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Abstract
Accuracy and run-time play an important role in medical diagnostics and research as well as in the
field of neuroscience. In Electroencephalography (EEG) source reconstruction, a current distribution
in the human brain is reconstructed noninvasively from measured potentials at the head surface (the
EEG inverse problem). Numerical modeling techniques are used to simulate head surface potentials
for dipolar current sources in the human cortex, the so-called EEG forward problem.

In this paper, the efficiency of algebraic multigrid (AMG), incomplete Cholesky (IC) and Jacobi
preconditioners for the conjugate gradient (CG) method are compared for iteratively solving the finite
element (FE) method based EEG forward problem. The interplay of the three solvers with a full
subtraction approach and two direct potential approaches, the Venant and the partial integration
method for the treatment of the dipole singularity is examined. The examination is performed in a
four-compartment sphere model with anisotropic skull layer, where quasi-analytical solutions allow
for an exact quantification of computational speed versus numerical error. Specifically-tuned
constrained Delaunay tetrahedralization (CDT) FE meshes lead to high accuracies for both the full
subtraction and the direct potential approaches. Best accuracies are achieved by the full subtraction
approach if the homogeneity condition is fulfilled. It is shown that the AMG-CG achieves an order
of magnitude higher computational speed than the CG with the standard preconditioners with an
increasing gain factor when decreasing mesh size. Our results should broaden the application of
accurate and fast high-resolution FE volume conductor modeling in source analysis routine.

Keywords
electroencephalography; source reconstruction; finite element method; dipole singularity; full
subtraction potential approach; Venant potential approach; partial integration potential approach;

© 2009 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
*Corresponding author. Privatdozent Dr. Carsten H. Wolters, Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-
Universität Münster, Malmedyweg 15, 48149 Münster, Germany, Tel.: +49/(0)251-83-56904, Fax: +49/(0)251-83-56874,
http://biomag.uni-muenster.deslew@sci.utah.edu (S. Lew), carsten.wolters@uni-muenster.de (C.H. Wolters), thomas.dierkes@uni-
muenster.de (T. Dierkes), c.roeer@uni-muenster.de (C. Röer), macleod@sci.utah.edu (R.S. MacLeod)..
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Appl Numer Math. Author manuscript; available in PMC 2010 August 1.

Published in final edited form as:
Appl Numer Math. 2009 August ; 59(8): 1970–1988. doi:10.1016/j.apnum.2009.02.006.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://biomag.uni-muenster.de


preconditioned conjugate gradient method; algebraic multigrid; incomplete Cholesky; Jacobi;
constrained Delaunay tetrahedralization; anisotropic four-layer sphere model

1. Introduction
Electroencephalography (EEG) based source reconstruction of cerebral activity (the EEG
inverse problem) is an important tool both in clinical practice and research [35,23], and in
cognitive neuroscience [2]. Methods for solving the inverse problem are based on solutions to
the corresponding forward problem, i.e., the simulation of EEG potentials for a given primary
source in the brain using a volume-conduction model of the human head. While the theory of
this forward problem is well established and many numerical implementations exist, there
remain unresolved questions regarding the accuracy and efficiency of contemporary
approaches. In this study, we compared a range of numerical techniques and source
representation approaches and have shown that careful choice of both are critical in order to
solve realistic electroencephalographic forward (and inverse) problems.

The general approach for solving bioelectric field problems under realistic conditions is well
established. All quantitative solutions for the EEG forward problem are based on the quasi-
static Maxwell equations [25]. The primary sources are electrolytic currents within the
dendrites of the large pyramidal cells of activated neurons in the human cortex. Even if there
are also smoother models [33], most often the primary sources are formulated as a mathematical
point current dipole [25,6,18]. The finite element (FE) method is often used for the solution of
the forward problem, because it allows for a realistic representation of the complicated head
volume conductor with its tissue conductivity inhomogeneities and anisotropies [45,3,1,34,4,
15,19,37,26,39,7].

To implement the point current dipole as a current source in the brain, the FE method requires
careful consideration of the singularity of the potential at the source position. One way to
address the singularity is to use a subtraction approach, which divides the total potential into
an analytically known singularity potential and a singularity-free correction potential, which
can then be approximated numerically using an FE approach [3,1,34,15,26,41,39]. For the
correction potential, the existence and uniqueness for a weak solution in a zero-mean function
space have been proven and FE convergence properties are known [39]. The subtraction FE
approach has thus a sound mathematical basis for point current dipole models. Another family
of source representation methods, known as direct FE approaches to the total potential [45,
1,4,37,26], are computationally less expensive, but also mathematically less sound under the
assumption that a point dipole is the more realistic source model. In our previous work [41,
44], we compared the projected subtraction approach [39] with the two direct approaches
using partial integration [45,1,37] and Venant [4] in regular and geometry-adapted 2mm
hexahedral FE meshes of a multi-layer sphere model for which quasi-analytical solutions exist
[5]. The Venant approach was found to be the overall best choice in FE source analysis practice
[41,44]. It was however speculated that an improved numerical quadrature might solve the
accuracy problems of the projected subtraction approach for eccentric sources, so that the
highest future potential was given to an improved implementation of the FE subtraction
approach [44]. It has recently been shown that a full subtraction approach [7] using an
improved numerical quadrature leads to an order of magnitude more accurate solution than the
projected subtraction approach [39], especially when considering sources that are close to a
conductivity inhomogeneity.

Another general prerequisite for FE modeling of bioelectric fields is the generation of a mesh
that represents the geometry and electric properties of the volume conductor. An effective
meshing strategy will balance acceptable forward problem accuracy against reasonable
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computation times and memory usage. Very high accuracies can be achieved by making use
of a Constrained Delaunay Tetrahedralization (CDT) [30,29] in combination with a full
subtraction approach [7]. Adaptive methods, using local refinement around the source
singularity [3,34], are another potential utility but they preclude the use of fast transfer matrices
[37,8,43,12] and lose efficiency in solving the inverse problem (see discussion section).

Solving the forward problem is rarely the ultimate goal in calculating bioelectric fields but
rather a step towards solving the associated inverse problem. Thus the quest for numerical
accuracy and efficiency of the forward solution requires some anticipation of the ultimate use
in inverse solutions. The longtime state-of-the-art approach has been to solve an FE equation
system for each anatomically and physiologically meaningful dipolar source (each source
results in one FE right-hand side (RHS) vector) [3,1,34,4,15]. The use of standard direct
(banded LU factorization for a 2D source analysis scenario [1]) or iterative (Conjugate Gradient
(CG) without preconditioning [3] or Successive OverRelaxation (SOR) [26]) FE solver
techniques limit the overall resolution of the geometric model because of their computational
cost. The preconditioned CG method was used with standard preconditioners like Jacobi
(Jacobi-CG) [37] or incomplete Cholesky without fill-in, IC(0)-CG [4].

One recent approach to achieve efficient computation of the FE-based forward problem is to
pre-compute transfer matrices that encapsulate the relationship between source locations and
sensor sites based only on the geometric and conductivity characteristics of the volume
conductor, i.e., they are independent of the source. Techniques exist to construct transfer
matrices for problem formulations based on EEG [37,12] or combined EEG and MEG [8,43].
Using this principle, for each head model, one only has to solve one large sparse FE system of
equations for each of the possible sensor locations in order to compute the full transfer matrix.
Each forward solution is then reduced to multiplication of the transfer matrix by an FE RHS
vector containing the source load. Exploiting the fact that the number of sensors (currently up
to about 600) is much smaller than the number of reasonable dipolar sources (tens of
thousands), the transfer matrix approach is substantially faster than the state-of-the-art forward
approach (i.e., solving an FE equation system for each source) and can be applied to inverse
reconstruction algorithms in both continuous and discrete source parameter space for EEG and
MEG. Still, the solution of hundreds of large linear FE equation systems for the construction
of the transfer matrices is a major time consuming part within FE-based source analysis.

The first goal of this study was therefore to compare the numerical accuracy of the full
subtraction approach [7] with the two direct approaches using partial integration [45,1,37] and
Venant [4] in specifically-tuned CDT meshes of an anisotropic four-compartment sphere
model. We then examine the interplay of the source model approaches with three FE solver
methods: a Jacobi-CG, an incomplete Cholesky CG (e.g., [27]), and an algebraic multigrid
preconditioned CG (AMG-CG), which has already shown to be especially suited for problems
with discontinuous and anisotropic coefficients [22,32,21,9,38].

2. Theory
In the quasi-static approximation of the Maxwell equations, the distribution of electric
potentials Φ in the head domain Ω of conductivity σ, resulting from a primary current jp is
governed by the Poisson equation with homogeneous Neumann boundary conditions on the
head surface Γ = ∂Ω [20,25], which we can express as

(1)
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with n the unit surface normal, and assuming a reference electrode with given potential, i.e.,
Φ(xref) = 0. The primary currents are modeled by a mathematical dipole at position 
with moment  [25,6,18],

(2)

where δ is the Dirac delta distribution.

2.1. Finite element modeling techniques for the potential singularity
One of the key questions for all three-dimensional EEG forward modeling techniques is the
appropriate treatment of the potential singularity introduced into the differential equation by
the formulation of the mathematical dipole (2). This study examined the interplay of FE solver
methods (see Section 2.2) with the solution accuracy in four-layer sphere models applying
three singularity treatment techniques: a full subtraction approach, a partial integration direct
method and a Venant direct method.

2.1.1. Full subtraction approach—The subtraction approach [3,1,39,7] splits the total
potential Φ into two parts,

(3)

where the singularity potential, Φ0, is defined as the solution for a dipole in an unbounded
homogeneous conductor with constant conductivity σ0.  is the conductivity at the
source position, which is assumed to be constant in a non-empty subdomain Ω0 around x0, in
the following called the homogeneity condition. The solution of Poisson’s equation under these
conditions for the singularity potential

(4)

can be formed analytically for the mathematical dipole (2) [7] as

(5)

Subtracting (4) from (1) yields a Poisson equation for the correction potential

(6)

with inhomogeneous Neumann boundary conditions at the surface:

(7)

The advantage of (6) is that the right-hand side is free of any source singularity, because of the
homogeneity condition — the conductivity σ0 – σ is zero in Ω0. Existence and uniqueness of
the solution and FE convergence properties are shown for the correction potential in [39]. For
the numerical approximation of the correction potential, we use the FE method with piecewise
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linear basis functions φi. When projecting the correction potential into the FE space, i.e.,

 (Nh being the number of FE nodes), and applying
variational and FE techniques to (6) and (7), we finally arrive at a linear system [7]

(8)

with the stiffness matrix

(9)

for , and the right-hand side vector  with entries

(10)

We then seek for the coefficient vector  and, using (3), compute
the total potential. In [7], the theoretical reasoning and a validation in a four-compartment
sphere model with anisotropic skull is given for the fact that second order integration is
necessary and sufficient for the right-hand side integration in Equation (10). Direct
comparisons with the projected subtraction approach from [39] have shown that the full
subtraction approach is an order of magnitude more accurate for dipole sources close to a
conductivity discontinuity [7].

2.1.2. The partial integration direct approach—Multiplying both sides of Equation (1)
by a linear FE basis function φi and integrating over the head domain leads to a partial
integration direct approach for the total potential [1,36,17] expressed as

Integration by parts, applied to both sides of the above equation, yields

Using the homogeneous Neumann boundary condition from Equation (1) and the fact that the
current density vanishes on the head surface, we arrive at

Setting , leads to the linear system
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(11)

with the same stiffness matrix as in (9) and the right-hand side vector  with entries

(12)

The function NODESOFELE(x0) determines the set of nodes of the element which contains the
dipole at position x0. Note that while the right-hand side vector (10) is fully populated, jPI,h
has only |NODESOFELE| non-zero entries. Here, |·| denotes the number of elements in the set
NODESOFELE. For the linear basis functions φi considered here, the right-hand side (12) and thus
the computed solution for the total potential in (11) will be constant for all x0 within a finite
element.

2.1.3. The Venant direct approach—The Venant potential approach [4] follows the
principle of Saint Venant and is made up from monopolar loads on all neighboring FE nodes
so that the dipolar moment is fulfilled and the source load is as regular as possible. In this case,
variational and FE techniques yield the linear system

(13)

with the same stiffness matrix as in (9). The right-hand side vector  has only C non-
zero entries, if C is the number of neighboring FE nodes to that FE node which is closest to
the location of the dipole [4].

2.2. FE solver methods
The solution of hundreds of large scale systems of equations (8), (11) or (13) with the same
symmetric positive definite (SPD) stiffness matrix (9) is the major time consuming task of the
inverse source localization process. The spectral condition of the SPD matrix Kh is equal to

with λmax the largest and λmin the smallest eigenvalues, respectively, of Kh [11, §2.10]. The

condition number behaves asymptotically as  and condition numbers of more than
107 have been computed for FE problems in EEG source analysis [38]. Large condition
numbers are the reason for slow convergence of common iterative solvers [11,24] and any
effective solution approach has to minimize the effects of this poor conditioning.

The Preconditioned Conjugate Gradient (PCG) iterative solver shown in Algorithm 1 (see, e.g.,
[27,11,24]) can provide efficient procedures for such problems. Note that, in theory, the
convergence speed of the PCG is independent of the right-hand side jh of the linear equation

system [11, §3.4]. The goal of a preconditioner, , is the reduction of  for
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the preconditioned equation system . Further requirements are that it is cheap
with regard to arithmetic and memory costs to solve linear systems Chwh = rh with rh the
residual and wh the residual for the preconditioned system.

Theorem 2.1 (Error estimate for PCG method) Let Kh and Ch be positive definite. If 

denotes the exact solution of the equation system, then the kth iterate of the PCG method 
fulfills the following energy norm estimate

Proof: Hackbusch [11, Theorem 9.4.14].

As indicated in Algorithm 1, the PCG method is stopped after the kth iteration if the relative

error, i.e.,  in the controllable  norm is below a given ACCURACY.
Besides the scalar products, the sum of vectors and the multiplication of a vector with a scalar
value, the most important steps in Algorithm 1 are the multiplication of the sparse stiffness
matrix Kh with a vector and the preconditioning step Chwh = rh. We used the compact row
storage format for sparse matrices so that both the storage of the stiffness matrix and the matrix-
vector multiplication are of complexity  (see [27, Chapter 4.6.4],[24,10]).

In the following, the three different preconditioners for the CG method are presented and their
relative performances evaluated in Section 4.

2.2.1. Jacobi preconditioning or scaling—The simplest preconditioner is the scaling or
Jacobi-preconditioning ([24, pp.265f], [27, pp.257f]), where

When splitting the Jacobi-preconditioner between left and right (row and column scaling), one

has to solve  with  and . Row and column scaling
preserves symmetry, so that the scaled matrix  is again SPD with unit diagonal entries. The
scaling may lead to a first substantial condition improvement, because diagonal entries in Kh
of FE nodes from inside the skull are much smaller than from outside (because of a jump in
conductivity at each internal and external boundary) and because it can be shown, that the
smallest (largest) eigenvalue of a symmetric matrix is at most (at least) as large as the smallest
(largest) diagonal element, so that the condition number is at least as large as the quotient of
maximal and minimal diagonal element [27, p.258].

Theorem 2.2 Let Kh be SPD and  the Jacobi-preconditioner. Assume that each row

of Kh does not contain more than d nonzero entries. Then, for all diagonal matrices , it is
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i.e., the chosen diagonal preconditioner is close to the optimal one.

Proof: Hackbusch [11, Theorem 8.3.3].

2.2.2. Incomplete Cholesky preconditioning—The SPD stiffness matrix Kh can be
decomposed into a left triangular matrix Lh and its transpose using the Cholesky-
decomposition,  [27, pp.209f]. Nevertheless, because of a large fill-in, 
would not be appropriate as a preconditioner. The Incomplete Cholesky (IC) preconditioner
without fill-in, IC(0), is defined as  where L0 is the Cholesky-decomposition of the
scaled stiffness matrix  which is restricted to the same non-zero-pattern as the lower
triangular part of . For incomplete factorizations, the preconditioning operation Chwh = rh
in Algorithm 1 is solved by a forward-back sweep, which can efficiently use the compact row
storage format for the sparse matrix L0 as described in detail in [27, Chapter 4.6.4]. The
existence of IC(0) is not necessarily guaranteed for general SPD matrices. Therefore, a
reduction of non-diagonal stiffness matrix entries has to be carried out in certain applications
before IC(0) computation is possible [27, p.266]. If the scaled stiffness matrix is decomposed

by means of , with  its strict lower triangular part, the reduction
can be formulated as

(14)

For sufficiently large , the existence of IC(0) is guaranteed, but with increasing ς, the
preconditioning effect decreases. Note that for certain special cases, a condition improvement

to  can be proven as, e.g., when using a modified ILUω-preconditioning with ω = −1
(in the symmetric case, the ILU0 is equal to the IC(0)) for diagonally dominant symmetric
matrices arising from a 5-point discretization of a two-dimensional Poisson equation
(Hackbusch [11, Theorem 8.5.15 and Remarks 8.5.16,17]).

2.2.3. Algebraic multigrid preconditioning—The above preconditioning methods have
the disadvantage that the convergence rate, i.e., the factor by which the error is reduced in each
iteration, is still dependent on the mesh size h. With decreasing mesh size and thus increasing
order of the equation system, the convergence rate tends to 1 from below, so that the number
of iterations needed to achieve a given accuracy increases. For the Geometric Multi-Grid
(GMG), an h-independent convergence rate ρ < 1 and an h-independent condition number has
been proven in [11, Lemma 10.7.1,Theorem 10.7.15] as

(15)

with Ch the preconditioner resulting from m steps of the GMG method. As shown in [13,11,
32], a robust method which provides a small convergence rate for a wide class of real-life
problems is given by exploiting the MG-method as a preconditioner for the CG method. With
MG(m)-CG, we denote the MG-preconditioned CG method with m the number of MG
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iterations for the CG preconditioning step. The GMG(m)-CG can improve the convergence
rate to ρ/4, if ρ is assumed to be small, as shown in [11, §10.8.3].

In contrast to GMG, in which a grid hierarchy is required explicitly, Algebraic MG (AMG) is
able to construct a matrix hierarchy and corresponding transfer operators based only on the
entries in Kh (see, e.g., [22,32,21,9]). It is well known that the classical AMG method is robust
for M-matrices and, with regard to our application, that small positive off-diagonal entries are
admissible [22,32,21]. The method is especially well suited for our problem with discontinuous
and anisotropic coefficients, in which an optimal tuning of the GMG is difficult ([22,
§4.1,4.6.4],[32, §4.1]). Stand-alone AMG is hardly ever optimal as there may be some very
specific error components which are reduced with significantly less efficiency, causing a few
eigenvalues of the AMG iteration matrix to be much closer to 1 than the remaining ones [32,
§3.3]. In such a case, acceleration by means of using AMG as a basis for the CG method
eliminates these particular frequencies very efficiently.

As in GMG, the basic idea in AMG is to reduce high and low frequency components of the
error by the efficient interplay of smoothing and coarse grid correction, respectively. In analogy
to GMG, the denotation coarse grids will be used, although these are purely virtual and do not
have to be constructed explicitly as FE meshes. The diagonal entry of the ith row of Kh is
considered as being related to a grid point in ωh (the index set of nodes), and an off-diagonal
entry is related to an edge in an FE grid. A description of AMG is now given for a symmetric
two grid method, where h is related to the fine grid and H to the coarse grid. Each AMG
algorithm consists of the following components:

a. Coarsening: define the splitting ωh = ωC ⋃ ωF of ωh into sets of coarse and fine grid
nodes ωC and ωF, respectively.

b. Transfer operators: prolongation  and its adjoint as the restriction

(16)

c. Definition of the coarse matrix by Galerkin’s method, i.e.,

(17)

Because of (b),  is again SPD.

d. Appropriate smoother for the considered problem class: In order to achieve a
symmetric method, e.g., a forward Gauss-Seidel method for pre-smoothing and the
adjoint, a backward Gauss-Seidel method for post-smoothing ([11, §4.8.3,§10.7.1,2],
[22, §4.4]).

Coarsening: The coarsening process has the task of reducing the number of nodes such that
NH = |ωC| < Nh = |ωh|. The grid points ωh can be split into two disjoint subsets ωC (coarse grid
nodes) and ωF (fine grid nodes), i.e., ωh = ωC ⋃ωF and ωC ⋂ωF = ∅ such that there are (almost)
no direct connections between any two coarse grid nodes and such that the resulting number
of coarse grid nodes is as large as possible [32, p.12]. Instead of considering all connections
between nodes as being of the same rank, the following sets are introduced

(18)
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(19)

where  is the index set of neighbors (a pre-selection is carried out by the threshold-parameter

),  denotes the index set of nodes with a strong connection from node i and  is
related to the index set of nodes with a strong connection to node i. In addition, coarse(i, j,
Kh) is an appropriate cut-off (coarsening) function, e.g.,

(20)

with α ∈ [0, 1] (see, e.g., [22, §4.6.1]).

With those definitions a splitting into coarse and fine grid nodes can be achieved. For our
application, a modified splitting algorithm is used [22, §4.6] as shown in Algorithm 2. Therein,
the function

returns a node i for which the number  is maximal. Note that tissue conductivity
inhomogeneity and anisotropy are taken into account within the coarsening algorithm.

Prolongation: To achieve prolongation, the operator Ph,H : VH ↦ Vh has to be defined
correctly. The form that turned out to be the most efficient for the presented application was
proposed in [14] and is given by

(21)

After the proper definition of the prolongation and coarse grid operators, it is possible to create
in a recursive way a matrix hierarchy and an associated multigrid cycle, shown in Algorithm
3. Therein, the variable COARSEGRID denotes the level at which a direct solver is applied. For an
m-V (νF, νB)-cycle AMG preconditioned CG method, the operation SOLVE Chwh = rh in
Algorithm 1 is realized by m calls of MG(Kh,wh, rh, νF, νB). Specific performance optimizations
for the AMG preconditioner used in this study are described in detail in [10, Section 2].

3. Methods
3.1. Validation platform

The numerical examinations of the theory presented above were carried out in a four-layer
sphere model with anisotropic skull compartment whose parameterization is shown in Table
1. For the choice of these parameters, we closely followed [12,15]. Forward solutions were
computed for dipoles of 1 nAm amplitude located on the y axis at depths of 0% to 98.7% (in
1 mm steps) of the brain compartment (78 mm radius) using both radial (directed away from
the center of the model) and tangential (directed parallel to the scalp surface) dipole
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orientations. Eccentricity is defined here as the percent ratio of the distance between the source
location and the model midpoint divided by the radius of the inner sphere (78 mm). The most
eccentric source position considered was thus only 1 mm below the CSF compartment. To
achieve error measures which were independent of the specific choice of the sensor
configuration, we distributed 748 electrodes in a regular fashion over the outer sphere surface.
All simulations ran on a Linux-PC with an Intel Pentium 4 processor (3.2GHz) using the
SimBio software environment [31] in which the algebraic multigrid solver package PEBBLES
was embedded [9,38,42,10].

3.2. Analytical solution in an anisotropic multilayer sphere model
De Munck and Peters [5] derived series expansion formulas for a mathematical dipole in a
multi-layer sphere model, denoted here as the analytical solution. The model consists of S

shells with radii rS < rS−1 < … < r1 and constant radial, , and constant

tangential conductivity, , within each layer rj+1 < r < rj. It is assumed that
the source at position x0 with radial coordinate  is in a more interior layer than the
measurement electrode at position  with radial coordinate . The spherical
harmonics expansion for the mathematical dipole (2) is expressed in terms of the gradient of
the monopole potential to the source point. Using an asymptotic approximation and an addition-
subtraction method to speed up the series convergence yields

with ω0e the angular distance between source and electrode, and with

(22)

and

(23)

The coefficients Rn and their derivatives, , are computed analytically and the derivative of
the Legendre polynomials, Pn, are determined by means of a recursion formula. We refer to
[5] for the derivation of the above series of differences and for the definition of F0, F1 and ʌ.
Here, it is only important that the latter terms are independent of n and that they can be computed
from the given radii and conductivities of layers between source and electrode and of the radial
coordinate of the source. The computations of the series (22) and (23) are stopped after the k-
th term if the following criterion is fulfilled

(24)

In the following simulations, a value of 10−6 was chosen for ν in (24). Using the asymptotic
expansion, no more than 30 terms were needed for the series computation at each electrode.
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3.3. Tetrahedral mesh generation
The FE meshes of the four-layer sphere model were generated by the software TetGen [28]
which used a Constrained Delaunay Tetrahedralization (CDT) approach [30,29]. This
meshing procedure starts with the preparation of a suitable boundary discretization of the model
in which for each of the layers and for a given triangle edge length, nodes are distributed in a
regular fashion and connected through triangles. This yields a valid triangular surface mesh
for each of the layers. Meshes of different layers are not intersecting each other. The CDT
approach is then used to construct a tetrahedralization conforming to the surface meshes. It
first builds a Delaunay tetrahedralization starting with the vertices of the surface meshes. The
CDT then uses a local degeneracy removal algorithm combining vertex perturbation and vertex
insertion to construct a new set of vertices which includes the input set of surface vertices. In
a last step, a fast facet recovery algorithm is used to construct the CDT [30,29].

This approach is combined with two further constraints to the size and shape of the tetrahedra.
The first constraint is important for the generation of quality tetrahedra. If R denotes the radius
of the unique circumsphere of a tetrahedron and L its shortest edge length, the so-called radius-
edge ratio of the tetrahedron can be defined as

(25)

The radius-edge ratio can distinguish almost all badly-shaped tetrahedra except one type of
tetrahedra, so-called slivers. A sliver is a very flat tetrahedron which has no small edges, but
can have arbitrarily large dihedral angles (close to π). For this reason, an additional mesh
smoothing and optimization step is required to remove the slivers and improve the overall mesh
quality.

A second constraint can be used to restrict the volume of the generated tetrahedra in a certain
compartment. We follow the formula for regular tetrahedra:

(26)

Table 2 shows the number of nodes and elements of the six tetrahedra models used for the
solver run-time comparison and accuracy tests. factor indicates the ratio of the number of
nodes of the most highly resolved to both other models within each group. Additionally, the
table contains the chosen radius-edge-ratio (see Equation (25)), the average edge length of
the four triangular surface meshes, the corresponding volume constraints (see Equation (26))
for the tetrahedra and the compartments where the volume constraint is not applied. The most
highly resolved meshes tet503K and tet508K of both groups had approximately the same
resolution, while the others were chosen to have a factor of 4 coarser resolution with regard to
the number of nodes. The meshes of group 1 concentrated the nodes in the outer three
compartments because no volume constraint was applied for the inner brain compartment,
while the nodes in the meshes of group 2 were distributed in a regular way throughout all four
compartments. The meshes of group 1 were thus preferentially beneficial to the full subtraction
approach, since the entries of the volume integral in Equation (10) are zero ((σ(x)–σ0) = 0 for
all x in the brain compartment) so that a coarse resolution can be expected to have no impact
on the overall numerical accuracy, but will reduce the computational cost. In contrast, the
meshes of group 2 were beneficial to both direct potential approaches. Figure 1 shows samples
from the six tetrahedra models that were generated using the parametrizations from Table 2.
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3.4. Error criteria
We compared numerical solutions with analytical solutions using three common error criteria
[16,3,34,15,26]. The relative (Euclidean) error (RE) is defined as

where ,  denote the analytical and the numerical solution vectors, respectively,
at the m = 748 measurement electrodes. We furthermore defined

(27)

where j is the source eccentricity. In order to better distinguish between the topography (driven
primarily by changes in dipole location and orientation) and the magnitude error (indicating
changes in source strength), Meijs et al. [16] introduced the relative difference measure (RDM)
and the magnification factor (MAG), respectively. For the RDM, we can show that

(28)

It therefore holds that 0 ≤ RDM ≤ 2, so that we can furthermore define

(29)

The MAG is defined as

so that error minimum is at MAG = 1 and we therefore defined

(30)

With maxRE(%)k we denote the maximal relative error in percent over all source eccentricities
for an accuracy level of ACCURACY = 10−k. The so-called plateau-entry for an iterative solver is
then defined as the first k at which the condition

(31)

is true.
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3.5. FEM and solver parameter settings
The parameters of the Venant approach were chosen as proposed in [4]: The maximal dipole
order (n0 in [4,Equation (22)]) and the scaling reference length (αref in [4,Equation (23)]) were
set to n0 = 2 and αref = 20.0 mm, respectively. Since the chosen mesh size was a large factor

smaller than the reference length, the second order term  in [4,Equation (23)]) was
small and the model focused on fulfilling the dipole moments of the zeros and first order. The
exponent of the source weighting matrix (ns in [4,Equation (25)]) was fixed to ns = 1 and the
regularization parameter (λD in [4, Equation (25)]) was chosen as λD = 10−6. These settings
effect a spatial concentration of the monopole loads in the dipole axis around the dipole
location.

The initial solution guess for all solvers was a zero potential vector. For the IC(0), ς = 0 was
chosen for (14). For the AMG-CG, the 1-V (1, 1)-cycle AMG-preconditioner was used with
α = 0.01 for (20). The factorization in Algorithm 3 was carried out whenever the size of the
coarsest grid (COARSEGRID) in the preconditioner-setup was below 1000 and the coarse system was
solved using a Cholesky-factorization. The setup times for the preconditioners were neglected
in all calculations of computational cost because this step must be performed only once per
head model. The evaluation with regard to relative solver accuracy in Algorithm 1 was limited
to the discrete set of accuracy levels ACCURACY = 10−k with k ∈ {0, … , 9}.

4. Results
4.1. Numerical error versus potential approach

In a first study, we compared the numerical accuracy of the full subtraction approach (Section
2.1.1) with the two direct methods: Venant (Section 2.1.3) and partial integration (Section
2.1.2). Figure 2 shows the RE(%) for the different source eccentricities for the two finest models
tet503K of group 1 (left) and tet508K of group 2 (right) (see Figure 1 and Table 2) with regard
to the full subtraction (top row), the Venant (middle row) and the partial integration approach
(bottom row). The results were computed with the AMG-CG and the necessary ACCURACY in
Algorithm 1 for the plateau-entry (31) is indicated for both source orientation scenarios. In
Figure 3, the maximal RE, RDM and MAG errors over all source eccentricities at the AMG-
CG plateau-entry (31) are shown for all tetrahedra models, both source orientation scenarios
and the three dipole modeling approaches.

Figure 2 clearly presents the advantages of the full subtraction approach whose error curves
are smooth, while Venant and partial integration show an oscillating behavior. With RDM and
MAG errors below 1% over all source eccentricities and for both orientation scenarios (see
Figure 3), the full subtraction approach performs best for all source eccentricities for model
tet503K (its mesh resolution was sufficiently high and the FE nodes were concentrated in the
compartments CSF, skull and skin), where both direct approaches showed oscillations with a
relatively high magnitude. As the results for model tet508K show, the oscillation magnitudes
for the direct approaches could be strongly reduced by means of distributing the FE nodes in
a regular way over all four compartments, hence decreasing the mesh size in the brain
compartment. Nevertheless, even for model tet508K, the full subtraction approach was the
most accurate method for nearly all source eccentricities. It was only outperformed by partial
integration for the source which was only 1 mm below the CSF compartment. As both Figures
2 and 3 show, the partial integration approach performed well if the mesh was sufficiently fine
in the brain compartment. The oscillation magnitudes of the Venant approach were generally
even slightly smaller than for the partial integration approach, with only one exception (the
result for the radial source 1 mm below the CSF compartment, shown in the middle row of
Figure 2). The main reason for the outlier was that for the source 1 mm below the CSF,
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monopoles were positioned in the CSF compartment, which had a strong effect on the MAG
for the radially oriented source.

4.2. Numerical error versus PCG accuracy
Figure 4 shows the numerical error maxRE(%) versus the PCG solver ACCURACY from Algorithm
1 for the discrete set of accuracy levels from 100 to 10−9. Results for the high-resolution model
tet503K of group 1 are shown in the left and from the high-resolution model tet508K of group
2 in the right column for the AMG-CG (top row), the IC(0)-CG (middle row) and the Jacobi-
CG (bottom row).

The PCG accuracy measures the error in the solution vector of the FE linear equation system
(8) (correction potential), (11) and (13) (total potential). For the full subtraction approach,

maxRE(%) was thus not equal to 100 for ACCURACY = 100 because  is equal to the analytically

computed singularity potential  from Equation (5). Because the PCG accuracy is measured
in the  norm, the plateau-entry (31) differs for different preconditioners Ch.
As shown in Figure 4 for the high-resolution models and as collected in Table 3 for all six
tetrahedra models, the maximally needed k (for a PCG accuracy of ACCURACY = 10−k) decreased
when the preconditioning quality increased (except for the radial source orientation in model
tet503K, see Fig. 4). Furthermore, as Table 3 shows, a higher PCG accuracy was needed for
the plateau-entry when the mesh resolution increased.

4.3. Numerical error versus solver time
In a last study, we compared solver wall-clock time versus numerical accuracy for the three
different CG preconditioners AMG, IC(0) and Jacobi.

The average setup time for the AMG- and the IC(0)-preconditioner is given in Table 4. In the
following, the time for the setup of the preconditioner was not included, because this step was
carried out only once per head model.

In Figure 5, the solver time is shown versus the maxRE(%) for different levels of PCG accuracy
for models tet503K and tet33K of group 1. The largest examined PCG ACCURACY level 10−k is
indicated in the figure. Please note that this level does not necessarily correspond to the plateau-
entry level. In most cases results are presented up to one level higher.

For all tetrahedra models of groups 1 and 2, average solver times and iteration counts over all
source eccentricities, source orientations and potential approaches for a plateau-entry (31) are
collected in Table 5. Both Figure 5 and Table 5 clearly show the superiority of the AMG
preconditioner. In all cases, even for the low-resolution grids tet33K and tet32K, the AMG-
CG was the fastest solver, followed by the IC(0)-CG and the Jacobi-CG. The main result of
Table 5 is the so-called gain factor, which is defined here as the result (solver time or iteration
count) for the Jacobi-CG divided by the result for the AMG-CG. The gain factors clearly
showed that the higher the mesh-resolution, i.e., the higher the condition number of the
corresponding FE stiffness matrix, the larger the difference in performance between AMG-
CG, IC(0)-CG, and Jacobi-CG. An increasing mesh-resolution led to a strong increase in the
number of iterations of IC(0)-CG (factor of 3.2 between tet503K and tet33K and 4.1 between
tet508K and tet32K) and Jacobi-CG (factor of 3.0 between tet503K and tet33K and 3.6
between tet508K and tet32K), while the number of AMG-CG iterations was only slightly
increasing (factor of 1.9 between tet503K and tet33K and 1.8 between tet508K and tet32K).
This clearly shows the stronger h-dependence of the IC(0) and Jacobi preconditioners.
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5. Discussion
The goals of this technical study of finite element (FE) based solution techniques for the
electroencephalographic forward problem were twofold. The first aim was to compare three
efficient iterative FE solver techniques under realistic conditions that still allowed quasi-
analytical solutions. The second aim was to evaluate three different numerical formulations of
the current dipole, which is the bioelectric source most commonly used to represent neural
electrical activity. A major motivation of such studies is the special need to achieve high
accuracy and efficiency with FE based approaches for this problem. The many advantages of
this approach are often hindered by the unacceptable computation costs of implementing it so
that improved efficiency will provide substantial progress to the field.

When using the  norm stopping criterion for the PCG algorithm applied on
meshes with up to 500K nodes, a relative solver accuracy of 10−6 for AMG-CG, 10−7 for IC
(0)-CG and 10−8 for Jacobi-CG was necessary and sufficient to fall below the discretization
error. The AMG-CG achieved an order of magnitude higher computational speed than the CG
with the standard preconditioners with an increasing gain factor with decreasing mesh size.
The increasing gain factor shows that the convergence rate of the Jacobi- and IC(0)-
preconditioning methods are much more dependent on the mesh size h than the AMG-CG, as
discussed in detail in Section 2.2.3. However, while for the geometric multigrid, an h-
independent convergence rate and an h-independent condition number can be proven ([11,
Lemma 10.7.1,Theorem 10.7.15]), the AMG-CG was not optimal in our application with a
slight h-dependence shown by a slightly increasing iteration count with increasing mesh
resolution. Such a result had to be expected because the source analysis stiffness matrix was
not an M-matrix and the prolongation operator of the presented AMG-CG was tuned for speed
and not for an optimal behavior with regard to the iteration count. A discrete harmonic
extension as proposed in [22] improved the interpolation properties, but the application of this
prolongation operator is more expensive, which decreased the overall run-time performance
in our application.

We generated two groups of Constrained Delaunay tetrahedralization (CDT) FE meshes [30,
29], tuned for the specific needs of the different potential approaches. In group 1, for the full
subtraction approach [7], FE nodes were concentrated in the CSF, skull and skin, while the
brain compartment was meshed as coarsely as possible. Group 2 was tuned for the needs of
both direct potential approaches [45,4,1,37], which profit more from a regular distribution of
FE nodes over all four compartments and especially a higher resolution at the source positions.

With regard to the numerical error, in the tuned FE meshes with about 500K nodes we achieved
high accuracies—in the range of a few percent maximal relative error (maxRE)—over all
source eccentricities for both the full subtraction and the two direct potential approaches. With
a maximal relative difference measure (maxRDM) and a maximal magnification factor
(maxMAG) of less than 1% over all source eccentricities for sources up to 1 mm below the
CSF compartment (model tet503K, maximal examined eccentricity of 98.7%), the full
subtraction approach performed consistently better than both direct approaches. We found that
the instability of the full subtraction approach with regard to the RE for high source
eccentricities was mainly a magnitude instability (MAG), not a topographic one (RDM). Our
results clearly illustrate the advantages of the full subtraction approach as long as the
homogeneity condition is sufficiently fulfilled, i.e., as long as the distance of the source to the
next conductivity inhomogeneity is large enough or the resolution of the FE mesh at the nearest
conductivity inhomogeneity to the source is fine enough. A theoretical reasoning for this
finding is given in [39]. While error curves oscillated for both direct approaches, they were
smooth for the full subtraction approach as long as the homogeneity condition was sufficiently
fulfilled. The smoothness can be explained by the fact that the singularity potential is sensitively
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modeling the details of the point dipole source singularity while the FE method is able to
accurately model the smooth correction potential. The oscillating behavior of the direct
approaches can easily be understood for the partial integration approach. Since linear basis
functions were used, the right-hand side vector (12) and thus the computed solution for the
total potential in (11) is constant over any finite element for all sources with moment M0 and
any location x0 within the finite element. For partial integration with linear basis functions, the
inverse source localization resolution is thus bounded by the size of the element, which should
be fine as long as high-resolution FE meshes are used. The direct approach oscillations should
therefore not necessarily be a problem with regard to the inverse problem. It has furthermore
been shown using quasi-analytically computed reference potentials in a four-layer anisotropic
sphere model and single dipole fit reconstructions based on the Venant FE approach in a regular
tetrahedral FE mesh with 161K nodes, that localization errors were in the 1 millimeter range
[40] and might thus most often be neglected when compared to errors due to, e.g., EEG data
noise, inaccurate tissue segmentation and conductivity modeling.

Schimpf et al. [26] investigated different FE potential approaches in a four-layer sphere model
with isotropic skull and sources up to 1 mm below the CSF compartment. In their report, a
regular 1 mm cube model was used (thus a much higher FE resolution) and a maxRDM of 7%
and a maxMAG of 25% was achieved with a subtraction approach, which performed best in
their comparison. Awada et al. [1] implemented a two-dimensional subtraction approach and
compared its numerical accuracy with a partial integration method in a two-dimensional multi-
layer sphere model. A direct comparison with our results is therefore difficult, but the authors
concluded that the subtraction method was more accurate than the partial integration direct
approach. In a locally refined (around the source singularity) tetrahedral mesh with 12,500
nodes of a four-layer sphere model with anisotropic skull and first order FE basis functions in
a subtraction approach, Bertrand et al. [3] reported a maxRDM of above 20% and a maxMAG
up to 70% for a maximal eccentricity of 97.6%. Van den Broek [34] used a subtraction approach
in a locally refined (around the source singularity) tetrahedral mesh with 3,073 nodes of a three-
layer sphere model with anisotropic skull. For the maximal examined eccentricity of 94.2%,
they reported a maxRDM of up to 50%.

However, the right-hand side (RHS) vector is expensive to compute and is densely populated
(i.e., Nh non-zeros) for the full subtraction approach (10) and sparse with just some few (|
NODESOFELE| for partial integration (12), and C for Venant (13)) non-zero vector entries for the
direct approaches, which has implications for the computational effort when using the fast FE
transfer matrix approach for EEG and MEG [43] (additionally, see [37,8,12]), which limits the
total number of FE linear equation systems to be solved for any inverse method to the number
of sensors m. After solving m FE linear equation systems to compute the transfer matrix, each
forward problem can be solved by a single multiplication of the RHS vector with the transfer
matrix [43], resulting in a computational effort of 2 * m * P operations with P = Nh for the full
subtraction, P = |NODESOFELE| for partial integration and P = C for the Venant approach. Note
that the transfer matrix approach can not be used if the mesh is adapted according to varying
source positions within the inverse problem. We therefore attempted to avoid local mesh
refinement techniques as used in [3,34].

The following limitations of the presented work are important and can be seen as an outlook
for our future studies. Oscillations of the direct potential approaches might be avoided. For
example, the use of higher order basis functions might cure the oscillation problem for the
partial integration approach. For both examined direct methods, the oscillations might be
avoided by means of precomputing a lead field (i.e., many forward solutions) for those source
positions with minimal errors (e.g., only at the barycenters of brain finite elements for the
partial integration approach and only at brain FE nodes for the Venant approach) and
consequently using a lead field interpolation technique [46] for all other forward solutions.
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Lead field extrapolation [46] has to be examined as a concept to further decrease the numerical
error for eccentric sources. Such an approach might be particularly fruitful for the subtraction
method, where a violation of the homogeneity condition led to especially large numerical errors
or instabilities as shown in Figure 2 for the most eccentric source in especially the model
tet508K of group 2. In our study, we examined numerical errors for a single source at each
discrete 1mm step eccentricity level through the inner compartment along the y axis. By means
of the error oscillations and magnitudes for the direct methods and the specific sensitivity of
the subtraction method for eccentric sources, the dependence of all three dipole modeling
approaches on the specific FE mesh properties has been shown. A further important measure
for establishing the validity of the presented results would be a more statistical error measure
where, for each eccentricity level, not only the error of a single source on the y axis is evaluated,
but an error statistic is evaluated over many sources with different positions in the volume
conductor and/or sources with slightly varying (e.g., 0.1 mm) source positions around each
eccentricity level.

6. Conclusion
The AMG-CG turned out to achieve an order of magnitude higher computational speed than
Jacobi-CG or incomplete Cholesky-CG for the FEM based EEG forward and inverse problem.
Our results corroborate the theoretical results that the higher the FE resolution, the greater the
advantage of using MG preconditioning. The AMG-CG together with the fast transfer matrix
approach now enable resolutions which seemed to be impracticable before. In the comparison
of dipole modeling approaches, highest accuracies were achieved with the full subtraction
approach in CDT meshes where nodes were concentrated in the compartments CSF, skull and
skin. However, the accuracy of the subtraction approach is especially dependent on a
sufficiently fulfilled homogeneity condition, so that the direct potential approaches partial
integration and Venant, which also performed well in our comparison, might be even more
appropriate if white matter conductivity anisotropy is taken into account.
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Fig. 1.
Cross-sections of the six tetrahedral meshes of the four compartment sphere model. The
corresponding parametrizations of the models are shown in Table 2. Visualization was done
using the software TetView [28].
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Fig. 2.
RE(%) versus source eccentricity for the two most highly resolved models tet503K of group
1 (left) and tet508K of group 2 (right) using the full subtraction (top row), the Venant (middle
row) and the partial integration (bottom row) potential approaches. The necessary ACCURACY in
Algorithm 1 for the plateau-entry (31) of the AMG-CG is indicated for both source orientation
scenarios. Note that the y-axis is differently scaled.
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Fig. 3.
maxRE(%), maxRDM(%) and maxMAG(%) accuracies for the full subtraction, the Venant
and the partial integration approach for all six tetrahedra models (see Figure 1 and Table 2)
and both tangential (left) and radial (right) source orientation scenarios at the AMG-CG
plateau-entry (31).
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Fig. 4.
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maxRE(%) versus PCG solver ACCURACY (see Algorithm 1 and Section 3.5) for models
tet503K of group 1 (left column) and tet508K of group 2 (right column) for the AMG-CG
(top row), the IC(0)-CG (middle row) and the Jacobi-CG (bottom row). Source orientations
and potential approaches can be distinguished by their specific labels. The plot is in log-log
scale.
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Fig. 5.
Solver time versus maxRE(%) for models tet503K and tet33K of group 1 for tangentially and
radially oriented sources for the potential approaches full subtraction (left), Venant (middle),
and partial integration (right). Results are presented for the three different CG preconditioners
AMG, IC(0) and Jacobi. Each marker represents a PCG ACCURACY = 10−k level and the largest
examined level is indicated. The x-axis is in log scale.
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Algorithm 1.
PCG: (Kh, uh, jh, Ch, ACCURACY) → (uh)
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Algorithm 2.
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Algorithm 3.
V-cycle MG : (Kh, uh, jh, νF, νB) → (uh)
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Table 1

Parameterization of the anisotropic four-layer sphere model.

Medium Scalp Skull CSF Brain

Outer shell radius 92mm 86mm 80mm 78mm

Tangential conductivity 0.33S/m 0.042S/m 1.79S/m 0.33S/m

Radial conductivity 0.33S/m 0.0042S/m 1.79S/m 0.33S/m
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