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Summary
In this article we consider the problem of fitting pattern mixture models to longitudinal data when
there are many unique dropout times. We propose a marginally specified latent class pattern mixture
model. The marginal mean is assumed to follow a generalized linear model, whereas the mean
conditional on the latent class and random effects is specified separately. Because the dimension of
the parameter vector of interest (the marginal regression coefficients) does not depend on the assumed
number of latent classes, we propose to treat the number of latent classes as a random variable. We
specify a prior distribution for the number of classes, and calculate (approximate) posterior model
probabilities. In order to avoid the complications with implementing a fully Bayesian model, we
propose a simple approximation to these posterior probabilities. The ideas are illustrated using data
from a longitudinal study of depression in HIV-infected women.
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1. Introduction
Dropout is a common occurrence in longitudinal studies. Missingness induced by dropout that
depends only on the observed data is called missing at random (MAR) or random dropout. If
missingness depends on the unobserved response at the time of dropout or at future times, even
after conditioning on the observed data, then the missingness is called nonignorable or
informative dropout (Little, 1995). There are many model-based approaches to deal with
informative dropout that are characterized by how they factor the joint distribution of
missingness and the response. We will focus on the pattern mixture approach. Pattern mixture
models (PMM) are a flexible and transparent way to analyze incomplete longitudinal data
where the missingness is nonignorable (Little, 1994; Hogan and Laird, 1997). The typical
approach taken in PMM is to stratify on dropout time (i.e., the pattern) and assume that missing
data within a pattern are MAR. Consider the case of T unique dropout times and define Di to
be the dropout time and Yi to be the response vector for subject i. PMM account for nonignorable
missingness by allowing the distribution of Yi to differ by dropout time, that is, f(yi|Di) ≠ f
(yi). So, models are built for [Yi|Di], but inferences are based on f(y) = ∑Df(y|D)p(D). One issue
in this formulation, addressed in Fitzmaurice, Laird, and Shneyer (2001) and Wilkins and
Fitzmaurice (2006), is that for nonlinear link functions connecting the means, E[Yi|Di] to
covariates, that is, g(E[Yit|Di, Xit]) = Xit × β(Di), the marginal mean, E[Yit], is such that, in
general, g(E[Yit|Xit]) ≠ Xit ∑D β(D)p(D). This is one issue we will address in our model.
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The other issue we will address are situations where the number of unique dropout times T is
large. In this setting stratification by dropout pattern may lead to sparse patterns, which will
lead to unstable parameter estimates (or unidentified parameters) in those patterns. There are
several ways to remedy this including allowing parameters to be shared across patterns (Hogan
and Laird, 1997) or to group the dropout times into m<T groups in an ad hoc fashion (Hogan,
Roy and Korkontzelou, 2004). Roy (2003) proposed an automated way to do the latter using
a latent variable approach within the context of normal models for continuous data. This
approach assumes the existence of a discrete latent variable that explains the dependence
between the response vector and the dropout time and allows incorporation of uncertainty about
the groupings, conditional on a fixed number of groups. We will extend the approach of Roy
(2003) by incorporating uncertainty in the number of classes through (approximate) Bayesian
model averaging.

A common way to account for the longitudinal correlation in the vector of responses for subject
i, Yi is to introduce random effects. However, for nonlinear link functions, similar to the above
discussion, the link no longer holds for marginal covariate effects (Diggle et al., 2002). We
will use the ideas in Heagerty (1999) within our model to directly model the marginal covariate
effects. We briefly review Heagerty's approach below.

Let Yit denote the response for the ith subject (i = 1, ..., n) at time t (t = 1,..., T). Heagerty
(1999) specifies marginalized logistic models in the following ways. First, the marginal mean
of Yit is specified as

(1)

Then the dependence among the Yit is specified via a conditional model that is consistent with
(1),

(2)

where bi ~ N(0, θ). The quantity Δit is determined by the other parameters in the model and
can be computed by solving the following convolution equation,

Note that Δit is a function of Xitβ and θ. The overall objective in our approach will be to propose
a model that marginalizes over the random effects and the dropout distribution to directly model
the marginal covariate effects of interest.

This work is widely applicable, but was motivated by an HIV natural history study of
depression. The HIV Epidemiology Research Study (HERS; Smith et al., 1997) was a
longitudinal study of women with, or at high risk for, HIV infection. Data were collected from
1310 women at baseline. Investigators then attempted to collect data from each subject every
6 months for a total of 6 years. Thus, 12 total visits from each subject would be obtained if
there were no missing data. Our interest is in studying the course of depression in the 849
women who had HIV infection at baseline. Depression was treated as a binary, yes/no, variable
(Cook et al., 2004). A challenge with the analysis of these data is that less than half of these
women remained in the study until the end. It is not hard to imagine a scenario where the course
of depression over time might vary as a function of dropout time. Because there are many
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unique dropout times (12), some of which include very few subjects, we apply the latent class
pattern mixture modeling approach to the analysis of these data.

In Section 2 we introduce the model. We provide computational details in Section 3. The
example is analyzed in Section 4. A brief simulation study is given in Section 5. We conclude
with a discussion in Section 6.

2. Model
Before we introduce the model, we first go through some additional notation needed for the
latent class component. Define Si = (Si1,..., SiM )T to be a vector of latent indicators, where
Sij is defined as an indicator for class j, j = 1,..., M (M<T; e.g., if subject i is in class j, then
Sij = 1 and Sij′ = 0 for all j ≠ j′). The idea here will be to “group” the dropout times into the
M classes as in Roy (2003).

All of the parameters in the following specification are a function of the number of latent
classes, M; for example, β(M). However, we suppress the superscripts without loss of clarity in
the following. First, we specify the marginal mean as

(3)

By marginal, we mean marginalized over subject-specific random effects and over the latent
class distribution (implicitly over the dropout distribution as well). If the number of classes
M were known, then the parameters β would be of primary interest. We address the issue of
M being unknown below.

In order to fully account for correlation due to repeated observations and informative censoring,
we specify a conditional model in addition to the marginal model. Recall that we are taking a
pattern mixture modeling approach to account for dropout. We assume that the relevant
information in D is captured by the latent variable S. We therefore specify a mixture distribution
over these latent classes, as opposed to over D itself. Before proceeding to describe the model,
however, we first make two points. First, the parameters from the conditional model are not
of scientific interest, and in fact are viewed as nuisance parameters; we are not interested in
estimating subject-specific effects (i.e., effects conditional on the random effects) or class-
specific covariate effects (i.e., effects of covariates on Y given a particular dropout class).
Second, we must specify the conditional model in a way that is compatible with the marginal
model (3). As we will see below, this leads to a somewhat complicated model. Specifying this
conditional model is necessary, however, in order to account for the two types of dependencies
(within-subject correlation and dependency between the outcome and dropout time).

We assume the data Yit, conditional on random effects bi and latent class Si, are from an
exponential family with distribution

where E(Yit|bi, Si) = g–1 (ηit) = ψ′ (ηit), ηit is the linear predictor, ψ(·) is a known function, φ is
a scale parameter, and mi is the prior weight. This family includes normal (ψ(x) = x2/2),
binomial (ψ(x) = log (1 + ex)), and Poisson (ψ(x) = ex) distributions, among others. The
conditional mean is specified as
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(4)

where, in the most general form of the model we allow the variance of bi to depend on the
latent class, that is, [bi|Sij = 1] ~ N(0, θj). For identifiability, we use a sum-to-zero constraint

on the α's, namely, . In this conditional model, each subject has its own
intercept, and the effect of each covariate, Zitj (Zit ⊂ Xit), is allowed to differ by dropout class
via the regression coefficients, α(j).

The probabilities of the latent classes given the dropout time are specified as a proportional
odds model,

(5)

where λ01 ≤ λ02 ≤ ··· ≤ λ0,M–1 and λ1 are unknown parameters. From this regression (5) it is
clear that the class probabilities are a monotone function of dropout time (in fact, linear on the
logit scale). Finally, the dropout times, Di, follow a multinomial distribution with mass at each
of the possible dropout times, parameterized by γ.

We point out that in the above formulation, Yit is independent of Di given Si. This is a key
assumption with this approach, which we will examine in Section 3.4.

The intercept Δit in (4) is determined by the relationship between (3) and (4), namely, the
solution to

The main target of inference typically will be the covariate effects averaged over classes, that
is, β(M) averaged over M. We denote this as β* = ∑m β(m) p(m|y). We discuss computation of

p(m|y) in Section 3.3 and the corresponding computation of .

3. Computational Details
We provide details on computation of maximum likelihood (ML) estimates conditional on
m, computation of the approximate posterior model probabilities, and model averaging.

3.1 The Likelihood and ML Inference
Denote the set of all parameters by ω = (βT, αT, θT, φ, λT, γT)T. We partition the complete
response data for subject i, , into observed and missing components. Denote by Yi the
observed part of the vector (i.e., values of Yc prior to dropout) and by  the response after
dropout. In the following presentation, assume Xi and M are conditioned throughout.

The likelihood contribution for subject i corresponding to the models described in Section 2
is
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(6)

where

with  is defined in (5), and p(Di|γ) is the distribution
of Di, which might depend on covariates, and is parameterized by γ. Proportionality in (6) holds
because we assume that the missing and observed responses from subject i are independent,

given Si and bi .

Maximization of  with respect to the parameters ω is complicated by
the possibly intractable integral in (6), and the need to calculate Δit at each iteration in the
algorithm for every record in the data set. We provide details of the maximization algorithm
in the Appendix.

3.2 Posterior Model Probabilities
The models introduced in Section 2 are indexed by the number of latent classes m (m = 1,...,
M, M < T). Given that our main interest is in the regression parameters β, it would be sensible
to properly account for the uncertainty in the regression coefficients by averaging over the
number of classes as opposed to conditioning the most likely number of classes. To do this,
we need to first specify a prior distribution on the number of latent classes, m. We recommend
specifying a prior to favor parsimony and/or to be consistent with subject matter considerations
(if available). A convenient specification is a truncated Poisson distribution with rate
parameter, μ, and truncated at an integer between 1 and T. Denote this prior as p(m). The
posterior probability of m classes is given by the expression,

where p(y|x) = ∑m p(y|m, x)p(m) and p(y|m, x) are the integrated likelihood, that is,

where p(y|m, x, β(m), α(m), λ, γ, θ) = ∑s ∑D p(y|m, x, β(m), α(m), θ)p(S|m, x, D, λ)p(D|m, x, γ).
Unfortunately, this integral is not available in closed form. We propose to use a Laplace
approximation to evaluate this integral,

(7)
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where d = dim(β,α,λ,γ,θ) and  are the joint ML estimates of β(m),
α(m), λ(m), γ(m), θ(m)) for the model with m classes, p(y|m, x, , , , , ) is the value of
the maximized integrated likelihood, and  is the inverse of the observed information matrix
for (β, α, λ, γ, θ) based on the integrated likelihood (6). These estimates are obtained using the
algorithm described in the Appendix. It is clear that in (7) we have ignored the contribution of
the prior, p(λ)p(α(m)|m)p(β(m)|m)p(γ)p(θ), evaluated at the joint ML estimates. This is justified
(asymptotically) because the maximized likelihood term, p(y|m, x, , , , , ) is
Op(n) whereas the prior is typically Op(1). Thus, the approximate posterior probabilities take
the form,

(8)

3.3 Model Averaging and Approximate Posterior Inference
Once the posterior distribution p(m|y) is estimated, we can then estimate the covariate effects
averaged across class sizes. As described previously, we denote the average covariate effect

over classes as β*, which can be estimated as . The variation of  is

which can be estimated as

Note that if we conditioned the most likely value for the number of classes, m, the variance of
the estimated regression coefficients would likely be too small due to ignoring the second term
in the variance expression above.

3.4 Model Checking
Conditional independence between Y and D given S and X is a key assumption with this
modeling approach. A simple method for checking the conditional independence assumption
for a given class size M is as follows: this approach was originally proposed by Lin, McCulloch,
and Rosenheck (2004), as a modification to the test proposed by Bandeen-Roche et al.
(1997). The goal is to test the null hypothesis that model (4) holds versus the alternative that
the true model is

(9)

where each hj(·) is a known function and the φ's are parameters. The null hypothesis is that
φ1 = ··· = φJ = 0. A simple example with J = 1 is h(Di) = Di, which would assume a linear effect

Roy and Daniels Page 6

Biometrics. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of Di. If class membership S were known, then we could simply fit both the full model (9) and
reduced model (3) using ML, andcarry out a likelihood ratio test with J degrees of freedom.
Because S is unknown, Lin et al. (2004) proposed the following approach.

First, fit the null model (3). We can then estimate the posterior probability of class membership
for each subject as

where Li(Yi, Di; ω) was defined in (6). The next step is to create M replicate pseudo data sets
for each record, setting the latent class variable equal to j for the jth replicate of that record. In
other words, the entire data set will be replicated M times, and the latent class variable will be
set to j for every record in the jth replicate of the data set. Each record is then assigned a case
weight based on the corresponding posterior probability of S. For example, a case weight of

 will be assigned to the jth replicate of subject i's data. We can then fit
models (9) and (3) using the weighted likelihood, and carry out the likelihood ratio test.

4. Example
As briefly described in the Introduction, we were interested in analyzing data on the
longitudinal course of depression of 850 HIV-infected women from the HERS. Depression
was measured using the Center for Epidemiologic Studies Depression Scale (CES-D). The
CES-D includes 20 questions related to mood, each of which can take a value from 0 (symptom
rarely present) to 3 (symptom almost always present). Larger scores indicate the presence of
more symptoms, and scores range from 0 to 60. A score of 16 or greater is frequently used as
a depression cutoff (e.g., Cook et al., 2004). We therefore defined our outcome Yit as the
indicator of depression at visit t, meaning it took a value of 1 if subject i had a CES-D ≥ 16 at
visit t, and took a value of 0 otherwise. Our goal was to describe changes in depression over
time as a function of baseline characteristics, such as race/ethnicity, number of HIV-related
symptoms, injection drug use (IDU), and number of recent adverse events (such as
homelessness, violence, and death of a close person).

The observed proportion of depression decreased over time. However, the sample mean is only
a valid estimate of the prevalence at each visit if the missing data were missing completely at
random (MCAR); it would not be surprising if depression status was related to dropout. There
was a substantial amount of dropout. By visit 12, less than half of the original sample remained
in the study. We would like to account for the possibility that the prevalence of depression over
time might be related to the dropout time.

4.1 Models
We first fitted a marginally specified logistic regression model under the MAR assumption.
This could also be thought of as a special case of the proposed latent class model, but with
M = 1 class. We assumed models (1) and (2) hold, where the covariate vector includes an
intercept, indicator of black race (black), an indicator of Hispanic ethnicity (latina), an indicator
of other race/ethnicity (other), number of HIV-related symptoms during the 6 months prior to
the baseline visit (symptoms), an indicator that the subject has been an IDU, number of adverse
events in 6 months prior to the baseline visit (adverse), and the HERS visit number (visit).
Only visit was a time-varying covariate. White race was the reference category for the race/
ethnicity variable.

Roy and Daniels Page 7

Biometrics. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We next fitted models (3–5), with M equal to classes 2, 3, and 4. The covariate vector Xit was
the same as used in the previous model. We also set Zit = Xit, meaning that every covariate was
allowed to have an effect that varied by dropout class. In order to carry out the model averaging,
we needed to estimate the posterior probability for the number of classes. We considered two
prior distributions p(m): a discrete uniform prior and a truncated Poisson prior distribution for
M – 1, with mean equal to 0.5. The truncated Poisson prior placed more prior weight on smaller
classes; specifically, the probabilities were 0.6076, 0.3038, 0.0759, 0.0127 for M = 1, 2, 3, and
4, respectively. The posterior distribution of the number of classes for the uniform and truncated
Poisson priors was estimated using equation (8). Once the posterior probabilities of the number
of classes were calculated, we were able to estimate β* as described in Section 2. All models
were fitted using R 2.2.1 software (http://www.r-project.org). We wrote functions to calculate
each type of likelihood, and used the generic optimization function optim to maximize these
likelihoods. More details are given in the Appendix.

4.2 Results
The results are given in Tables 1 and 2. In Table 1, we compared the four models based on the
components of the Laplace approximation of the marginal distribution (7) and the
corresponding approximate posterior distribution of the number of classes. First, we examined
the maximized likelihood, . There was a substantial increase in the likelihood
(relative to the increase in the number of parameters) by going from 1 to 2 classes. Similarly,
there was a modest gain in the likelihood by going from 2 to 3 classes. The likelihood for the
four-class model was almost identical to that in the three-class model. The four-class model
provided essentially the same fit as the three-class model, but with nine extra parameters.
Besides the maximized likelihood, the term (d/2)log(2π) always increases as the number of
parameters (d) increases. However, the determinant of the estimated covariance matrix, 
typically decreases as the number of parameters increases; this acts as a “penalty” term for
adding parameters. In particular, consider the comparison between models 3 and 4. In model
4 we added nine new parameters. These parameters did little to improve the fit to the data, as
the likelihood only increased by a small amount. These parameters were not well identified by
the model, and tended to have large variances and high correlation with other parameters. This
caused the determinant of the estimated covariance matrix to be considerably smaller than from
the three-class model.

The posterior distribution of M was insensitive to the choice of the prior (p(M = 3|y, x) = 0.9997
with the uniform prior, and p(M = 3|y, x) = 0.9987 with the truncated Poisson prior). The three-
class model was the clear “winner” based on the posterior model probabilities; no reasonable
prior would change this conclusion. Due to the closeness of the posterior probability of the
three-class model to 1, there was no need to carry out the model averaging. In particular, recall

that . Because, from Table 1, p̂(M = 3|y) = 1, then the estimated parameters
from the three-class model, , were equivalent to the estimated parameters that were averaged
over the number of classes .

The marginal regression coefficient estimates are presented in Table 2 for each model. The
parameter estimates from the one-class model were quite different from the models with
multiple classes. For example, based on the one-class model, we might conclude that the
prevalence of depression was lower for blacks. However, once we account for dropout using
the latent class model, we conclude the opposite.

Because the posterior probabilities overwhelmingly favored the three-class model, we will now
focus on this model for our conclusions. Blacks, Latinas, and other non-white racial and ethnic
groups were estimated to have a significantly higher prevalence of depression as compared
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with whites. IDU, the number of adverse events, and HIV-related symptoms were associated
with higher prevalence of depression. There was a significant, but somewhat gradual, decline
in depression over time. We also considered interactions between race/ethnicity and visit
number, but these interactions did not appear to be important in describing the data.

Table 3 displays estimated latent class probabilities as a function of dropout time, using the
estimated values of λ, the ordinal regression parameters in (5). Individuals who dropped out
early (after visit 1) were very likely to be in class 1. Individuals who remained in the study
until the end were most likely to be in class 2. Class 3 consisted of a small subpopulation of
the subjects who dropped out in the final few visits of the study.

4.3 Checking the Conditional Independence Assumption
We used the method described in Section 3.4 to test the null hypothesis of conditional

independence. For each value of M (1–4), we fitted model (9), with . The
test statistic, which, under the null hypothesis follows an approximate  distribution, had
values of 7.81, 2.64, 0.41, and 0.41 for M = 1 to M = 4, respectively. Thus, with respect to the
specific alternative of a linear effect of dropout time, the conditional independence assumption
appeared to be reasonable for M = 3.

5. Simulation Study
We carried out a brief simulation study, primarily to examine the effectiveness of the
approximation to fully Bayesian inference. For covariates, we used variables from the HIV
data described in the previous section. In particular, the X matrix included an intercept, the
indicator of IDU, and visit number. The true values of the β parameters were –1.1, 0.45, and
–0.02 for the intercept, IDU, and visit, respectively.

We first generated the response for the case where M = 1 (where the MAR assumption holds).
The missing data pattern was just the observed pattern from the HIV data. The response was
generated from models (1) and (2). We also generated data for the case where M = 2. The
missing data pattern was the same, but now the response depended on class membership. The
latent class variable was generated from model (5) with λ01 = 4 and λ1 = –0.7. We then set
α(1) = (0.003, – 0.16, 0.24)T in (4) and generated the response. In each case, the variance of the
random intercept was θ = 4. These parameter values are equal to their estimated values from
the two-class model fitted in the previous section.

For each generated data set, we fitted a marginally specified logistic regression model under
the MAR assumption (M = 1). We also fitted the latent class model proposed in the manuscript.
In that case, we fitted a one-, two-, and three-class model, and carried out model averaging
assuming a discrete uniform prior over the three classes. One hundred simulated data sets were
analyzed under each scenario. The percentage bias, average estimated standard error (SE), the
estimated standard deviation of the estimates (ESD), as well as coverage probability were
recorded. For model averaging,  was reported. The results are given in Table 4.

When the data were generated under the MAR assumption (M = 1), both modeling approaches
worked reasonably well. The estimates had very little bias. The SEs tended to be slightly
underestimated. Coverage was below the nominal for the intercept. We did not expect the
coverage and ERs to be exact as we used large sample results for inference here.

When data were generated from the two-class model (MAR assumption violated), the model
that relied on the MAR assumption (M = 1) no longer performed well. In general, coverage
probabilities were too low. In particular, the estimated coefficient of visit number had a large
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negative bias (582%) and no coverage. The model averaging approach yielded better results.
The coefficient of visit number had negative bias (26%) with coverage probability of 0.91. The
bias comes from putting some weight on the incorrect model (MAR); the coefficient of visit
number conditional on M = 2 had a bias of just 3%.

For data generated from the one-class model (MAR), the one-class model had the highest
posterior probability in 44% of samples. Here, the two-class model was slightly favored, which
is only an incorrect model in the sense that it has more parameters than necessary. For data
generated from the two-class model, the two-class model had the highest posterior probability
in 81% of samples. The one-class model (MAR) only had the highest probability in 2% of
samples.

To confirm that the model probabilities would converge to the correct values as the sample
size increased, we simulated data from the same model as described above, but with a sample
size of 3400 (4 copies of the covariate data from 850 subjects were used). We fitted five
simulated data sets from the one-class model (MAR) and from the two-class model. In each
case, the posterior model probability for the correct M was greater than 0.99.

6. Discussion
We have proposed a new model for dealing with nonignorable missing data that parsimoniously
addresses data sets with many possible dropout times (in an automated fashion) and directly
models the marginal covariate effects of interest. Via approximate posterior model probabilities
for the number of latent classes, this approach properly takes into account uncertainty in the
unknown number of classes.

We fitted the model using approximate Bayesian methods. Reversible jump Markov chain
Monte Carlo methods (Green, 1995) would be required to fit a fully Bayes model because the
dimension of the parameter space changes with the number of latent classes.

For the model proposed here, we have assumed a simple within-class longitudinal dependence
structure through the introduction of a random intercept. More flexible specifications of the
dependence structure could be obtained by replacing the scalar random effect bi with a set of
correlated random effects bi = (bi1,...,biT; though this will necessitate higher dimensional
numerical integrations) or by allowing dependence through a Markov transition structure
within class (Heagerty, 2002).

Alternative methods for specifying marginal effects for correlated binary data have been
proposed. Caffo, An, and Rohde (2006) proposed a model for binary data with random effects,
which uses mixtures of normals. Their approach is less computationally intensive than the
Heagerty (1999) approach that we implemented here. However, extending their approach to
also average over the discrete latent dropout distribution would likely prove challenging. In
particular, the additional step of averaging over the latent dropout classes would make it
difficult to preserve the marginal probit interpretation. Wang and Louis (2003) proposed a
bridge distribution function for binary random intercept models. However, extending their
approach to our setting would likely pose similar problems for mixture of normals approach
of Caffo et al. (2006).

The model proposed here assumes conditional independence between the outcome and dropout
processes, given the latent class and covariates. We tested this assumption against a very simple
alternative hypothesis (linear effect of dropout time). A more complicated approach would be
to leave the functional form of the dependence unspecified. Specifically, we could assume
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where f(·) is a smooth, but otherwise unspecified function. The null hypothesis of conditional
independence would be f(Di) = 0. We plan to explore a score-type test similar to that proposed
by Zhang and Lin (2003) and Lin, Zhang, and Davidian (2006) and examine its asymptotic
distribution for the models proposed here.
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Appendix

Computational Details of ML
We propose the following approach to compute the ML estimates. First, we obtain initial values
of the parameters. Initial values of β and θ could be obtained from ML estimates of a model
that assumes an ignorable missing data mechanism. The parameters λ initially should be
selected in a way that leads to marginal probabilities not too close to zero for any latent class.
Initial values of α could be obtained by fitting a pattern mixture model with M groups of dropout
times that have fixed boundaries. Given the data and parameters ω, we next calculate Δit for
all i and t. We accomplish this using Newton Raphson with numerical differentiation and

integration. Specifically, we solve  for Δit, where

and p(bi|Sij = 1) is N(0, θj), and p(Sij = 1|Di = d) can be found using equation (5). A 10-point
Gauss–Hermite quadrature is used to integrate out the random effects bi from the above
equation. The derivative of h(Δit) with respect to Δit is h′ (Δit), which is found using standard
numerical techniques. We then find the value of Δit by repeatedly calculating

 until convergence. Once we have values of Δit for
the current set of parameters ω, we can then evaluate the likelihood(6), where again Gauss–
Hermite quadrature is used to evaluate the integral. Many possible algorithms could then be
used to find the ML estimates. For example, one could use a Newton Raphson approach, which
would require calculating the likelihood at various points to get numerical estimates of the
score and Hessian at each step. However, the log likelihood for many latent class models tends
to be poorly behaved (e.g., more than one local maximum). Algorithms such as Newton
Raphson or Fisher scoring may not perform well. Our recommendation is start with a more
stable, robust algorithm, such as Nelder–Mead, and then switch to a faster algorithm such as
Newton Raphson for the final steps.
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Roy and Daniels Page 13

Table 1

The components of the Laplace approximation to the marginal likelihood and the corresponding approximate
posterior model probabilities under two priors for the number of classes: a discrete uniform prior and a truncated
Poisson prior

Number of classes

1 2 3 4

Number of parameters 9 19 28 37
log likelihood –3571.829 –3501.31 –3489.768 –3489.751
(1 ∕ 2)log ∣ Σ̂ ∣ –24.51 –44.07 –55.84 –78.22
d/2 log (2π) 8.27 17.46 25.73 34.00
P(m|y), uniform prior 0 0 1 0
P(m|y), truncated Poisson prior 0 0 1 0

Biometrics. Author manuscript; available in PMC 2009 December 10.
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