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Abstract

Item selection is a core component in computerized adaptive testing (CAT). Several studies have
evaluated new and classical selection methods; however, the few that have applied such methods to
the use of polytomous items have reported conflicting results. To clarify these discrepancies and
further investigate selection method properties, six different selection methods are compared
systematically. The results showed no clear benefit from more sophisticated selection criteria and
showed one method previously believed to be superior—the maximum expected posterior weighted
information (MEPWI)—to be mathematically equivalent to a simpler method, the maximum

posterior weighted information (MPWI).
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Item selection, a core component of computerized adaptive testing (CAT), can enhance test
measurement quality and efficiency by administering optimal test questions or items. The topic
of item selection has received substantial attention in the measurement literature, and a number
of selection techniques have been proposed (see van der Linden, 1998, and van der Linden &
Pashley, 2000, for a combined comprehensive review). In its pure form (unconstrained item-
level adaptation), CAT selects items sequentially to minimize the standard error of the current
theta estimate. Classical selection methods either maximize Fisher’s information (MFI) at the
interim theta estimator (Lord, 1980; Weiss, 1982) or minimize the posterior variance of the
estimator (Owen, 1975; Thissen & Mislevy, 2000; van der Linden & Pashley, 2000).

Alternative selection methods using a more global consideration of information have been
proposed and applied to dichotomous items. Veerkamp and Berger (1997) demonstrated that
selecting items based on integrating the information function weighted by the likelihood of
theta, known as the maximum likelihood weighted information (MLW]I), is superior to the
traditional maximum point information criterion. They also showed that selecting items using
the traditional MFI criterion evaluated at the expected a posteriori (EAP) estimate (instead of
the maximum likelihood estimate) could realize a gain in efficiency similar to that found using
the MLWI. With smaller mean squared errors (Bock & Mislevy, 1982; Wainer & Thissen,
1987), EAP as an interim theta estimator can also reduce the likelihood of optimizing at the
wrong places on the theta continuum at the early stages of CAT. Chang and Ying (1996) and
Chen, Ankenmann, and Chang (2000) explored the Kullback-Leibler (KL) information and
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compared it to both MFI and MLWI. Studies found that global measures performed similarly
and slightly better than the MFI, when the test length was less than ten items (Chen et al.,
2000; Fan & Hsu, 1996).

van der Linden (1998) and van der Linden and Pashley (2000) studied some criteria that use
Bayesian concepts to create global information. The minimum expected posterior variance
(MEPV; also discussed in Owen, 1975), the maximum expected information (MEI), and the
maximum expected posterior weighted information (MEPW!I1) use the posterior predictive
probability distribution to average over predicted responses to the next item. The MEPWI also
incorporates the posterior distribution (details forthcoming). A simpler criterion, the maximum
posterior weighted information criterion (MPWI) used the posterior distribution to weight the
information function. Using dichotomous items, van der Linden (1998) and van der Linden
and Pashley (2000) reported that MFI performed the worst and the MEI, MEPV, and MEPWI
performed similarly and significantly better than the MPWI. Also, for moderate length tests
(ten items), they found little difference between the MPWI and the MFI criterion. They
concluded that weighting the information function with just the posterior distribution of 6 had
little benefit.

In one of the first studies exploring polytomous items, van Rijn, Eggen, Hemker, and Sanders
(2002) compared the maximum interval information (a.k.a. the A-optimality criterion [Passos,
Berger, & Tan, 2007]) and the traditional MFI criteria under the generalized partial credit model
(Muraki, 1993) but reported little difference in performance. However, the tests administered
a large number of items due to extreme stopping rules. Thus, potential advantages may have
been masked (Chen et al., 2000; van der Linden & Pashley, 2000).

Penfield (2006) examined the MEI and the MPWI1 under a polytomous model (the partial credit
model). He showed that the MEI and MPWI1 performed similarly and were associated with
more efficient trait estimation compared to the MFI. This contrasts with previous results finding
that the MPWI performed worse than MEI. Penfield also conjectured that the MEPW!I would
be superior to the MEI or MPWI because the MEPW!I attempts to combine the best of the two
selection criteria.

Such conflicting findings of performance between the newer item selection methods versus
the classical MFI inspired us to undertake this study. Furthermore, interest in polytomous items
is growing with the recent use of CAT technology in patient-reported outcomes (PROSs) such
as mental health, pain, fatigue, and physical functioning (Reeve, 2006). Most PRO measures
are constructed using Likert-type items more befitting of polytomous models. The advantage
of using CAT in PRO measurement is that it reduces patient burden while achieving the same
or better measurement quality, and it offers real-time scoring and electronic health status
reporting. Our purpose is to clarify the discrepancies and further investigate the properties of
various selection criteria under polytomous CAT in a health-related quality of life (HRQOL)
measurement setting.

For this study, we compared CAT under the graded response model (Samejima, 1969) using
the following item selection procedures: maximum Fisher information (MFI), maximum
likelihood weighted information (MLWI), maximum posterior weighted information (MPWI),
maximum expected information (MEI), minimum expected posterior variance (MEPV), and
maximum expected posterior weighted information (MEPWI). Because exposure and content
control is less of an issue in PRO measurement than in high-stakes testing (Bjorner, Chang,
Thissen, & Reeve, 2007), our focus is on the measurement-centered item selection component
of a CAT.
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Fisher’'s and Observed Information Measures

The distinction between Fisher’s information and the observed information—that Fisher’s
information is the expectation (taken with respect to the responses) of the observed information
—was noted by van der Linden (1998) and van der Linden and Pashley (2000). For Bayesian
selection criteria that take the expectation over predicted responses, they proposed that the
observed information measure is a more appropriate choice. The two information measures,
however, become equivalent under certain item response theory (IRT) models that belong to
an exponential family (Andersen, 1980). Specifically, van der Linden noted the mathematical
equality of the two measures under dichotomous logistic models (one- and two-parameter
logistic models).

It is also straightforward to show that the two information measures are identical under the
generalized partial credit model (Donohue, 1994; Muraki, 1993). However, this equality does
not hold for the graded response model (Samejima, 1969) with three or more response
categories. This is evident when comparing the negative second derivative of the log-likelihood
with the expectation of the same function over the responses (Baker & Kim, 2004). Thus, when
using the graded response model, Bayesian item selection criteria based on Fisher’s
information and the observed information are not guaranteed to perform similarly (especially
for the first few items). We chose to explore the difference between these two information
measures under the graded response model in the selection methods that use observed
information, namely the MEI and MEPWI.

Bayesian Selection Criteria

Adopting the notation from van der Linden and Pashley (2000), let Ry represent the set of items
that are candidates for selection at stage k and let u;, represent the response to the item iy given
at the kth stage in the sequence. Let g(0]uj;,Uj,, ... Uj,_4) denote the posterior distribution, which
is the probability distribution of the latent trait of interest, 0, given the previous k — 1 item
responses. Let pj(r|uj;, Uiy, .- Uj,_4) denote the posterior predictive distribution, which is the
probability of giving response r to item j given the previous response history. For more details
about these distributions, see the work of van der Linden and Pashley (2000), Carlin and Louis
(2000), or Gelman, Carlin, Stern, and Rubin (2004). Also let ‘]Uil-Ui _____ Uiy (6) denote the
observed information function and 'Uil,Ui _____ Ui (©) denote Fisher’s information function for
items iq,ip,...,ix. As mentioned in the introduction, the relationship between the two is

Uiy iUy il N7 72U Ui (1)

where the expectation is taken over the responses.

The MPWI for polytomous models is defined as

i = arg max {[2@l, i, w5 )L, (O)d6:] € R,

The selected item, iy is the item remaining in the item bank that maximizes the integral of
Fisher’s information function weighted by the posterior distribution. As with the MLWI, this
is a more global measure of information because the integral accounts for a range of theta
values and the posterior distribution weights the values according to their plausibility given
the previous item responses.

The maximum expected information (MEI) criterion extended to polytomous models is
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mj
I} = arg max ij(rluil s Uins v ooy Uiy )Ju,» iyt Oy (Hu,- R— .U;,) € Rk,
j < Lt U= Mg tig—y U= 3)

where the summation is over the number of possible response categories for item j, m;. The
item iy to be selected as the kth item is the one that maximizes the observed information we
expect from each item j given the previous responses. That is, for each possible response r in
{1,2,...,m;} to a given item j, the observed information function associated with response r to
item j is evaluated at the theta estimate based on previous responses and response r: éUil'Uiz'
g Uj = Since the actual response has not been observed, the expectation is taken over
all responses to item j with respect to the posterior predictive probability distribution. Note
that because the MEI depends on the observed information, we also generate results for the
MEI whereby the observed information is replaced with Fisher’s information for the next item
to explore the potential effects.

Replacing the observed information function with the posterior variance yields the minimum
expected posterior variance (MEPV) or maximum expected posterior precision criterion as
follows:

mj

iy = arg mj'qlx {ZPj(’Wil JUiys .o Wi ) Var Olug, iy, ... u;_ Uj=r):j € Rk} ,
r=1 (4)

where Var(6|ujy, Uiy, ---,Ujj_4, Uj = I) is the posterior variance for item j with predicted response
category r. This objective function is the Bayesian counterpart of the maximum information
(Thissen & Mislevy, 2000) and hence provides a theoretical justification under the EAP. Also
as a characteristic of the posterior distribution for theta, the variance can be considered a more
global measure of information than Fisher’s information.

Also proposed by van der Linden and Pashley (2000) was a variation of the MEI, called the
maximum expected posterior weighted information (MEPWI) criterion. This criterion, in
addition to taking the expectation over the possible responses to the proposed item, averages
the expectation of the observed information function for each response over the entire theta
range using the posterior distribution that includes the potential new response, r.

mj
ik = arg mjax {ij(rlu“ sUins ooy u,-k_l)fg(f)lu“ sUips ey Uik—l’ UJ'ZI”)
r=1
xJ 0O € Rk} ,

Uiy My ool g

(5)

Equivalence of MEPWI and MPWI

On closer inspection, the MEPWI produces identical results regardless of whether the observed
information or Fisher’s information is used (even under the graded response model). More
important, the MEPWI and the MPW!I are mathematically equivalent for any parametric IRT
model with a defined second derivative of the log-likelihood, including dichotomous IRT
models. Because the items are assumed locally independent given theta, taking the expectation
of the observed information with respect to both the predictive probability distribution and the
posterior distribution based on the predicted response is the same as taking the expectation of
Fisher’s information with respect to the posterior distribution. A proof of both characteristics
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is included in the appendix. Because of this equivalence, simulation results using the MEPWI
are not presented.

Comparison Studies

We used a software program (Firestar; Choi, in press) to conduct CAT simulations under three
fixed-length conditions (5, 10, and 20 items) using the EAP theta estimator and a standard
normal prior. We selected the three test lengths to represent short, medium, and long tests under
polytomous CAT. For benchmarking purposes, we used two naive item selection criteria as
the potential lower and upper bounds, respectively: (a) a method selecting the next item at
random, and (b) a method selecting the next item according to the MFI but using the known
theta value (with simulations) or the EAP theta estimate based on the entire bank (with real
data) instead of an interim theta estimate. We then constructed static forms of the same lengths
(i.e., 5, 10, and 20 items) by selecting items with the largest expected information where the
expectation was taken over the standard normal distribution (Fixed). We designed four main
studies: Study 1 involved simulations based on real data and real items; Study 2 involved
simulated data from the real items in Study 1; and Study 3 and Study 4 involved simulated data
from two different simulated item banks (described below).

Study 1: Real Bank and Real Data

We obtained response data on a bank of 62 depression items from a sample of 730 respondents
who had been patients or caregivers at M. D. Anderson Cancer Center in Houston, Texas. We
then fitted the items with the graded response model (Samejima, 1969). Each item had four
response choices, “Rarely or none of the time,” “Some or a little of the time,” “Occasionally
or a moderate amount of time,” and “Most or all of the time.” All items retained in the bank
had satisfactory fit statistics (S-X2; Orlando & Thissen, 2003). Figure 1 shows the scale
information function and the trait distribution. The scale information function is shifted
markedly to the right in relation to the trait distribution. This occurred for two reasons. First,
it is very difficult to generate items targeting the lower range for the construct of depression.
Consequently, there are plenty of items measuring moderate to severe levels of depression but
very few items measuring the lower end. Second, the sample was drawn from a general
population as opposed to a clinically depressed population. The vertical hash marks above the
horizontal axis of the graph denote the locations of the category boundary parameter estimates.
The lowest value across all items was around —1.0, implying that the measurement of
examinees below this level would be inevitably poor (i.e., floor effects). As a screening tool,
however, the primary interest of a measure like this lies in the upper region (e.g., > 1.0), and
hence the lack of coverage of the healthier end of the continuum may not pose a problem. We
conducted post-hoc CAT simulations using the calibration data (N = 730).

Studies 2, 3, and 4: Simulated Data and/or Simulated Item Banks

For Study 2, we used the same item bank as in Study 1; however, Study 2 used known theta
values and responses simulated from them, as described below. For Studies 3 and 4, because
our real item bank did not cover the full range of the trait spectrum, we simulated two different
item banks of 65 items. We generated one bank to have “peaked” items and a second bank to
have “flat” items, while maintaining similar levels of total information. Modeling after the item
parameter estimates from the real bank, the peak bank was generated to contain items with
relatively high discrimination parameters and category thresholds positioned close to each
other. The flat bank was generated so that items on average had lower discrimination
parameters and category thresholds that were spread wider apart.
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Simulee Generation

To generate simulee responses for the real and simulated item banks, we generated a sequence
of theta values between —3 and 3 with an increment of 0.5. We then used the graded response
model to simulate 500 replications of response patterns at each theta value for a total of 6,500
simulees over the entire sequence.

CAT Implementation

Results

The standard normal distribution was chosen as the prior for 6 for the expected a posteriori
(EAP) estimation and all Bayesian item selection criteria. For the MFI, the first item was
selected to maximize Fisher’s information at the mean of the prior distribution (i.e., 0.0). We
used a uniform likelihood function to select the first item for the MLW!I and the standard normal
prior distribution to select the first item for the MPWI.

Study 1: Real Bank and Real Data

Table 1 shows the mean squared standard error of measurement (SE2), root mean squared
difference (RMSD) and correlation (CORR) between the theta estimates based on CAT and
the full bank (i.e., using all 62 items) for all the selection methods and all test lengths. Except
for the poor performance of the random selection (Random) and the static form (Fixed), no
criterion clearly distinguished itself as better than the others. Overall, the differences between
all the methods were small, with smaller differences exhibited in the longer test conditions.
Figure 2 summarizes the standard error of measurement (calculated as posterior standard
deviation) for the theta estimates from the five-item, real bank, real data conditions. The
scatterplots show the posterior standard deviations against the CAT theta estimates. The dotted
lines correspond to the conventional reliability of roughly 0.9, 0.8, and 0.7, respectively,
assuming theta is distributed N(0,1) in the population. At the bottom of each scatterplot is the
proportion of the standard error estimates that are at or below 0.32 (corresponding to a
reliability of 0.9). The proportions were very similar to each other, ranging from .53 to .55 for
the six selection criteria, namely, MFI, MLWI, MPW!I, MEI(Fisher), MEI(Observed), and
MEPV. It is worth noting that the six selection criteria performed as well as the CAT that
selected items maximizing information at the full-bank theta estimates (as seen by comparing
the other plots to the plot labeled Theta in Figure 2). Also, the static short form performed
substantially worse than CAT (see Table 1 and Figure 2). The static short form appeared to
have selected items primarily from the center of the trait distribution (and the scale information
function) and performed the worst. A similar but less pronounced pattern was observed when
ten items were used (ranging from .73 to .76). This trend continued when 20 items were used
(ranging from .86 to .87; further data not shown).

A somewhat noticeable degradation in performance was observed with the static fixed form
when 5 and 10 items were used (.49 and .64). As evident in Figure 2, the theta estimates from
the static fixed form were markedly degenerative (i.e., had fewer possible estimated values
with higher SEM) as the estimates deviated from the center of the test information function
(i.e., around theta = 1.0, see Figure 1).

We also examined the percentage of overlap of selected items between the MFI selection
method and each of the other selection methods, namely, MLWI, MPWI, MEPV, MEI(Fisher),
and MEI(Observed). The overlap proportions were high (ranging from .84 to .90), even when
using five items. The overlap increased when 10 items were used (.90 to .94 overall), and the
overlap increased further when 20 items were used (.96 to .98).
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The results from Study 1 reflect a specific setting and are largely dependent on the item bank
characteristics. The item information functions in the real bank overlap substantially with each
other (data not shown), leaving little room for the advanced selection criteria to demonstrate
potential advantages. However, using simulated banks (Study 3 and Study 4) also provided
similar results.

Studies 2, 3, and 4: Simulated Data, Real and Simulated Banks

Table 2 and Table 3 show the bias, root mean squared error (RMSE), and correlations (CORR)
with the true theta values from CAT simulations using simulated responses generated from the
real and simulated item banks, respectively. The results were similar to those from Study 1 in
that no method distinguished itself as better than others, and overall the differences between
the methods were small, with smaller differences exhibited when longer test conditions were
used. Also, except for the benchmark random item-selection method, all three test conditions
(5, 10, and 20 items) had high correlations (above .95) with the true theta values. The random
selection method produced a correlation less than .95 only when five items were used (r = .
94, .92, and .93, for real, peak, and flat banks, respectively).

Although the outcome measures for all the different CAT item selection methods were very
close, all methods performed better on the bank of peaked items compared to the bank of flat
items in terms of correlation and the standard error of measurement. However, smaller absolute
biases were associated with the flat item bank. All CAT item selection criteria outperformed
the static short form and the benchmark random item-selection method under all of the test
lengths and bank conditions. Also, except for when five items were used, all CAT selection
criteria perform very similarly. When five items were used, there was some slight separation
between the methods, but there was no clear “winner.”

We again examined the item overlap between each of the methods—MLWI, MPWI, MEPV,
MEI(Fisher), and MEI(Observed)—and the MFI selection method. In the five-item condition
for the peaked and flat banks, the overlap between the MLWI criterion and the MFI was less
than the other criteria. In the peaked bank, the overlap proportion between MLWI and MFI
was .42, whereas the proportions were greater than .90 for other selection criteria. In the flat
bank, the disparity between the overlap rates reduced; the MLWI and the MFI overlap rate
was .73 versus .94-.99. In the real item bank, the MLWI overlap rate was similar to the others,
all falling within .77 and .87. Similar patterns emerged in the 10- and 20-item conditions with
substantially increased overlap proportions.

Conditional Results

Figure 3 through Figure 6 show various performance measures across the theta range for the
different selection methods in the five-item, simulated data condition. Figure 3 shows the
simulation results for the real item bank; Figure 4 shows results for the peaked item bank, and
Figure 5 shows results for the flat item bank. As was the case in the study using the real bank
and real data (Study 1), we found that the results from the various methods essentially converge
as the test length increases. Thus, data from simulations using 10 and 20 items are not shown.
Even when five items were used, in all the plots shown, most of the CAT selection methods
performed very similarly to one another across the theta range.

Figure 3 through Figure 5 show the mean squared error (MSE) across the theta range for all
the CAT selection methods, the static short form, and the two benchmarking criteria for the
real, peaked, and flat banks, respectively. Figure 4 shows some striking behavior for the MLWI
and the short form in the peaked bank. The MLWI had a much higher RMSE (.48) and had a
slightly higher bias in the lower extremes of the theta distribution compared to the other
methods (discussion forthcoming). The static short form performed well at the middle and
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worse at the extremes. This occurs because the standard normal distribution heavily weights
the middle range of theta values.

The conditional bias behaved as expected—uvalues below the mean were overestimated, and
values above the mean were underestimated. The bias increased in magnitude as one moved
away from the population mean (zero) toward the extremes, especially when the item banks
had low coverage at the extremes. The bias had the highest magnitude at the lower extreme for
the real item bank. Also the static short form and the benchmarking random item selection
method exhibited more bias—especially for theta values away from the mean—than any of
the other CAT methods.

Discussion

A few limitations of this study are worth mentioning. First, we focused on the unconstrained
CAT where the selection of items was solely based on the psychometric properties of items,
and neither exposure control nor content balancing was considered. In health-related quality
of life (HRQOL) measurement settings, content and exposure control are not necessarily of
interest and thus were not explored in the current study. Second, the Kulback-Leibler
information methods were not explicitly considered. Based on findings in the literature, we
speculated that they would perform similarly to the other criterion that take a more global
approach to the information, but further study may be helpful. Third, in accordance with most
CAT studies in the literature, we used a standard normal prior distribution for theta when
applying Bayesian methods. Although theta is often assumed to follow a standard normal
distribution, this assumption may be untenable for some psychopathology or personality
constructs. Future research might investigate robustness or sensitivity of these methods to
misspecified priors.

Under the conditions considered, our study showed that the MFI (with the EAP interim theta
estimator), the MLWI, and the Bayesian CAT selection methods in general performed equally
well across all conditions. In addition, the MPW!I and the MEPWI methods were determined
to be mathematically equivalent. As expected, the worst performances we observed were those
using the short form selection criterion. These results, however, may not be generalized to all
short-form selection criteria and may apply only to short forms generated by selecting items

that maximized the expected information over a standard normal distribution.

It is interesting to note that item selection based on the interim theta estimates performed
equally as well as item selection based on the true theta. As a matter of fact, item selection
based on the true theta did not appear to perform the best when compared to the other criteria.
Specifically, the RMSE was larger when compared to other methods, albeit the difference was
minute. A couple of explanations are tenable. First, the item banks had low coverage at the
extreme theta levels where items selected based on the true theta were in general very poor
items—flattened information functions with somewhat obtuse tail ends. This would inflate the
conditional variance of theta estimates and increase the overall RMSEs. Second, other methods
based on estimated theta values picked at least one item (i.e., the first) providing maximal
information around the prior mean, which would produce more consistent (albeit biased)
estimates due to the lack of informative subsequent items for the extreme theta values.

In the peaked bank, the MLWI had noticeably poorer performance at the lower theta values.
To further explore this, we plotted the SEM versus the estimated theta values from simulated
data using the peaked item bank (Figure 6). When using five items, we found that the MLWI
method clearly had trouble estimating theta values between —2.0 and 0.0. The SEM seemed to
be higher in that region, and there were few different estimates for simulees with true theta
values in that region. On further inspection of the peaked item bank, we noticed that the five
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items with the highest information were in the higher theta range, and the item with the most
information overall was located at 3.3. This finding explained the behavior of the MLWI.
Because the likelihood function is conventionally set to be uniform before the first item is
given, the MLWI method selected the item that had the largest area under the information
function (with location 3.3) as the first item. Using a short test length, the estimates for the
simulees at the negative end of the distribution had a higher degree of bias even after four
additional items were administered as a result of the extremely inappropriate first item.
Although such an item may be rare in practice, it does show a potential limitation of the MLWI.
Some sort of heuristic must be set to select the first item, just as with the MFI, because
technically the likelihood does not exist until the first item is selected.

In addition, this study noted that the graded response model (GRM) is the only model
considered thus far in the literature for which the expected and observed information functions
are not the same. However, from the results in the present study, we learned that the MEI using
the observed information function behaved similarly to the MEI using Fisher’s item
information function. This suggests that when using simulated data sets, there is no practical
difference between using the MEI based on Fisher’s item information and using the MEI based
on the observed information under the GRM.

We made an important observation in this study. As demonstrated mathematically in the
appendix, the MEPWI, which was believed to be superior to MFI and MPWI, is actually
equivalent to the much simpler and more straightforward MPWI criterion. This is an
encouraging finding because the conceptual advantage of combining two beneficial approaches
is actually realized by simply weighting the information function by the posterior distribution.

The results in our study, combined with the previous results of Chen and colleagues (2000)
and Penfield (2006), suggest that selecting an item based on summarizing the information for
a range of theta values (i.e., using a weight function such as the posterior distribution) as
opposed to the information at a single point on the theta range might be all that is necessary to
achieve the performance gain, and predicting the next observation using the predictive posterior
distribution may not be necessary. In fact, this is also congruent with the findings of VVeerkamp
and Berger (1997) when they noted that MFI with the EAP estimate produces similar gain to
the weighted information functions. This also may partially explain why all methods explored
in our study performed similarly; if an estimate of theta was necessary, the EAP estimate was
always used, even with the MFI selection method.

Insummary, for polytomous items, the advantages that many of the Bayesian selection methods
exhibited in the dichotomous setting might be masked in many practical settings using
polytomous models unless the item bank is huge and the item information functions cover
narrow ranges. For psychological and health outcome measures, this is seldom the case. Typical
item banks for these constructs tend to have a small number of four- or five-category
polytomous items (e.g., 30 to 60). Thus, their information functions can be multimodal
(Muraki, 1993) and tend to span a wide range. Item selection is then mostly governed by the
slope parameter instead of the category parameters. Furthermore, our simulations showed that
for polytomous items modeled with the GRM, more complex and computing-intensive item
selection procedures (e.g., MEI) with theoretical advantages do not seem to provide practical
benefits over the standard maximum information criterion in conjunction with the EAP. The
MFI using the EAP theta estimation was very competitive (although the MEPV method would
be preferred from the Bayesian perspective). These findings suggest that, for item banks with
a small number of polytomous items, any of the methods considered in this study are
appropriate.
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Appendix

Let P;r(0) denote the probability for responding in category r € {1,2,...,m;}, where mj is the
maximum number of categories for item i. Also let item iy represent the item administered at
stage k. So uj, denotes the response to the item administered at stage k. Let g(0|ujy, s,
..,Uj,_¢) be the posterior at stage k-1, and let p(Uj, = r|ujy,Uj,,-.-,Uj,_4) be the posterior
predictive distribution predicting the response to item iy to be r given the previous k—1
observations as defined by van der Linden (1998) and van der Linden and Pashley (2000).

The general form of the likelihood, L(8|u), for n items with responses u = (uy,Uy,...,Un) With
uj € {1,2,...,m;} categories is

L@w)=] |Pi(O)=F o).
i=1 (A1)

The observed information function for items iq,io,...,ix, ‘]Ui1|Ui ,,,,, uj (0), is defined by van der
Linden (1998) as the negative second derivative of the log of the likelihood, and Fisher’s
information, IUilvUi ,,,,, Uik(e)' is defined as the expectation of the observed information
function with respect to the data as given in Equation 1.

To simplify the notation, IUj(e) denotes Fisher’s information for a single item j, and Juj = r(6)
is the observed information evaluated for one item j with response U =r.

The MPWI is defined by van der Linden (1998) as shown in Equation 2 and the MEPWI as
shown in Equation 5. We denote the MEPW!I as shown in Equation 5 as MEPWI(Observed)
because it uses the observed information function. MEPWI(Fisher) represents the MEPW!I with
Fisher’s information replacing the observed information. To begin, notice that in Equation 5,
the observed information function can be considered the sum of individual observed
information functions: Jy; Uigse- Ui _q, Uj = r(0) = Jui; uin,....ui_1 () + Ju; = r(0). Rearranging

. i1 Ui, Uik_1, i ui—l_ ]
terms and separating the integral into the sum of two integrals yields

MEPWI(observed) =

mj

arg max { [, iy, | (H)ZP(U/':VW«', Uigs s Wi 8O Uiy . ui,,, Uj=r)d6
j 2 -

r=1

c

l"]
+pr(Uj:r|u,-l, Uiyy - .- Wi V8Os, Uiy - -, U, Uj:r)Jl,/?r(H)dG:j € Rk} .
r=1

(A2)

Consider the first term in equation A2 (labeled C). By the definition of conditional probabilities,
the product of the predictive probability distribution and the posterior distribution is the joint
distribution of 6 and the next observation, g(0, U; = r|uj; Uiy, ... Uj,_4). Taking the sum of this
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joint distribution over the responses, r, to the next item results in the posterior distribution
conditional on only the previous k—1 observations:

mj

¢ fJu:. iy sl l(6')2117([/ =rlug Uiy o i )80 s . g, U j=r)d6

—f ,”'1 iy seensllip (H)Zg(H U, _r]ull sUjyy ooy Ujy )d6‘

f-]u,l My e Uiy l(g)g(()lull sUins oo s Ujp )d(), (A3)

so that C is constant with respect to the maximization (i.e., it no longer depends on the next
item) and can be dropped.

Next consider the second term from Equation A2. Notice that, again, the product of the
predictive probability distribution and the posterior distribution is just the joint distribution of
8 and the next observation, so continuing from Equation A2 we have

HIJ
=arg max {C+pr(U =T WisMissass wi, )8(Olui, iy, - . ., Ui s Uj:r)Jl,j,r(G)dQ:j € Rk}

r=1
mj

=arg max {fZP(Uj:rWi‘ Wiz ms 5 5 Wig )G CONME s Uiz sersssWiys Uj:r)J,.ﬂ((J)d():j € Rk}
J -

m;

=arg max {fZg(G Ui=rlug, uy, . .., uj, l)./l,j,,_((-))dé):j € Rk},

r=1 (A4)

where g(0, Uj = r|uj;, Ui, ..., Uj,_4) is the joint distribution of 6 and U;. This joint distribution is
the product of the posterior for 6 given the previous observations, g(0|ui; Uiy, ---,Uj,_4), and the
probability of a response to item j given 0 and the previous item responses, f(U; = r|0, uj;,Uj,,
.+Ujj_1)- From the local independence assumption that allows the IRT analysis, f(U; = r|0,
Uig,Uip, - Uj,_1-)=f(Uj = 110) since the items are independent given 0. Also from Equation 1,

we have Iuj ) =E [JU]-(H)I :Zrl:jlf(rW)]Uj:r(é})_

So continuing from Equation A4,

mj

MEPWI(Observed) = = arg max { I 8O, U=rui us, ... wi ), (0)d0:) € Rk}

r=1
=arg max { [eOluiy, iy i, l)Z [(U=rlo)J, . (6)d6:j € RA}
=arg max [fg(@lu,-l,u,-z, . l)1 (6’)d9 Jj€E Rk}
Jj
= MPWL (A5)

Notice, we proved that MEPWI and MPWI are equivalent selection methods. Therefore, as
long as local independence holds, MEPWI is equivalent to MPWI.

Continuing from Equation A5, we add a new constant C* that is independent of the
maximization to create the complete Fisher’s information. We also use

m;j
8Ol iy, .o Uiy ):Z':’lg(g, Uj=rlui,, uiy, . . .. ui_,) to show that MEPWI(Observed) is
equivalent to MEPWI (Fisher):
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MEPWI(Observed) = arg max {fg(@lu,—l, Uy, - .., Ui, ), (0)do:j € Rk}
j J

MPWI

=arg max fg(f)lu,-l,u,-:,...,u,-k,l)l,, - (0)do
j Lilad Rasad) 1

ps
+ [8Olui, s .. wi I, (0)d6:j € R

=arg max { [ el iy, ..., My, ., 0, O)d0] € Rk}

J

"Ij
=arg max { Sy, 0, 8O Uj=rlttys i, .., )d6:j € Rk}
J ) r=1

k

mj

=arg max { Tl sy 0, ® U= ..,
J B r=1

X g6l tiys .. wi,,, Us=r)de:j € Ry

Illj‘
=arg max {Zp(Uj:rlu,-,, Wizl )fg(é)lu,-, JUigs -y i, Uj=r)
j

r=1

> (N y
[l,l.l,:....l

L0 (O)d0:j € Rk}
= MEPWI(Fisher). (A6)

Therefore, under local independence, the MEPWI selection method using Fisher’s information
function is mathematically equivalent to MEPW!I using the observed information function.
Furthermore, MEPWI = MPWI. Incidentally, it is worth noting that, if the constant C* is not
added, then the above proof shows that replacing the observed information function with
Fisher’s information function for just the next item is equivalent to MEPWI (Observed) as
well.
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Figure 1.

Scale Information Function of Real Bank (62 Items) and Estimated Theta Distribution (N =
730)
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Figure 3.
Mean Squared Error of Theta Estimates: Real Bank, Simulated Data (5 Items)
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