colorectal 
cancer patients apparently even responded 
to cetuximab in the absence of EGF-R 
expression.28 If these unexpected results 
were not explained by technical problems 
of IHC or sampling artefacts within dif-
ferent tumor areas, then they may suggest 
that targeting EGF-R on non-tumor cells 
may represent a novel “non-tumor-related” 
mechanism of action for EGF-R antibod-
ies. For example, cetuximab-mediated 
suppression of endogenously produced vas-
cular endothelial growth factor (VEGF) 
levels has been proposed.29 Alternatively, 
IHC may be too insensitive to detect low 
EGF-R expression levels that are already 
sufficient to trigger ADCC.

In lung cancer patients, EGF-R gene 
amplification analyzed by FISH appeared 
to be a predictor for response to TKI13 
or EGF-R antibody therapy.30 Similarly, 
EGF-R gene amplification was associated 
with an improved response rate to cetux-
imab31 or panitumumab in colorectal can-
cer patients.32 However, conflicting results 
have also been reported in both tumor 
types, and the relevance of FISH for pre-
dicting response to EGF-R inhibitors has 
not been clearly established.33,34

Since both EGF-R-directed TKI and 
antibodies target the EGF-R protein, it 
remains difficult to understand why gene 
amplification, but not protein expression 
levels should predict responses to EGF-R 
inhibitors. The discrepancies in study 
results may again suggest methodological 
problems. Furthermore, animal studies 
demonstrated that tumor load and EGF-R 
expression levels may significantly affect 
the pharmacokinetics of EGF-R antibod-
ies.35 These observations may have impor-
tant impact for clinical dosing schedules.

EGF-R kinase mutations. EGF-R 
sequencing from lung cancer samples 
identified the occurrence of somatic muta-
tions in the kinase domain of EGF-R.36-38 
These mutations, which were most com-
monly exon 19 deletions (E746_A750del) 
or exon 21 point mutations (L858R), 
increased the affinity of EGF-R for ATP, 
and thereby significantly altered the biol-
ogy of mutated compared to wild-type 
receptors.39 For example, mutated, but not 

Tumor Biomarkers

Tumor biomarkers may assist in the selec-
tion of patients who will maximally benefit 
from appropriate targeted therapies, and 
identification of relevant effector mecha-
nisms of these agents. Biomarkers may 
also provide insight into the pathophysi-
ology of the treated tumors. Since most 
of these markers need to be evaluated 
directly in tumor cells, sufficient amounts 
of freshly biopsied or archived tumor 
material are required for these analyses. 
This imposes a significant challenge for 
many retrospective studies because often 
only relatively small sample numbers can 
be analyzed, which may lead to statistical 
problems with the data.12 If clinical deci-
sions depend on the results of these analy-
ses, then turn-around times become a 
critical issue as well, since many of the pre-
senting patients require timely treatment. 
The development of novel reagents—such 
as mutation-specific EGF-R antibodies,24 
or novel technologies—like determina-
tion of EGF-R mutations in circulating 
tumor cells,25 may assist in overcoming 
these practical problems. Recent results 
for some of these biomarkers are discussed 
in the following sections.

Immunohistochemistry and fluores-
cence in situ hybridization. An important 
question is whether EGF-R gene or pro-
tein expression levels are correlated with 
response to EGF-R inhibitors. Two meth-
ods are commonly used to evaluate expres-
sion levels: immunohistochemistry (IHC), 
which measures EGF-R protein expression 
in tumor tissue, and fluorescence in situ 
hybridization (FISH), which analyses 
EGF-R gene amplification by measuring 
gene copy numbers in situ. Both methods 
are technically demanding and difficult 
to standardize between various laborato-
ries.12 These technical obstacles may in 
part explain discrepancies between results 
from different studies designed to address 
similar questions. Alternatively, EGF-R 
downmodulation by EGF-R ligands may 
represent another explanation.26

In contrast to trastuzumab therapy, 
where increased HER-2/neu expression 
levels and amplified gene copy numbers 
were correlated with increased treatment 
benefit,27 study results for EGF-R-directed 
therapy have been more controversial. 
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cleaved from membrane-expressed precur-
sors.74 Several studies addressed the impact 
of individual ligands or their respective 
sheddases under physiological conditions75 
or for tumor development.76 For example, 
amphiregulin appeared to be particularly 
relevant for enhancing resistance to nema-
todes in the gut.77

Interestingly, higher levels of mRNA 
expression for amphiregulin and epiregu-
lin were correlated with improved response 
rates to cetuximab in colorectal cancer 
patients.26 These provoking results have 
recently been confirmed by similar stud-
ies.57,73 Together, these observations may 
suggest that EGF-R ligand expression may 
play a pathophysiological role in the pro-
gression of a subgroup of colorectal can-
cers, which could be successfully inhibited 
by EGF-R blockade.

Approaches to Enhance the  
Efficacy of EGF-R Antibodies

In the future, a more detailed under-
standing of the mechanisms underlying 
sensitivity and resistance against EGF-R 
inhibitors should assist in identifying 
patient populations who optimally benefit 
from currently available reagents. In addi-
tion, these insights may guide the rational 
development of more effective molecules 
such as novel TKI or antibodies with 
enhanced effector functions. Potential 
strategies are discussed in the following 
paragraphs.

Patient Selection

Results from clinical trials with EGF-R-
directed TKI in NSCLC constitute a classic 
example of biomarker-guided personalized 
medicine: while an unselected population 
of patients derived minimal benefit from 
TKI compared to best supportive care,46 
TKI induced significant response rates if 
patients were selected for the presence of 
EGF-R mutations.48 Interestingly, patients 
with mutated EGF-R responded to gefi-
tinib even if they had a low performance 
status that rendered them poor candidates 
for conventional chemotherapy.14 So far, 
no tumor biomarkers have been identi-
fied to predict response to cetuximab 
in NSCLC patients.56,57 Importantly, 
response to cetuximab in NSCLC was 

patients were considered unlikely to derive 
benefit from this treatment.65

In lung cancer patients, KRAS muta-
tions are less common, and have been asso-
ciated with resistance to EGF-R-directed 
TKI.66,67 However, it is interesting to note 
that response rates to the EGF-R antibody 
cetuximab were not affected by the absence 
or presence of KRAS mutations.56,57 These 
discrepancies between results for TKI and 
antibody therapies in lung cancer suggest 
that antibodies may recruit additional 
effector mechanisms compared to TKI. 
Differences between colorectal and lung 
cancers in response to EGF-R antibodies 
could suggest distinct functions of KRAS 
in both tumor types, or different modes of 
action of EGF-R antibodies depending on 
the tumor site.

Other signaling molecules. Mutations 
in other downstream signaling molecules 
were expected to lead to similar pheno-
types as KRAS mutations. For example, 
mutations in BRAF were reported to be 
associated with resistance to cetuximab 
or panitumumab therapy in colorec-
tal cancer patients.68 This clinical study 
was supported by experimental evidence 
demonstrating that introduction of the 
typical V600E BRAF mutation rendered 
EGF-R expressing DiFi cells less sensitive 
to EGF-R antibodies. Interestingly, KRAS 
and BRAF mutations appeared to be mutu-
ally exclusive in this patient population.

Conflicting results have been reported 
concerning the impact of PIK3CA on 
resistance to EGF-R antibodies. While 
one study reported that the presence of 
PIK3CA mutations was correlated with a 
lack of response to cetuximab,69 a larger 
study did not confirm this observation.70 
The activity of PI3KCA is inhibited by 
phosphatase and tensin homolog (PTEN). 
Thus, loss of PTEN expression leads to 
continuous activation of PI3K. In glioblas-
tomas, loss of PTEN expression has been 
reported to mediate resistance to EGF-R-
directed TKI.71 Similar results have been 
reported for lung cancer,72 and for cetux-
imab therapy in colon cancer.73

EGF-R ligands. Human EGF-R binds 
at least seven different ligands, EGF, 
transforming growth factor, amphiregu-
lin, epiregulin, betacellulin, epigen and 
heparin-binding epidermal growth factor-
like growth factor, that are proteolytically 

to currently approved EGF-R-directed 
TKI.50 As a common mechanism of resis-
tance, a secondary EGF-R kinase mutation 
(T790M) that inhibited TKI binding to 
the active site of the enzyme analogous to 
mutations in other kinases was described.51 
In addition, amplification of MET with 
subsequent recruitment of ErbB3 signaling 
has frequently been identified.52 Together, 
T790M and MET amplification account 
for 60–70% of tumors with secondary 
TKI resistance. In addition, alterations 
in IGF-R signaling have been observed to 
mediate TKI resistance in cell lines.53

In comparison to TKI, experience 
with EGF-R antibodies in lung cancer is 
more limited.54 To date, the largest trial 
of EGF-R antibodies in NSCLC patients, 
the ‘First-line in lung cancer with Erbitux’ 
(FLEX) study, demonstrated a signifi-
cant advantage in overall survival for 
patients receiving cetuximab in combi-
nation with chemotherapy compared to 
patients receiving chemotherapy alone.55 
However, no biomarkers that would pre-
dict resistance or sensitivity to cetuximab 
have been identified from this study.56 In 
another large lung cancer study, neither 
EGF-R kinase mutations, nor EGF-R 
IHC or FISH were predictive for response 
to cetuximab therapy.57

KRAS mutations. Ras molecules 
belong to the family of small GTPases that 
are critically involved in cell signaling and 
activation.58 Among the different Ras mol-
ecules, the KRAS4b isoform commonly 
carries activating exon 12 or 13 mutations 
in solid tumors. These mutations lead to 
receptor-independent activation of down-
stream signaling events.59

Activating KRAS mutations were 
reported in 30–40% of colorectal cancers. 
A definite impact of KRAS mutations as 
prognostic factor—independent of treat-
ment—has not been convincingly demon-
strated.60 Importantly, several large studies 
in colorectal cancer patients reported that 
the presence of somatic KRAS mutations 
was correlated with a lack of benefit from 
EGF-R antibody therapy;61-63 some inves-
tigators even suggested a negative impact 
of EGF-R inhibitors in these patients.64 
These observations lead to the recommen-
dation that patients with KRAS-mutated 
colorectal cancers should not be treated 
with EGF-R antibodies because these 
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effective in CRC was interpreted to suggest 
that Fc-independent effector mechanisms 
were particularly relevant because human 
IgG2 is a poor activator of complement, 
and does not bind to the FcγRIIIa receptor. 
However, human IgG2 effectively binds to 
FcγRIIa, and recruits myeloid cells (mono-
cytes and PMN) for ADCC.23 Thus, the 
relative contribution of these two types of 
mechanisms to the efficacy of EGF-R anti-
bodies is unknown, and may also depend 
on variables such as tumor type, location, 
Fcγ receptor polymorphisms, recruitment 
of immune effector cells to the tumor site 
or other undefined genetic alterations. 
Considering the high incidence of EGF-R 
expressing tumors and the often limited 
therapeutic options for these patients, 
EGF-R appears to be a particularly inter-
esting target antigen for exploring opti-
mized antibodies in clinical studies.

Enhancing direct effector functions. 
Currently approved EGF-R antibodies 
and many of those in clinical development 
have been selected for blocking ligand 
binding to the receptor. Thus, cetux-
imab, panitumumab, and zalutumumab 
completely block EGF binding, while 
matuzumab and nimotuzumab demon-
strate partial receptor blockade. Thus, it 
may not be surprising that these EGF-R 
antibodies are all directed against domain 
III, the ligand-binding region of EGF-R. 
Interestingly, structural analyses revealed 
that cetuximab, panitumumab and zalu-
tumumab bind to distinct, but overlap-
ping epitopes,83,84 while the binding of 
matuzumab and nimotuzumab is dis-
tinct from the former group.16,85 Despite 
overlapping epitopes, zalutumumab dif-
fered from cetuximab and panitumumab 
in the recruitment of direct effector 
functions.23,86

Interestingly, the therapeutic antibod-
ies trastuzumab and pertuzumab bind to 
domains IV or II of ErbB-2, respectively.84 
Based on the structural homology between 
EGF-R and ErbB-2, which are both mem-
bers of the ErbB family, targeting other 
domains of EGF-R might allow isolation 
of EGF-R antibodies with interesting 
new mechanisms of action. These might 
include prevention of homo- or heterodi-
merization with ErbB family members, or 
inhibition of interaction with other mem-
brane molecules interacting with EGF-R. 

Targeting Other Pathways

During the last few years, it has became 
evident that networks of interconnected, 
and in some cases redundant, signal 
transduction pathways are responsible for 
maintaining many solid tumors. Dual 
inhibition of VEGF and EGF-R may be 
especially important for optimal inhibition 
of tumor growth because these pathways 
are often linked in malignantly trans-
formed cells.78 For example, activation 
of EGF-R can increase the production of 
VEGF in human cancer cells. Conversely, 
VEGF expression was decreased after 
inhibition of EGF-R signaling pathways. 
Furthermore, cetuximab in combination 
with VEGF-R-2 antibodies was more 
effective compared to single agent treat-
ment in xenograft tumor models.79 Based 
on promising preclinical and early clini-
cal data, a large randomized phase III 
trial tested the combination of chemo-
therapy and bevacizumab with or without 
cetuximab.80 Unexpectedly, addition of 
cetuximab decreased the progression-free 
survival in this study,81 which again dem-
onstrated that preclinical and early clini-
cal studies may be misleading concerning 
the benefit of combinations. Nevertheless, 
reasonable novel combinations include 
EGF-R inhibitors and therapeutic agents 
targeting c-MET- or ErbB-3 receptors, 
but inhibitors of these latter receptors are 
currently in more experimental stages of 
development.

Enhancing Antibodies’ Effector 
Functions

Antibodies’ effector functions can be 
divided into those that are mediated 
by binding of the F(ab) regions to their 
respective target antigen, and those that 
are recruited by the Fc region. For the 
purpose of the discussion here, we refer 
to the former mechanisms as direct, and 
Fc-mediated functions as indirect mecha-
nisms of action. While direct effector 
functions of antibodies are predominantly 
determined by the fine epitope of specific 
antibodies, indirect effector functions are 
amenable to antibody Fc engineering.82 
The clinical observation that EGF-R 
antibodies of human IgG1 (cetuximab) 
and IgG2 (panitumumab) isotype were 

not negatively affected by the presence of 
KRAS mutations, which predict primary 
resistance against EGF-R-directed TKI. 
Furthermore, in vitro41 and in vivo42 stud-
ies demonstrated that EGF-R antibodies 
were effective against tumor cells carry-
ing the T790M mutation, which confers 
secondary TKI resistance. Thus, patients 
unsuitable for TKI may be candidates for 
EGF-R antibodies. In particular, patients 
developing secondary resistance during 
TKI therapy appear to be promising can-
didates for EGF-R antibodies, since these 
tumors should be driven by EGF-R.

In colorectal cancer, the clinical rel-
evance of KRAS mutations was dem-
onstrated in large retrospective studies 
investigating the response to cetuximab or 
panitumumab therapy.61-64 Similarly, evi-
dence for the predictive value of EGF-R 
ligand expression26,57,73 or Fcγ receptor 
polymorphisms19,20 was derived from retro-
spective analyses. Future prospective stud-
ies need to further address the predictive 
value of these biomarkers. With respect 
to the underlying effector mechanisms of 
EGF-R antibodies, it will be interesting to 
analyze whether patients with favorable 
Fcγ receptor allotypes (FcγRIIIa-158V/V 
and/or FcγRIIa-158H/H) will respond 
to cetuximab even if their tumors carry 
mutated KRAS, as indicated by results 
from individual patients.19 In addition, 
other biomarkers, such as EGF-R ligands, 
PIK3CA mutations or loss of PTEN, 
may become relevant in the future if their 
impact on EGF-R-directed therapy is 
validated.

Combinations with Other Agents

Combining individually effective drugs 
together is a standard approach in oncology, 
and has considerably improved response 
rates in many tumors. Interestingly, cetux-
imab can be combined with chemo- or 
radiotherapy without causing unexpected 
toxicities.8 However, combining EGF-
R-directed TKI with chemotherapy did 
not further improve treatment results in 
NSCLC patients.8 Negative results from at 
least four different trials were unexpected 
since preclinical studies suggested synergy 
between TKI and chemotherapy.
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may critically affect the efficacy of EGR-
R-directed antibodies, and could encour-
age the development of antibodies with 
novel effector mechanisms. On the other 
hand, the choice between different Fc iso-
types allows the tuning of indirect effec-
tor functions, resulting in molecules that 
optimally trigger combinations of direct 
and indirect effector mechanisms. Today, 
most clinically approved antibodies are 
of the human IgG1 isotype, but an IgG2 
antibody against EGF-R (panitumumab) 
has also demonstrated clinical efficacy 
and is approved for the treatment of CRC 
patients. Interestingly, panitumumab has 
been reported to trigger ADCC by myel-
oid cells (monocytes and PMN), but not 
by NK cells.23 Cetuximab’s efficacy was 
critically affected by polymorphisms in 
FcγRIIa and FcγRIIIa, suggesting that 
both myeloid and NK cells contribute to its 
efficacy. Surprisingly, other antibody iso-
types that could be considered for clinical 
applications have not been carefully ana-
lyzed. For example, human IgG3 is par-
ticularly potent in triggering complement 
deposition, while IgG1 is more effective in 
ADCC by NK cells.91,92 Recently, mixed 
isotypes of IgG1 and IgG3 generated by 
genetic fusion of different domains of both 
isotypes have been reported, and these 
demonstrated potent ADCC activity com-
parable to IgG1 and efficient complement-
dependent cytotoxicity (CDC) activity 
in the range of IgG3 antibodies.93 Thus, 
the rational choice of effector functions, 
which depends on tumor type, availability 
of effector cells or effector molecules such 
as complement, may further improve the 
efficacy of EGF-R antibodies.

In addition, non-IgG isotypes like IgA 
antibodies display features distinct from 
IgG antibodies, which make them attrac-
tive for immunotherapy. Two subclasses—
IgA1 and IgA2—are distinguished. After 
covalent binding to plasma cell produced 
joining (J)-chain, IgA antibodies form 
natural dimers. Binding of these dimers to 
the polymeric immunoglobulin receptor 
(pIgR) leads to the directed transcellular 
secretion of IgA onto mucosal surfaces. At 
the luminal surface, secretory IgA (sIgA) 
is released, which consists of IgA dimers, 
J-chain and the proteolytically cleaved 
extracellular part of the pIgR. Thereby, 
pharmacokinetic properties of IgA are 

and overexpressed wild-type receptor, have 
been reported.90

Enhancing indirect effector func-
tions. Lack of response to EGF-R target-
ing agents in a substantial proportion of 
patients can be attributed to several gen-
eral mechanisms: occurrence of specific 
EGF-R mutations (e.g., T790M), consti-
tutive activation of downstream media-
tors in the EGF-R pathway (e.g., KRAS 
or BRAF mutations, loss of PTEN), or 
activation of alternative tyrosine kinases 
that bypass or crosstalk with the EGF-R 
pathway (e.g., ErbB-3, c-MET, IGF-1R). 
Detailed analyses of the “mutational 
status” for each patient together with 
knowledge from clinical experience might 
allow identification of patients who could 
optimally benefit from EGF-R antibod-
ies. Alternatively, EGF-R antibody can-
didates with improved ability to recruit 
indirect effector functions might dem-
onstrate improved efficacy compared to 
the currently marketed products. By this 
approach, EGF-R would merely serve as 
a docking site for EGF-R antibodies with 
enhanced cytolytic potential, which ide-
ally would kill tumor cells irrespective of 
the mutational status of their intracellular 
signaling molecules (Fig. 1).

Enhancing ADCC. Antibody isotypes. 
The selection of distinct target epitopes 

As an example of the latter, the extracel-
lular domain of EGF-R was demonstrated 
to interact and stabilize membrane expres-
sion of the sodium/glucose co-transporter 
SGLT1, which maintains intracellular glu-
cose levels and thereby prevents autophagic 
tumor cell death.87

Besides targeting antibodies to distinct 
epitopes on wild-type receptor that con-
fer novel mechanisms of action, target-
ing mutant forms of EGF-R represents an 
interesting approach. This would allow 
more tumor-specific targeting, the ulti-
mate goal of targeted therapies. The type 
III EGF-R deletion-mutant (EGF-RvIII) 
is the most common variant, and was 
first identified in primary human glio-
blastomas.88 EGF-RvIII has an in-frame 
deletion of 801 base pairs, corresponding 
to exons 2–7 in the mRNA, resulting in 
the deletion of amino acids 6–273 in the 
extracellular domain and the introduction 
of a glycine at the fusion point. This new 
tumor-specific epitope is situated near the 
amino terminus of the receptor extracellu-
lar domain.89 Several EGF-RvIII-specific 
antibodies have been reported, and these 
demonstrated potent anti-tumor activity 
in vitro and in animal models.89 Promising 
results from a phase I trial with chimeric 
806, an antibody recognizing EGF-RvIII 

Figure 1. EGF-R related signaling pathways and their inhibition by TKI and antibodies. RTK, 
receptor tyrosine kinase; PIP2, phosphatidylinositolbisphosphate; PIP3, phosphatidylinositoltrispho-
sphate; FcR, Fc receptor; ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-
dependent cytotoxicity; EGF-R, epidermal growth factor receptor; IGF-1R, insulin-like growth 
factor 1 receptor; TKI, tyrosine kinase inhibitor; MAPK, mitogen-activated protein kinase; PI3K, 
phosphoinositide 3-kinases.
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revealed that amino acids K326 and E333, 
located at the edges of the C1q binding 
region, profoundly influenced comple-
ment activation by IgG1 mutants.104 A 
K326W substitution provided the high-
est increase in C1q binding (3-fold) and 
complement-mediated killing (2-fold). At 
amino acid position 333, the E333S sub-
stitution resulted in the highest increase 
in C1q binding (2-fold) and CDC activ-
ity (1.6-fold). The K326W/E333S double 
mutant demonstrated additive increases 
in C1q binding (5-fold), but CDC activ-
ity was not further increased compared 
to the single mutants. Importantly, these 
enhancing mutations were analyzed and 
tested in the background of rituximab, 
an antibody that triggers potent CDC 
already in its wild-type form. Therefore, 
it would be interesting to assess whether 
these mutations also enhance CDC trig-
gered by EGF-R-directed antibodies. So 
far, these mutations have not been reported 
in the background of EGF-R antibodies. 
Assuming that engineering of antibodies 
directed against wild-type EGF-R results 
in potent complement activation, toxic 
side effects in normal tissues such as liver 
might be a matter of concern.

Enhancing recruitment of the immune 
system. Antibodies also offer the poten-
tial to generate tumor-specific immune 
responses, particularly when they are com-
bined with immunostimulatory cytokines 
like interleukin-2.105 Antigen presentation 
was demonstrated to be particularly effec-
tive when tumor antigens were directly 
targeted to activating Fcγ receptors, e.g., 
via bispecific antibodies. These innovative 
molecules are making progress in clini-
cal development,106-108 and have also been 
investigated to target EGF-R.109

Conclusions

In addition to clinical parameters, molec-
ular biomarkers offer the potential of 
identifying patients who have optimal 
chances to benefit from EGF-R antibod-
ies. Among others, lack of mutations in 
KRAS or BRAF, and expression of EGF-R 
ligands have repeatedly been identified 
as biomarkers for antibody responses in 
colorectal cancer patients. The impact of 
these biomarkers is consistent with the 
notion that inhibition of EGF-R signaling 

activity with effector cells from donors 
with the unfavorable F/F genotype and 
glyco-engineered Abs was more effective 
than ADCC with effector cells from V/V 
donors and non-engineered antibodies,99 
suggesting that patients carrying an unfa-
vorable FcγRIIIa-F/F genotype may also 
benefit from these optimized antibody 
variants. However, clinical trials will have 
to demonstrate whether these promising 
preclinical observations will translate into 
clinical benefit. To date, only limited data 
is available for engineered EGF-R anti-
bodies. Low-fucosylated variants of the 
fully human EGF-R antibody 2F8 dem-
onstrated a five-fold higher ADCC activ-
ity compared to fully fucosylated variants 
with MNC effector cells, but proved less 
effective with PMN.100 Protein-engineered 
antibody variants directed against EGF-R 
have not been reported so far.

Enhancing CDC. Antibody-triggered 
CDC constitutes a powerful mechanism 
of tumor cell killing. However, most solid 
tumor cells proved rather complement-
resistant, probably explained by high 
expression levels of complement regulatory 
proteins. Thus, individual IgG1 antibod-
ies against EGF-R did not trigger CDC.101 
Therefore, complement is currently not 
considered a major effector mechanism of 
EGF-R antibodies. However, complement 
resistance may be overcome by EGF-R 
antibody combinations that bind to non-
overlapping receptor epitopes as described 
for cetuximab and matuzumab, or other 
antibody combinations.101 Interestingly, 
the cetuximab/matuzumab combination 
also demonstrated additive effects in medi-
ating direct effector functions.102 Whether 
CDC by combinations of EGF-R antibod-
ies is affected by mutations of intracellular 
signaling molecules discussed here is cur-
rently unknown.

Besides antibody combinations, Fc 
engineering may represent a potent 
approach to enhance CDC. Mutational 
analyses of human IgG1 revealed that the 
C1q-binding region of human IgG1 is 
centered on D270, K322, P329 and P331 
in the CH

2
 domain. Two mutants, D270A 

and P329A, were particularly ineffective 
in binding C1q and activating human 
complement, but still retained some com-
plement-activating capacity at higher com-
plement concentrations.103 Further studies 

fundamentally different from those of 
IgG. In contrast to IgG, IgA does not bind 
to FcRn, and is therefore not protected 
from degradation, and its serum half life of 
approx. 5 days is significantly shorter than 
that of IgG.94 On the other hand, IgA, but 
not IgG, is actively transported to mucosal 
surfaces of the gut, the airways and the 
urogenital tract. This offers the potential 
advantage that intravenously applied IgA 
could target common tumors such as lung 
or colon cancers from the luminal surface, 
which is often enriched in neutrophilic 
effector cells. In vitro experiments have 
revealed that EGF-R-directed IgA1 and 
IgA2 activate human neutrophils more 
effectively than IgG antibodies by engage-
ment of the myeloid IgA receptor (FcαR; 
CD89).95 In summary, EGF-R-directed 
IgA may allow potent recruitment of neu-
trophils, the most numerous phagocytic 
cell population in vivo, that are modestly 
activated by IgG antibodies.

Fc engineering. The contribution of 
ADCC to the in vivo efficacy of therapeutic 
antibodies was supported by elegant work 
in animal models and clinical studies that 
correlated certain FcγR polymorphisms 
with improved clinical performance of 
trastuzumab and cetuximab.20,96 Together 
these studies suggested the importance of 
FcγR engagement for the clinical efficacy 
of EGF-R-directed antibodies. As these 
polymorphisms are also clinically relevant 
in KRAS-mutated CRC, an important 
role of ADCC in cetuximab’s efficacy is 
presumed. Indirectly, these observations 
may indicate that KRAS mutations have 
no impact on indirect Fc-mediated effec-
tor functions of therapeutic antibodies, 
and that the likelihood for patients to 
respond to antibody therapy does not rely 
on the KRAS status, but rather on efficient 
recruitment of FcγR expressing immune 
effector cells. Therefore, strategies to opti-
mize effector cell recruitment by enhanc-
ing FcγRIIIa binding might represent 
promising approaches to enhance EGF-R 
directed antibody therapy. Two strategies 
are most advanced in clinical develop-
ment at the moment: glyco-engineering 
and protein-engineering of the human 
IgG1 Fc part.97 Several reports have dem-
onstrated superior ADCC activity in 
vitro and enhanced anti-tumor activity 
in animal models.98 Importantly, ADCC 
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is a major mechanism of EGF-R antibod-
ies in CRC. However, Fcγ receptor poly-
morphisms have also been demonstrated 
to impact responses to cetuximab in these 
patients. Surprisingly, biomarkers that 
predict responses to EGF-R-directed TKI 
in lung cancer (EGF-R kinase mutations, 
KRAS mutations) appeared to be irrel-
evant for EGF-R antibodies in this tumor 
type. This may suggest that Fc-mediated 
effector mechanisms like ADCC and 
CDC play a predominant role for the cur-
rently moderate efficacy of cetuximab in 
lung cancer. If these hypotheses were sup-
ported by results from additional studies, 
Fc engineered EGF-R antibodies may 
have the potential to significantly improve 
response rates in these common and dif-
ficult to treat tumors.
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