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Summary
Monitoring health care quality involves combining continuous and discrete outcomes measured on
subjects across health care units over time. This article describes a Bayesian approach to jointly
modeling multilevel multidimensional continuous and discrete outcomes with serial dependence.
The overall goal is to characterize trajectories of traits of each unit. Underlying normal regression
models for each outcome are used and dependence among different outcomes is induced through
latent variables. Serial dependence is accommodated through modeling the pairwise correlations of
the latent variables. Methods are illustrated to assess trends in quality of health care units using
continuous and discrete outcomes from a sample of adult veterans discharged from 1 of 22 Veterans
Integrated Service Networks with a psychiatric diagnosis between 1993 and 1998.
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1. Introduction
Profiling health care providers involves combining information collected on subjects treated
by health care providers and making inferences about the quality of care associated with each
provider. The collected information has typically been one of three types: cross-sectional
univariate outcomes (Goldstein and Spiegelhalter, 1996; Normand et al., 1997); longitudinal
univariate outcomes (Aguilar and West, 1998; Bronskill et al., 2002); or cross-sectional
multivariate outcomes (Landrum et al., 2003). In all cases, the outcomes are clustered within
health care units. It has become increasingly common to collect both continuous and discrete
outcomes longitudinally on providers in order to infer trends in quality of care.

The Veterans Health Administration (VHA) is a case in point. Some have argued that care in
the VHA, the largest vertically integrated health care system in the United States, is poorer
than in non-VHA institutions (United States Senate, 1999). In 1995, the VHA initiated the
National Mental Health Performance Monitoring System and began to publish systematic
performance data for the 22 geographically defined service networks that provide mental health
services to its veterans. Table 1 summarizes outcomes over a 6-year period for all adult veterans
who had an inpatient admission in a general psychiatric program located in Veterans Affairs
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Medical Centers during the first 6 months of each fiscal year. Large values of the inpatient
measures, with the exception of days to readmission, and small values of the outpatient
measures, with the exception of days to first visit, indicate poor quality of care (Rosenheck
and DeLilla, 1999). The goal for the VHA is to characterize trends in quality of individual
service networks on the basis of the outcomes and to identify problems in quality for specific
networks.

The observed data consist of multilevel continuous and discrete outcomes collected repeatedly
within clusters over time. Heterogeneity is introduced from several sources: the correlation
among the multivariate outcomes on the same patient, correlation among the multivariate
outcomes on the same health care unit, the repeated measurement of health units over time,
and the heterogeneity across health units. Several methods have been proposed to handle joint
modeling of multilevel continuous and discrete outcomes in the cross-sectional setting
(Dunson, 2000; Dunson et al., 2003; Gueorguieva and Agresti, 2001; Landrum et al., 2003;
Lee and Shi, 2001). The key idea is the introduction of a set of latent variables that reduce the
dimensionality of the problem for outcomes having different measurement scales. Fewer
methods are available for repeated measurements of multilevel discrete and continuous
outcomes. Aguilar and West (1998) proposed a multivariate random-effects time series model
for repeated binary outcomes through an auto-regressive structure for the cluster random
effects. However, this model is restricted to joint modeling of binary outcomes. Outside the
context of multilevel data, methodology for longitudinal data for the the latent variable
(Dunson, 2003; Roy and Lin, 2000; Oort, 2001), latent class (Lin et al., 2002; Duncan et al.,
2002; Muthén et al., 2001; Douglas et al., 1999; Douglas, 1999), and structural equation model
(Lee et al., 1992; Mueller, 1996) settings have been developed.

In this article, we consider an analysis of I units measured repeatedly over T time points on the
basis of K-dimensional response vectors of continuous and discrete data from a total of N
individuals. A model-based approach that distinguishes these features has the advantage of
providing estimates that filter the sampling and measurement noise from the underlying quality
signals, thus providing more reliable estimates of quality (McClellan and Staiger, 1999). We
propose multilevel multidimensional latent variable models for the multivariate data that permit
inclusion of covariates and serial dependence among the latent variables. Underlying normal
regression models for each outcome are used and dependence among different outcomes is
induced through latent variables. Serial dependence is accommodated through modeling
pairwise correlation of the latent variables. We use Bayesian methods for inference. We
describe the substantive problem more completely in Section 2 as well as introduce the model
and discuss identifiability issues. Section 3 describes our approach to inference, including the
prior distributions and posterior computations. In Section 4, we apply our model to the VHA
data and make concluding remarks in Section 5.

2. Joint models for longitudinal multilevel continuous and discrete data
2.1 Profiling VHA mental health treatment quality

The VHA provides health care to more than 4 million veterans annually and is the nation's
largest provider of behavioral health services. Like the broader U.S. mental health care system,
in the mid-1990s the VHA undertook several initiatives to reduce costs and to increase the
number of veterans served (Kizer et al., 2000). In particular, the agency adopted a budget
allocation system that gave service networks strong incentives to serve more patients and to
reduce per patient costs. Typically, inpatient programs lose resources as a consequence of such
health care reorganizations, as there is a shift in the type of treatment provided. A study by
Chen et al. (2003) found that the shift from inpatient to outpatient mental health care in the
VHA over the period 1995–2001 resulted in a 21% decrease in inpatient spending and a 63%
increase in outpatient spending.
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With such dramatic shifts in care settings, a natural concern relates to whether the quality of
mental health services has declined. On the medical side, a study of the impact of VHA
reorganization on the quality of care in long-term care units found an increase in pressure ulcer
development (Berlowitz et al., 2001). Because regional service networks have strong financial
incentives and large administrative control, the need to carefully monitor the quality of care in
programs that may be losing resources as a result of the reorganization is especially elevated
in a population of patients who may have difficulty navigating the health system.

2.2 Within-network model
Let Yitjk denote the value of the kth response for the jth subject in the ith unit (network) at time
t. Subjects are clustered within units, and units are measured repeatedly.

Within-network model for binary outcomes—Assume for binary-valued variables
Zitjk ~ N(ξitjk, 1) such that Yitjk = I(Zitjk > 0), where

(2.1)

(2.2)

Here, ϕitj is a subject-specific random effect, ηitk, a network random effect, and xpitj (p = 1,...,
P), a subject-specific covariate. Let k = 1 and k = 5 correspond to the binary random variable
for the inpatient outpatient measures, respectively. The ϕitj appears in the regression for the
two binary responses for each subject inducing a patient-level correlation between the two
responses. We specify the distribution of the ηitk in Section 2.3.

Within-network model for continuous outcomes—The continuous variables, Y, are
grouped into three inpatient (k = 2, 3, 4) and three outpatient (k = 6, 7, 8) measures, and trivariate
normal distributions are assumed for each. The two sets of continuous variables are conditional
on a positive value for the corresponding binary-valued variables, that is, having an inpatient
event and an outpatient event. Let U ∈ {in, out} with U = in corresponding to k = 2, 3, 4 and
U = out corresponding to k = 6, 7, 8. The model for continuous outcomes is

(2.3)

(2.4)

where  denotes the covariance of the continuous variables at time t. See Table 1 for an
ordered list of the eight patient-level measures.

2.3 Between-network model
The K network effects are assumed to be represented by L latent variables that are a priori
independent,
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(2.5)

(2.6)

where λk = (λ1k,..., λLk)′ is an L × 1 vector of discrimination parameters assumed constant over
time. The latent variables, θilt, represent unobserved traits of an individual unit, such as
inpatient and outpatient quality, at time t. The variance of the unit random effects, , represents
heterogeneity among outcomes in a given year not explained by the L latent variables. Rl
denotes a T × T correlation matrix that permits serial dependence in the L latent variables.

2.4 Serial dependence model for latent variables
We model the within-unit dependency of the outcomes measured at different times through
the correlation matrix, Rl. Our motivation for specifying some structure on Rl is two-fold: to
predict latent quality at future times and to increase power through estimation of fewer
correlation parameters. The latter consideration is important in our example as there are only
22 networks for estimating a six-dimensional correlation matrix. The complications in
developing models for a correlation matrix arise for three reasons: (1) the marginal variances
are fixed at one; (2) the matrix needs to be positive definite; and (3) in our setting, the parameters
should be interpretable in a longitudinal context.

We consider first-order Markov models. Recall that θil ~ NT(0, Rl), which implies Var(θilt) =
1, t = 1,..., T. For a first-order Markov model, we have

Using iterated expectations, it is easy to show that Var(θilt) = 1 implies that  for l
= 1,..., L and t = 1,..., T, where ρl0 = 0.

Models for ρl,t−1 can be developed subject to the constraint that ρl,t−1 lies in the open interval
(−1, 1). In particular, we consider

(2.7)

where z(·) is Fisher's z-transformation and gl(t − 1; α) is a smooth function of time parameterized
by α for each of the L latent variables; this is a nonstationary, first-order Markov model. The
form of these nonstationary models facilitates prediction by providing a mechanism to
extrapolate the dependence structure past T . That is, we can use gl(·) to fill in ρl,t−1 for t > T .
A simplified stationary version of this model involves setting gl(t − 1; α) = z(ρl) so that ρl,t−1

= ρl which implies  . The correlation between observations one time unit apart in this
model is ρl . Markov models of higher order involve severely constrained parameters due to
the restrictions on the marginal variance and are difficult to apply in this setting. The models
proposed here are similar to the structured antedependence models proposed in Zimmerman
and Nunez-Anton (1997) for a covariance matrix.
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2.5 Model identifiability
To examine identifiability of parameters of the between-unit model, we approximate the
marginal posterior distribution of ηitk given only the within-unit model, defined in (2.1–2.4),
with

(2.8)

where Vi is assumed known and ηi = (ηi11,ηi12,...,ηi1T,..., ηiKT)′. The priors on ηi are given by
(2.5)–(2.6), the between-unit model. Integrating over the latent variables, θilt, we obtain

(2.9)

where A is a KT × KT matrix with K (T × T) blocks on the main diagonal, the kth of which has

the form  and with off-diagonal blocks, Ojk, of the form,

.

For each t,

(2.10)

where ηi·t = (ηi1t,..., ηiKt)′, the kth row of K × L matrix Λ is (λk1,..., λkL)′, and Ψ·t = diag(ψ1t,...,
ψKt). This resembles a standard factor analytic model. Because Vi is known, Λ and Ψ·t will be
identified under standard conditions for factor analysis models. We now need to show that
Rl is identified. Consider,

(2.11)

where ηik· = (ηik1,..., ηikT)′. As the components of λkl and Ψk· = diag(ψk1,..., ψkT) are identified
from (2.10), Rl will be identified from the correlation among ηik over time.

2.6 Characterizing networks over time
We consider several quantities for evaluating networks longitudinally using the latent
variables. Assuming small values of θilt correspond to poorer quality of care, networks
worsening over time may be identified through

(2.12)

for each i and l. Here, Tq(θlt) is the qth quantile of the distribution of {θilt; i = 1,..., I} and Y
denotes the observed data. Similarly, units improving over time may be identified through
calculation of

(2.13)
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The trend may be characterized more formally by estimating and ranking the slope, Bθil. For
example, we can compute

(2.14)

where Bθil = (X′X)−1 X′θil, and X is a 2 × T matrix with tth row, (1, t), to provide inference about
the rate of change. Alternatively, Spearman's correlation coefficient may be estimated as a
nonparametric alternative.

Changes in the relationship between the latent variables may be assessed through the
correlation, e.g.

(2.15)

for l ≠ l′. An overall summary may be represented as  for some selected weights,
wl.

3. Inference
3.1 Prior distributions

We adopt a Bayesian approach to inference and specify prior distributions for the
hyperparameters. We assume the presence of two latent variables, one representing the quality
of inpatient care and one the quality of outpatient care. This assumption was based on a variety
of considerations. First, several studies have shown that the type of health care reorganization
operating at the time of our study has generally resulted in different quality changes in the
inpatient and outpatient settings. This shifting of inpatient to outpatient treatment settings has
been observed in managed care organizations (Mark and Coffey, 2000). Second, subjective
measures of quality of mental health services in the VHA, such as patient satisfaction, have
demonstrated differences in inpatient and outpatient quality for some subgroups (Hoff et al.,
1998). Third, in a prior cross-sectional analysis of the 1998 data, we found empirical evidence
of two latent variables (Landrum et al., 2003).

We place informative priors on the discrimination parameters λ ~ N (π, c2 ILK), where

(3.1)

We discuss the choices of π⋆ > 0 and c2 in Section 4.2 and also examine sensitivity to these
choices. This is the prior for the discrimination parameters in a two-latent variable model (L
= 2) and is consistent with an inpatient and an outpatient quality variable. The 1's and −1's in
the prior specification correspond to that response's (of the K) contribution to the inpatient and
outpatient latent variable. For example, favorable inpatient characteristics include many days
to first readmission but few number of bed days; in (3.1), these get the multipliers 1 and −1,
respectively. The components of the prior means for λ were selected in order to place equal
weights on the inpatient and outpatient components as this was deemed most reasonable by
the investigator who collected the data. Informative priors on the discrimination parameters or
restrictions on the form of the discrimination matrix, Λ, are necessary for identifiability of the
latent variables (Lopes and West, 2004).
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Diffuse proper priors are specified for the regression coefficients, βtk, i.e. normal priors with
mean 0 and variance 10 000 and gamma priors on the inverse of the variance components,

 and , with parameters (0.001, 0.001). A Wishart prior is placed on  with degrees

of freedom equal to  and scale matrix equal to the identity matrix. Because the
continuous responses were standardized, marginal variances of one for the scale matrix in the
Wishart prior seemed reasonable. For the unstructured correlation matrix, Rl, similar to
Barnard et al. (2000) and Daniels (2005), we specify a uniform prior over the compact subspace
of the T(T − 1)/2 dimensional cubic, [−1, 1]T(T−1)/2, such that Rl is positive definite. A uniform
prior on the interval (−1, 1) is specified for the correlation parameter ρl in the Markov model
given in Section 2.3.

3.2 Sampling and model fit
A Gibbs sampler was designed to sample from the posterior distribution of the parameters. The
full conditional distributions are all known forms (gamma distributions for the inverse of the
variance components, normal distributions for the regression parameters, latent variables, and
discrimination parameters, and Wishart distributions for the covariance matrices) except for
the correlation matrices, Rl, l = 1,..., L. We implement an adaptation of the component-wise
approach of Barnard et al. (2000) to sample Rl when Rl is assumed to be unstructured. In the
case of Markov dependence, we use a random walk Metropolis–Hastings algorithm to sample
the correlation parameter.

We sampled the parameters in blocks to increase the efficiency of the sampling algorithm. In
particular, we sampled the following parameters as blocks in the within-network model: the
P × 1 vectors βtk, for k = 1 and k = 5; the (3P) × 1 vectors of (βt2, βt3, βt4) and (βt6, βt7, βt8);
the matrices  for U and t; and in the between-network model, the L × 1 vector of λk for k
= 1,..., K, and the T × 1 vectors θil for l = 1,..., L. The other parameters were sampled component-
wise.

Model comparison and fit—We use the deviance information criterion (DIC) of
Spiegelhalter et al. (2001) as an overall measure of model fit. Because the main unit of interest
is the network, we utilize the following integrated likelihood as the basis for the deviance in
the DIC

where yitj is the K × 1 dimensional response vector and ηit is a K × 1 dimensional latent variable
representing K outcomes at the network level for each time, t. Because this is not available in
closed form and the number of patients per network is quite large, we approximate the
integrated likelihood using

(3.2)

where  is the maximum likelihood estimate (MLE) of ηi = {ηitk} (here, we use posterior mean)
and Vi is the estimated variance (posterior variance). We computed this approximation by
fitting the within-unit model, given by (2.1)–(2.4) using diffuse normal priors on the ηitk, i.e.
normal priors with mean 0 and variance 10 000. Specifically, we do not use the between-unit
model, (2.5)–(2.6), when constructing this approximation to the network likelihood. We also
note that Vi is a block diagonal because of the assumed independence across years, and our
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data in this setting are the . Results in Daniels and Kass (1998) can be used to show that the
approximation in (3.2) has the same order of error as a Laplace approximation, here

, where nit is the number of patients in network i in year t, for estimating the
between-network parameters; in addition, results given in that paper show that the order of the
error is unchanged by replacing the MLE with the posterior mean. Finally, the network-level
data have been adjusted for patient mix and the correlation among the multivariate outcomes
for each patient.

We use the DIC to aid in the choice of an appropriate form for the correlation matrices although
it could also be used to choose the number of latent variables in the between-unit model (2.5)–
(2.6).

We also use this approximation to conduct posterior predictive checks (Gelman et al., 2003)
for assessing model fit. In this context, we determine whether the features of the posterior
distribution of ηitk from fitting the full model are consistent with the data, , which are based
on (3.2). Our goal is to assess the fit of the between-network model. Because the network-level
‘data’ constructed using the approximation given by (3.2) did not use the between-network
model, we will not obtain overly optimistic results from the posterior predictive checks. This
approach is somewhat nonstandard as the  are not observed data—the yitj are observed. To

do this, we sample a set of  using (3.2) given the current values of the parameters, , sampled
from ηi|y using the Gibbs sampler.

We examine two correlations: (1) the correlation of the components of ηi across k given t, corr
(ηikt, ηik′t) and (2) the correlation of the components of ηi across t given k, corr(ηikt, ηikt′). For
each, we compute a single summary based on the data, , and a distribution of the quantity
from the posterior predictive distribution using . We summarize these checks via posterior
predictive p-values. If the model fits well, we expect the p-values to not be extreme (e.g. close
to 0 or 1) as this would indicate that the particular feature of the data is not captured well by
the model.

At each iteration of the Gibbs sampler, we also calculate a confidence region given by

. A 95% cutoff for this region is calculated based on a χ2 distribution
which should be approximately correct at each iteration of the sampler, given the parameters
values at that iteration. We evaluate an empirical coverage probability by averaging across
iterations. Because  is high dimensional (48), we examine the coverage for both this 48-
dimensional vector and also for the 8-dimensional vector of ηi·t at each time, t = 1,..., T.

4. Application to the VHA study
4.1 Details on the VHA National Mental Health Performance Monitoring System data

The continuous inpatient and outpatient responses were standardized to have mean 0 and
variance 1. Patient-level covariates included in the within-unit model [see (2.1) and (2.4)]
included age (categorized as ≤39, 40–59, or ≥60), race (categorized as white, black, or other),
and primary mental health diagnosis (schizophrenia, other psychoses, posttraumatic stress
disorder, alcohol abuse, or other). Over the 6-year period, the majority (95%) of patients were
male; one-quarter black; 60% aged between 40 and 59 years of age at the time of their index
discharge; and 27% had a primary mental health diagnosis of schizophrenia (data not shown).
Table 1 indicates a 3.4% absolute decline between 1993 and 1998 in 6-month readmission
rates, and a corresponding 5.3% increase in the outpatient visit rate over the 22 networks. These
changes are consistent with expected patterns following health care reorganization. In what
follows, networks are labeled using roman letters (A–W).
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4.2 Sampling algorithm
We ran five parallel chains, each of length 1100. The chains appeared to have converged within
100 iterations when examining the trace plots of selected parameters within each chain; we
therefore used the 100 iterations as the burn-in. To minimize autocorrelation within the chains,
we sampled every 10th iteration. The total posterior sample size was 500.

4.3 Prior for discrimination matrix, Λ
We fit a two-latent variable model (L = 2) where, a priori, the latent variables were thought to
represent inpatient and outpatient quality. The prior specification given in Section 3.1 required
specification of two hyperparameters, π⋆ and c2. We wanted to specify priors flexible enough
to verify the a priori belief of an inpatient and outpatient latent variable, but informative enough
to avoid identifiability problems. We first set π⋆ = 0.25 and c2 = 0.01 (c = 0.1) and then
examined sensitivity to fixing π⋆/c and varying π⋆; inferences were basically insensitive to this
variation. We then fixed π⋆ and varied the ratio. Values of π⋆/c less than two were getting
close to identifiability problems with components of the latent variables switching and signs
changing on the discrimination parameters. Values of the ratio over three seemed to be too
informative. Thus, for inferences in Sections 4.4–4.6, we set π⋆ = 0.25 and π⋆/c 2.5.

The posterior means of the discrimination parameters were consistent with the prior which
differentiated inpatient and outpatient measures (Table 2), although they were considerably
smaller than their prior means. The discriminating abilities of the components of the inpatient
and outpatient latent variables were not very consistent with equality among the four inpatient
and outpatient variables. For example, the discrimination parameters for the number of visits
and periods of continuity were larger than visits within 180 days and days to first visit. In
addition, the posterior variances of the discrimination parameters were much tighter than the
prior variances, indicating that the data very much determined the posterior on λ. Finally, there
was no evidence that the discrimination parameters varied over time implying no need to index
λk by t.

4.4 Serial dependence
To assess the importance of modeling the dependence of the networks over time, we first fit
unstructured correlation matrices for both latent variables, Rl, l = 1, 2. The posterior mean of
the correlation matrices for the inpatient and outpatient latent variables in the unstructured
model are given in Table 3.

In general, the posterior means of the lag 1 correlations were around 0.5–0.7. The correlation
generally decreased as the lag increased. The posterior distribution of the correlations were
quite skewed with the posterior medians and mode for the large positive correlations closer to
one than the posterior means (Figure 1). A first-order Markov model seemed most reasonable
for R1. Because the lag k correlations did not vary much over time (moving down each off-
diagonal of the correlation matrix), we fit a first-order Markov model with ρl,t−1 = ρl. In this
first-order model, the lag 1 correlations was quite high with a posterior mean (95% credible
interval) of 0.71 (0.63, 0.79).

Ultimately, in addition to the unstructured and Markov specification of the correlation matrix,
we also considered independence over time, Rl = I. The R = I model was fit to assess the
potential efficiency gains over modeling the data separately by year as this model did not seem
feasible when examining the estimated correlation matrices in Table 3.

Using the DIC, models that employed serial dependence for the inpatient latent variable fit best
(Table 4). Fewer effective number of parameters in the dependence models which have more
parameters in the Rl matrices is a result of more shrinkage of the ηi in these models. We used
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the best-fitting model, R1 = Rm, R2 = R, for the basis of inference. An alternative to picking
the ‘best’ model would involve model averaging over the various specifications of the
correlation matrix. We discuss this in Section 5.

4.5 Longitudinal patterns of quality
Figure 2 displays scatterplots of the posterior means of the inpatient and outpatient latent
variables for each network. These variables summarize the inpatient and outpatient quality of
the networks over time with higher values corresponding to better care. Network W had
consistently high inpatient quality, network N had consistently high outpatient quality, and
network U had consistently poor inpatient and outpatient quality (lower left quadrant) across
all years.

Figure 3 displays the posterior means of selected inpatient and outpatient latent variables for
a subset of the 22 networks. Some networks appear to be ‘significantly’ improving or worsening
over the 6-year period. For example, network V appears to provide improving outpatient quality
while network P appears to have worsening outpatient quality.

As a comparison, the probabilities in parentheses below are derived from assuming
independence over time, the R = I model. There was no strong evidence that any of the networks
provided consistently poor care over time using using (2.12). Setting q = 0.20 (20th percentile),
the highest probability of being in the lower 20% for all 6 years was network U on inpatient
quality with probability 0.49 (0.20 under R = I) and networks U and L on outpatient quality,
with probabilities 0.37 (0.04 under R = I) and 0.18 (0.04 under R = I), respectively. In terms
of excellent inpatient quality (2.13), network W was in the upper 20% for all 6 years for the
inpatient latent variable with probability 0.89 (0.54 under R = I) while network D had
probability 0.51 (0.15 under R = I). For excellent outpatient quality, network N had probability
0.52 (0.14 under R = I ). From these results, it is clear that inferences change considerably
under R = I model and stronger inferences are possible about the behavior of the networks over
time by accounting for the temporal correlation.

As a less stringent criterion for longitudinal performance, we computed posterior probabilities
of a positive (negative) slope for each latent variable for each network as given by (2.14).
Networks C, J, and V had posterior probabilities of 0.85 or greater for improving inpatient
quality over the 6-year period while network M had a similar probability associated with
worsening inpatient quality. Using the same criterion, networks F, K, L, and V had large
probabilities for outpatient quality improvement. Degrading outpatient quality trends were
associated with networks C, O, and P.

4.6 Posterior predictive checks
We first examined the correlation among the ηi corresponding to each of the eight responses,
for each time, t, corr(ηikt, ηik′t), in order to ensure the model characterized the correlation among
the network effects. This check resulted in 168 p-values with only 3 outside the interval (0.05,
0.95) and none outside the interval (0.01,0.99). We then examined the correlation among the
ηi over time for each of the eight responses, corr(ηikt, ηikt′), to assess the appropriateness of
temporal correlations. This check resulted in 120 p-values. The fit was not as good as the
previous check, but not unreasonable—24 of the 120 p-values were outside the interval (0.05,
0.95), but only 5 were outside (0.01, 0.99). There was no consistent pattern in terms of particular
correlations not being captured well. In addition, for the extreme p-values, the observed
correlation was typically quite close to the observed extreme of the posterior predictive
distribution. Finally, the average coverage for the confidence regions described in Section 3.2
for the entire ηi vector was 0.86 and for the lower dimensional ηi·k vectors, 0.92, which is quite
good given the complexity of the data and the ‘parsimonious’ hierarchical model.
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5. Concluding remarks
We have proposed a multilevel multidimensional model to characterize units measured
repeatedly on the basis of within-unit continuous and discrete outcomes. The aggregation level
of interest, the health care network, was fit fairly well by the model as assessed by posterior
predictive checks. We also observed an increase in efficiency in terms of longitudinal profiling
by exploiting the temporal correlation in our model for the data. In our problem, subjects were
not measured repeatedly over time, rather the health care unit was measured repeatedly. We
introduced temporal correlation at the network level through modeling the pairwise correlations
of the latent variables. An alternative approach could involve reparameterization of the matrix
from pairwise correlations to partial correlations (Wong et al., 2003). We note however that
the correlation structure of longitudinal data is difficult to model parsimoniously using partial
correlations and additional constraints would be required.

An important area where more research is needed relates to model fit. Given the complexity
of the model, we used an approximate network-level likelihood to evaluate the DIC. Moreover,
we focused on the fit of the model at the network level. In complex models, such as those we
proposed here, there are several steps where choices are made: the number of latent variables
underlying the observed data, the structure of the serial correlation, and the inclusion of
covariates. While we did not include unit (network)-level covariates, these could be easily
accommodated in the dependence model for the latent variables.

In this paper, we fixed the number of latent variables based on prior research, theory, and expert
opinion. An extension would involve accounting for uncertainty in the number of latent
variables through a model-averaging approach. However, given the goals of this paper, such
an approach would greatly hinder interpretation. As pointed out by a referee, an interesting
extension would involve model averaging over the different covariance structures for the latent
variables. To accomplish this, methods to compute the marginal distribution of the data would
need to be developed and ideally a broader class of covariance models considered.
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Fig. 1.
Posterior distributions of several of the components of the Rl matrices under the unstructured
R models.
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Fig. 2.
Posterior means for inpatient and outpatient latent variables for each year.

DANIELS and NORMAND Page 15

Biostatistics. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Posterior means and 95% pointwise credible intervals for selected inpatient and outpatient
latent variables over time.
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Table 2

Posterior means and 95% credible intervals for the discrimination parameters, λk for the inpatient and outpatient
latent variables for the final model given in Section 4.3

Outcome Inpatient latent variable Outpatient latent variable

Readmission within 180 days† –0.06 (–0.09, 0.03) –0.00 (–0.05, 0.05)
Number of readmissions† –0.03 (–0.08, 0.05) –0.01 (–0.09, 0.06)
Number of bed days† –0.08 (–0.11, –0.04) –0.00 (–0.04, 0.04)
Days to first readmission 0.04 (0.02, 0.06) –0.02 (–0.08, 0.04)
Visit within 180 days† –0.01 (–0.05, 0.03) –0.07 (–0.10, –0.04)
Number of visits† 0.02 (–0.01, 0.06) –0.12 (–0.15, –0.08)
Days to first visit 0.00 (–0.05, 0.05) 0.06 (0.04, 0.08)
Periods of continuity† –0.01 (–0.04, 0.02) –0.10 (–0.13, –0.06)

†
Smaller values correspond to better quality of care.
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Table 4

DIC. Markov(1) corresponds to the first-order Markov model discussed in Section 2.4

Correlation model DIC pD

Independence, R = I 2042 842
Unstructured, R 1941 777
Markov(1), Rm 1935 763
Markov(1), Unstructured, R1 = Rm, R2 = R 1924 769
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