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Abstract
This paper presents a semiautomatic method for the registration of images acquired during surgery
with a tracked laser range scanner (LRS). This method, which relies on the registration of vessels
that can be visualized in the pre- and the postresection images, is a component of a larger system
designed to compute brain shift that occurs during tumor resection cases. Because very large
differences between pre- and postresection images are typically observed, the development of fully
automatic methods to register these images is difficult. The method presented herein is semiautomatic
and requires only the identification of a number of points along the length of the vessels. Vessel
segments joining these points are then automatically identified using an optimal path finding
algorithm that relies on intensity features extracted from the images. Once vessels are identified, they
are registered using a robust point-based nonrigid registration algorithm. The transformation
computed with the vessels is then applied to the entire image. This permits establishment of a
complete correspondence between the pre- and post-3-D LRS data. Experiments show that the
method is robust to operator errors in localizing homologous points and a quantitative evaluation
performed on ten surgical cases shows submillimetric registration accuracy.
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Index Terms
Brain shift; feature extraction; image-guided neurosurgery (IGNS); image registration; laser range
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I. Introduction
How to measure and compensate for brain shift during surgical procedures is an active area of
research in image-guided neurosurgery (IGNS). Studies have shown that the brain could
deform more than 2 cm during surgery due to a number of reasons ranging from the procedure
itself (e.g., resection), loss of cerebrospinal fluid (CSF), or the administration of drugs.
Deformations of this magnitude greatly reduce the usefulness of standard IGNS navigation
systems, which are based on preoperative images. To address these issues, approaches have
been proposed that rely on biomechanical models to predict the deformation of intraoperative
images during the procedure [1]–[7]. But, all of these methods require some type of
intraoperative brain movement measurements as input.

Methods that have been proposed to estimate brain movement intraoperatively, include
intraoperative MR images [8], [9], ultrasound (US) [10]–[12], stereoimages [13], [14], or laser
range scanners (LRSs) [15]–[21]. Intraoperative MR images can either be acquired with
interventional scanners, which are in the operation room [8], [9], or by moving the patient to
an adjacent room in which the scanner is located [22]. Large fixed-coil interventional MRs are
expensive, require special equipment, and limit surgeons' access to the operating field [10].
Smaller open magnets typically suffer from poor resolution and geometric distortions. Because
of this, it is unlikely that this type of intraoperative imaging will become widely available. An
alternative is to build operating rooms (ORs) adjacent to the scanning room. During the
procedure, the patient can be moved back and forth between the rooms and scans acquired.
However, this complicates the procedure and can add up to 10 min for each scan [22]. US is a
cheaper solution but it suffers from relatively poor image quality. Nevertheless, it has been
used by several groups to register pre- and intraoperative images (see, for instance, [10]–[12],
[23], and [24]). The authors in [10] estimate brain shift around the tumor by computing a rigid-
body registration between the tumor delineated in the preoperative MR volume and the 3-D
US volumes acquired before and after opening of the dura but prior to resection. Reinertsen
et al. [12] rely on vessels segmented in preoperative MR angiography volumes and vessels
visible in intraoperative Doppler US images. The authors state that two US volumes are
acquired. The first one prior to opening of the dura and the second one during the procedure
but no details are provided on whether or not these images were acquired after resection. The
authors compare registration results obtained with: 1) a rigid-body transformation computed
with points selected manually; 2) a rigid-body transformation computed with vessel points
extracted automatically in the MR and US images; and 3) a nonrigid transformation computed
with the vessel points. To compute the nonrigid transformation, they use a modified iterative
closest point approach [25], in which outliers are eliminated through a trimmed least squares
approach. Once correspondence is established, thin-plate splines are used to compute the
transformation. Results show that the nonrigid transformation improves things only marginally
over the rigid-body transformation computed with manually selected points, thus suggesting
that in the dataset used in that study, little deformation happened between the pre- and
intraoperative images. Video images have been proposed to register pre- and intraoperative
data as early as 1997 by Nakajima et al. [26]. In this paper, vessels segmented in preoperative
MR images were registered to surface vessels visible in the intraoperative video images and
the system was tested on images acquired after opening of the dura. This approach was extended
by Sun et al. [13], who used a pair of cameras. They demonstrate their ability to track the shape
of the cortical surface after the opening of the dura on two neurosurgical cases. A similar
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approach is followed by Skrinjar et al. [27]. More recently, DeLorenzo et al. [14], [28] have
used a pair of stereoimages and they register preoperative images with intraoperative video
images using a combination of sulcal and intensity features. They propose a method by which
registration and camera calibration are performed simultaneously and show that this approach
permits to correct calibration errors. In this paper, sulcal grooves were segmented by hand and
the system was applied to patients undergoing stage 1 epilepsy surgery. This is a procedure
that requires the opening of the dura for the placement of an array of intracranial electrode on
the surface of the brain but it does not require resection. At our institution, a tracked LRS with
an integrated high-resolution digital camera is utilized to capture the visual appearance as well
as the 3-D geometry of the brain surface during surgery. Briefly described (more detailed
information is provided in [21]), the tracked LRS captures a 2-D picture of the field of view
and a 3-D point cloud (i.e., a set of surface points for which the x-, y-, and z-coordinates are
known). The scanner also provides a mapping between the two such that a textured point cloud
can be generated. The 3-D coordinates of any point and its corresponding coordinates in the
field of view 2-D image can thus be computed. The scanner is also tracked, which means that
the 3-D coordinates of a point acquired at time t1 can be related to the coordinates of a point
acquired at time t2 even if the scanner position changes in the t1–t2 interval, as happens often
during surgical cases. Tracking brain motion thus requires only establishing a correspondence
between points acquired at times t1 and t2. If this correspondence is established, the 3-D spatial
coordinates of a point at time t1 and its spatial coordinates at time t2 can be obtained, which
permits computing its 3-D displacement.

As discussed earlier, a number of methods have been proposed to measure brain shift during
surgery but, to the best of our knowledge, none of these methods have been extensively
evaluated on datasets acquired before and after tumor resection. Clinical evaluation has been
largely limited to measuring cortical or tumor shift following craniotomy or opening of the
dura. Although difficult, this is considerably less challenging than attempting to measure shift
during the case after resection because resection creates a void, which, in turn, substantially
alters the shape of the brain. Because parts of the brain sag to fill in the void, portions of the
brain not visible in the preresection images can enter the field of view and become visible in
the postresection images. Parts of the brain visible in the preresection images can also slide
under the skull and become invisible in the postresection images. Bleeding, which changes the
contrast of the images, further complicates the task. Due to these difficulties, methods proposed
so far to measure intraoperative brain movement are unlikely to succeed. For instance, simply
tracking the surface of the cortex to measure sagging or bulging does not provide information
on the displacement of the points parallel to the cortical surface. The resolution of US images
permits only identifying relatively large vessels. As discussed by Reinertsen et al. [11], [12],
this leads to transformations that are accurate close to these large vessels but less so further
away from the vessels, thus suggesting the need for intraoperative imaging techniques, which
have the spatial resolution required to visualize small cortical vessels. Intensity-based methods
as the ones we have proposed in earlier work [16], [18] are also not robust enough to deal with
the very large differences observed in clinical images.

To address these issues, we have proposed a method in [19] that is based on manually delineated
vessels, and its potential was shown on a limited number of cases. Here, we expand on this
work. As others have done [11], [12], [26], we use vessels to register the images but our research
differs in several important ways. First, we use a tracked LRS that provides us with
simultaneous high-resolution 2-D and 3-D information. DeLorenzo et al. [28] have shown the
importance of online calibration when using stereocameras. The algorithm they propose
achieves this but is time-consuming (more than 20 min on a modern PC). Our approach does
not require online calibration. Second, we use a semiautomatic method for the extraction of
the vessels in the image. This method is inspired by the work of Wink et al. [35]. In this
approach, vessels are enhanced using the vesselness filter proposed by Frangi et al. [31]. A
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minimum cost path is then found between starting and ending points given by users. Wink et
al. used a multiscale search method to follow vessels with a constant width. We use a scalar
cost function based on maximal filter response but we add a term that favors paths, which are
in the center of the vessels, as suggested by Bitter et al. [36]. This method is fast, robust to user
input error, and permits identifying large and small vessels over the entire field of view. Speed
and robustness are important because the system will need to be used by surgeons under time
pressure in the operating room (OR). Third, we use the robust point matching (RPM) algorithm
proposed by Chui et al. [29] to match the vessels as opposed to a modified iterative closest
point approach proposed in [12]. Finally, we validate our approach on ten intraoperative tumor
resection datasets. This is a unique dataset in which optically tracked pre- and postresection 2-
D and 3-D information has been acquired.

The rest of the paper is organized as follows. Section II, which describes the method, first
presents the data used in the study. The method used to find the vessel centerlines is then
described and an introduction to the RPM algorithm used to register the images is provided.
This section concludes with a description of the validation methods used to evaluate our
approach. Results obtained on ten tumor resection cases are presented in Section III.
Conclusions and suggestions for future work are detailed in Section IV.

II. Method
A. Data and Data Acquisition Protocol

A high-resolution commercial LRS (RealScan3D USB, 3D Digital, Inc., Bethel, CT) system
is used in this study. The device is capable of generating 500 000 points with a resolution of
0.15–0.2 mm at the approximate range used during neurosurgery. This resolution varies slightly
according to the distance between the camera and the patient. The 3-D position of each point
on the scan is calculated via triangulation. At the same time, a digital camera (Canon Optix
400) acquires a texture image with a resolution up to 2592 × 1944 pixels. The texture image
and the 3-D point cloud are registered. A complete dataset thus includes a set of image pixels
with coordinates (u, v) and a series of points with coordinates (x, y, z). The (u, v) coordinates
of any (x, y, z) point can be computed and vice versa.

The following protocol, which was approved by the Vanderbilt Institutional Review Board,
was used to acquire data from consented patients. After opening of the dura, the LRS system,
which is mounted on the adjustable arm or a monopod, is placed within 20–30 cm of the patient.
A preresection scan is taken that takes on the order of 1 min. This includes moving into the
field and collecting the data. The system is removed from the field and the procedure proceeds
normally. After tumor extraction, a postresection scan is acquired by moving the scanner back
into place above the craniotomy. Because the scanner is tracked, the pre- and postresection
positions do not need to be exactly the same. More details about the data acquisition procedure
can be found in [21]. The first image in Fig. 1 shows a patient (B) in the OR with the tracked
LRS (A) positioned on the top of the craniotomy. The traditional IGNS (C) can be seen on the
opposite side of the scanner. The second image in Fig. 1 shows the panel we have developed
(D) in house for data collection and processing.

Fig. 2, which shows typical preresection (left panels) and postresection (right panels) images,
illustrates the complexity of the task at hand. In this figure, the top panels are the 2-D images
of patient #2 acquired with the camera and the bottom panels are the textured point clouds, i.e.,
3-D surfaces acquired with the laser scanner. Pre- and postresection images are acquired with
the scanner in a different position and orientation, and the resection has created a large hole in
the middle of the image, which induces substantial brain deformation. Blood and the lighting
conditions also change the appearance of the images. Additionally, the brain shifts with respect
to the craniotomy during the procedure. As a consequence, parts of the brain visible in the first
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image slide under the skull and are hidden in the second image. The same phenomenon makes
parts of the brain hidden under the skull in the first image appear in the second.

B. Extraction of Vessel Centerlines
Fig. 2 suggests that the most reliable features that can be extracted from the pre- and
postresection images are the center-lines of the vessels. Preliminary results presented in [20]
also suggest that registration based on these features leads to accurate results. But centerlines
were extracted manually in [20]. This is both lengthy and inaccurate. Here, the process is largely
automated with a method based on a minimum cost path algorithm [30]. This algorithm requires
the computation of a cost matrix, which is automated, and the selection of one starting and one
ending point for each vessel segment to be used for registration, which is done manually. The
next section describes the method used to create the cost matrix.

1) Creation of Cost Matrix—The cost matrix used to find our minimum cost path is
computed using two terms derived from the images. The first one is related to the vesselness
of a point in the image as defined by Frangi et al. [31]. The second one is based on a distance
map computed on an edge image. In their work, Frangi et al. propose a multiscale filter based
on the hessian of the image, which can be used to enhance tubular structures. The approach
they propose is to: 1) convolve the image with Gaussian filters with various standard deviations;
2) compute the hessian of the smoothed images, defined as

(1)

in which Iij is the second spatial derivative of the image in the i- and then j-directions; and 3)
compute the eigenvalues of the hessian. An analysis of the values of these eigenvalues permits
to determine the type of structure a particular pixel belongs to. Pixels that pertain to tubular-
like structures that are bright on a dark background will satisfy the following conditions:

(2)

Based on this observation, the vesselness filter Frangi et al. proposed is shown at the bottom
of this page as (3).

(3)

The first term in this equation is large when λ1 is small and λ2 is large. The second term, which
is called the “second-order structureness,” is large for nonbackground pixels. To detect vessels
of various dimensions, the filter is applied to images that have been convolved with Gaussian
filters whose standard deviation is changed from small to large. The vesselness filter responds
to small vessels in an image blurred with a Gaussian filter with a small standard deviation. It
responds to large vessels in an image blurred with a Gaussian filter with a large standard
deviation. The coefficients β and c are chosen experimentally. Here, these were chosen as 0.5
and 0.05 of the maximum intensity value in the image, respectively. In this application, six
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standard deviations are used, ranging from one pixel to six pixels, and the cost term associated
with the vesselness feature is defined as

(4)

in which the value of the weight wk is −0.5 for the standard deviation that produces the largest
response and zero for all the others.

Fig. 3 shows typical results obtained with this approach. The input image is shown in the top
left panel; the cost image is shown in the top right panel. While the vesselness filter clearly
enhances the vessels, the figure also shows that the centerline of the vessels is not localized
precisely. The filter also responds to structures that are not vessels. To address this issue, a
second term is added to the cost matrix. First, an edge image is computed using a canny edge
detector, then a distance map is computed from the edge image. In this distance map, intensity
values are zero on the edges and increase when moving away from the edges. The middle left
panel in Fig. 3 shows the edge image. The distance map image is shown in the middle right
panel; in this image, darker intensity values correspond to larger distances. To better visualize
the distance term of the cost function, the bottom left panel shows the distance map masked
by a binary map obtained by thresholding the vesselness image using a threshold equal to 0.96.
The overall cost matrix is computed as

(5)

in which wd is equal to −0.5. The canny edge detector of Matlab 7.0 (MathWorks, Inc., Natick,
MA) was used in which the high threshold is selected automatically depending on image
characteristics. The low threshold is set to 0.4 times the high threshold. The overall cost matrix
thus weighs equally the vesselness and the distance features. The resulting cost image is shown
in the bottom right panel of Fig. 3. As this image shows, the centerline of the vessels tends to
correspond to pixels with the lowest intensity values.

2) Centerline Extraction—Vessel segmentation is then achieved semiautomatically. A
graphical user interface has been developed that permits visualizing pre- and postresection
images side-by-side. Roughly, homologous starting and ending points are localized for vessel
segments visible in these images by the end user. When a pair of starting and ending points
has been identified, the minimum cost path between these points is computed automatically
using Dijkstra's shortest path algorithm [30]. Fig. 4 illustrates the process. The left panel shows
one of the images acquired with the system (the cortical surface has been manually extracted
from the original images). The selected starting and ending points are shown in yellow and
white, respectively, on the left panel. The vessels extracted by the minimum cost path algorithm
are shown on the right. In its current state, the system requires the user to select one pair of
starting and ending points at a time. When the pair is selected, the vessel segment that joins
them is computed. Computation of an optimal path between a starting and an ending points
takes less than 1 s on a 3-GHz Pentium Duo-Core Machine. The process is repeated until vessel
segments that cover the useable portion of the image are segmented. This figure also shows
that the method can be used to segment large or small vessels. Experiments have shown that
vessels as small as 0.175 mm in diameter can be extracted.
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C. Vessel Registration
Once vessels have been segmented, they are nonrigidly registered. This is done with the RPM
proposed by Chui et al. [29], and their Matlab implementation (http://noodle.med.yale. edu/
∼chui/tps-rpm.html) was used. The basic idea in this algorithm is to alternate between a fuzzy
assignment step and a registration step. Here, all the vessel centerlines detected in the previous
step form two sets of points (one set of points in the preresection image and the other in the
postresection image). Each point in one of the sets, say set 2, is assigned to one or several points
in the other set. Once the assignment is done, a transformation that registers the points in set
2 to the corresponding points in set 1 is computed. If a point in set 2 is assigned to more than
one point in set 1, a virtual point computed as the weighted centroid of these points is used to
compute the transformation. The fuzzy assignment is computed with the soft assign algorithm
proposed by Gold et al. [32]

(6)

in which V: {va, a = 1, 2,…, K} and X : {xi, i = 1, 2,…, N} are the two sets of points, f is the
transformation used to register the two sets of points, and T is called the temperature parameter,
which is introduced to simulate physical annealing. Following the recommendations given in
[32], an initial value of 0.5, which is reduced from iteration to iteration, is used here. Thus, (6)
establishes a fuzzy correspondence between points in set V and points in set X. Because the
value of T decreases over time, the fuzziness of the assignment decreases as the algorithm
progresses. The major advantage of this fuzzy assignment is that it permits handling datasets
with different cardinality and it also permits to handle outliers. At each iteration, after the
correspondence is determined, a thin-plate spline-based nonrigid transformation f is computed,
which solves the following least squares problem:

(7)

in which

can be considered as a virtual correspondence for va. λ is a regularization parameter, the value
of which is changed over time. The algorithm starts with a transformation that is very smooth
(heavily regularized). As the algorithm evolves and correspondence improves, the
regularization constrain λ is progressively relaxed.

D. Overall Registration Procedure
Fig. 5 illustrates the overall process used to register the pre- and postresection images and
compute the brain shift that has occurred during the procedure. In this figure, the top panels
show the images, as acquired with the LRS. As seen before, these images contain more than
the cortical surfaces. The four points visible on the skull (black crosses) are fiducial points
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drawn on the skull by the neurosurgeon. These are used to compute a projective transformation
to initialize the process; this transformation is called T1. The cortical surfaces are then extracted
manually and shown in (c) and (d). Next, the feature maps are computed on the pre- and
postresection cortical images, as shown in (e) and (f). Starting and ending points are identified
manually, and vessel centerlines are extracted, as shown in (g) and (h). Using the centerlines,
the transformation that registers the two cortical images is computed; this transformation is
called T2. Panel (i) shows the preresection image registered to the postresection image. A group
of vessels was drawn in (i) and copied to (j), which show a good correspondence with the
vessels in image (j).

An additional transformation T3 (see [20]) not shown here relates a point in the image to a 3-
D coordinate. The shift at any point in the image is computed as the difference in the 3-D
coordinates of this point in the preresection scan and its corresponding 3-D coordinates in the
postresection scan.

E. Validation Strategy
The method that has been used to validate the approach relies on the selection of homologous
points. A number of points have been selected manually on the pre- and postresection images.
These are points that are relatively easy to identify in both images, which include vessel
intersections, end points, etc. The number of homologous points varies from case to case,
depending on what is visible in the images. Using the registration transformations described
earlier, the points in the preresection images are projected onto the postresection image and a
registration error that is called target registration error (TRE) [34] is computed as

(8)

in which xi and yi are the points selected in the preresection and postresection images,
respectively. The transformation T is the transformation obtained by concatenating all the
elementary transformations discussed previously.

III. Results
A. Vessel Centerline Extraction With and Without Distance Term

Fig. 6 illustrates the effect of the distance term in the cost function used to detect the vessel
centerlines. The top left panel shows the entire image and the top right panel shows a zoomed
version of the region within the box. In the right panel, the white points are the path obtained
with the vesselness feature alone. The green points are the path obtained when both the
vesselness and the distance term are used. Clearly, the additional distance term favors points
that are on the centerline. The effect of this term is more important for large vessels than for
small ones.

B. Sensitivity of Process to Selection of Points
The main manual input required by the algorithm is the selection of the starting and ending
points in the pre- and postresection images. To test the sensitivity of the algorithm to the
selection of these points, the following experiment was performed. One typical pre- and
postresection set of images was selected. In these images, a series of starting and ending points
was manually picked. The position of the starting and ending points was then perturbed using
random numbers drawn from Gaussian distributions with zero mean and standard deviation
ranging from 2 to 5 pixels. For each standard deviation, the process was repeated 100 times.
For each set of points, the transformation that registers the pre- and postresection images was
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computed. An additional registration in which the position of the points was not perturbed was
computed and used as a baseline. The difference between the baseline displacement and the
displacement obtained with each of the transformations was computed pixel by pixel and
averaged for each standard deviation. Fig. 7 shows average difference maps obtained for the
various standard deviations used in this sensitivity study.

These results show submillimetric differences for standard deviations up to 3 pixels. When the
standard deviation increases, some parts of the image experience an error that reaches 1 mm
over regions that are far away from any vessels. This is because the transformation is not
constrained over these regions. In practice, it is therefore important to select vessels, which
cover as much of the field of view as possible.

The left panels in this figure show displacements that correspond to 2–5 pixels. It illustrates
the fact that a displacement of 3 pixels in the x- and y-direction is easily noticeable. It also
shows that even if the starting and ending points are not selected correctly, most of the trajectory
between the points is the same. Thus, only a few of the feature points used for registration are
different, which makes the process robust to operator error.

C. Qualitative Results
Fig. 8 shows a pre- and a postresection surface. In this figure, white and green homologous
points have been selected on the pre- and postresection images, respectively. The tip of the
arrows is the position to which the white dots have been moved using the registration
transformations. As can be seen, these are close to the corresponding green points.

Fig. 9 presents another set of results in which the pre- and postresection-textured surfaces are
shown. The color-coded surface (A) and gray-level surface (B) are the preresection and
postresection scans, respectively. The top left panel shows these surfaces before registration.
After registration, (A) is deformed as (C) and is shown together with (B) in the top right and
bottom left panel. The bottom right panel shows a checkerboard image of the registered pre-
and postresection images indicating, at least visually, the quality of the registration. Interaction
time to select homologous points varies between 30 and 60 s, depending on the number of line
segments being selected. Computation of optimal paths, which, as discussed before, takes about
1 s per path, can be computed while manual selection for new vessel segments is ongoing. As
currently implemented, the computation of the registration transformations takes between 1
and 5 min, depending on the number of points in each of the two points sets used by the RPM
algorithm.

D. Quantitative Results
Table I presents quantitative results obtained with ten patients (four men and six women).

In addition to the mean and max TRE values for each case, it lists the volume of the tumor, the
size of the craniotomy, and the measured surface shift. Lesion size was measured from
preoperative MR images acquired for each subject. The mean cortical surface shift was
calculated as the average distance between human-selected homologous target points on
textured laser range scans. These results show an average TRE, which is submillimetric, and
an average surface displacements on the order of 1 cm with a maximum value of 2.7 cm.

Homologous points used to validate the results are selected on vessels or at the intersection of
vessels because these are the only easily discernible features in the images. Some of these
points may also be included or are in close proximity to points that have been used for the
registration. In this application, this problem is difficult to avoid because of the difficulty of
selecting homologous points in uniform areas. But, because the RPM algorithm is used: 1) a
strict correspondence between points in the two images is not established and 2) the thin-plate
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spline transformation does not match the point pairs exactly. There is thus a nonzero registration
error, even for points included in the set used for the computation of the transformation itself.
Furthermore, in practice, care is taken to select vessel segments that cover the useable portion
of the image, thus constraining the transformation. It is therefore reasonable to assume that the
error values that are being reported are representative of the errors over the entire image but
that a slightly larger error could be observed over regions in which feature points are not
selected. Fig. 10 plots the TRE value for 126 points versus their distance to the closest point
included in the set of points used to compute the transformations. This figure shows a weak
but nevertheless significant (r = 0.35) correlation between TRE and distance to feature.

IV. Discussion and Conclusion
Accurate estimation of brain shift occurring during surgery is critical for IGNS. Mathematical
models capable of predicting shift occurring away from the surface are currently being
developed [33] but these models need intraoperative brain measurements as input. A number
of methods have been proposed over the years to measure brain shift, which occurs when the
dura is opened, but this is the first study that extensively reports on measurements made after
tumor resection. Tracked probes are a possible solution to acquire this information but this
method often leads to sparse information as homologous points need to be identified on the
cortical surface before and after resection. Furthermore, drastic changes in the appearance of
the brain surface between pre- and postresection make the selection of homologous points a
challenging task. The tracked LRS approach presented in this article is minimally disruptive
as it requires only moving the scanner in and out of the field to acquire datasets, which takes
on the order of 1 min. The LRS also generates dense datasets, potentially providing the model
with displacement values over the entire exposed surface. The key issue to accurate estimation
of surface displacements is the registration of the LRS datasets. Because the 3-D point clouds
are registered to high resolution 2-D images, this problem can be solved by registering the 2-
D images. It has been shown [18], [20] that registering the 3-D datasets via the 2-D images
does, in fact, produce results that are superior to those obtained when registering the 3-D point
clouds directly. The major difficulty to be addressed is the difference observed in the images
before and after resection in most clinical cases. Except when tumors are very small, resection
produces differences in the images that are such that intensity-based methods are ineffectual.
Preliminary results published earlier on a smaller dataset [20] have shown that a promising
alternative is to register images using vessels delineated in the images. But identifying vessels
in pre- and postresection images is relatively difficult, time-consuming, prone to errors, and
not practical in the OR. In this paper, a practical solution is proposed. The feature maps can
be computed rapidly, pre- and postresection images presented to the physicians and starting
and ending points identified. Because the system computes a minimum cost path between
starting and ending points, very accurate selection of the points is not critical. The results that
have been obtained on tumor resection cases demonstrate the accuracy of the process with an
overall TRE, which is submillimetric. The data gathered from the ten patients included in the
study also show significant brain shift. The average observed brain shift is about 1 cm with a
standard deviation of 6.6 mm. Large shifts superior to 1 cm have been observed in three of the
ten cases, thus corroborating the need for intraoperative updating of preoperative information.

The method described in this paper will be part of the user interface of a comprehensive system
designed for intraoperative brain shift correction. Several improvements need to be made to
the current method before it can be used clinically. First, the craniotomy needs to be extracted
automatically from the complete images shown in Fig. 2. Second, tradeoffs between speed and
accuracy need to be studied. With the current implementation of the RPM algorithm, computing
the transformation that registers the images and applying that transformation to the image takes
between 1 and 5 min, depending on the number of points used and the size of the images. This
algorithm is currently being reimplemented in the C++ programming language and the effect
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of sample sized is being analyzed. Our algorithm currently uses all the points on the vessel
centerlines. Downsampling these may speed things up substantially while not having a major
impact on accuracy. Finally, it would greatly facilitate the process if the starting and ending
points of vessel segments could be also identified automatically. Work is currently ongoing to
localize these and develop methods that will automatically link them to form vessel trees. If
this can be achieved, a fully automatic method for intraoperative brain shift estimation will
have been developed.
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Fig. 1.
Top panel shows the tracked LRS (A) positioned on top of the patient (B). The traditional IGNS
system (C) can be seen on the right of the image. The bottom panel shows the user interface
(D) developed in house to permit data collection.
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Fig. 2.
Representative example of a pre- and postresection image pair. The top panels are the 2-D
images, the bottom panels are the textured point clouds of patient #2 reported in the study.
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Fig. 3.
Illustration of the cost matrix used to find vessels. The top left panel shows the original image
of patient #7 reported in the study. The top right panel shows the vesselness image. The middle
left panel is the edge map. The middle right panel shows the distance map computed from the
edge map. The bottom left panel shows the distance map masked by a vessel mask obtained
by thresholding the vesselness image using a threshold equal to 0.96. The bottom right panel
shows the final cost matrix.
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Fig. 4.
Example of centerlines extraction from a preresection image of patient #7. Yellow and white
point on the left image are starting and ending points, respectively. The computed centerlines
are shown in yellow on the right panels.
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Fig. 5.
Illustration of the various steps involved in the registration process. Panels (a) and (b) show
the pre- and postresection image for patient #7. These are registered with a projective
transformation T1. (c) and (d) The brain surface is extracted from the original images manually.
(e) and (f) Feature maps are computed. (g) and (h) Corresponding vessels are detected, and the
nonrigid transformation T2 is computed. (i) and (j) T2 is applied to the image in panel (g) to
generate the registered images.
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Fig. 6.
Difference in centerline extraction without (green points) and with (white points) the distance
term using patient #3 data.
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Fig. 7.
Effect of starting and ending points displacement on the registration. Top panel: original image
of patient #7. The other panels show the region within the green square magnified (on the left)
and the difference maps on the right. From top to bottom, the standard deviation used to perturb
the points was increased from 2 to 5 pixels.
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Fig. 8.
Top panel. (A) Texture surface obtained before resection. (B) Texture surface obtained after
resection of patient #7. The white points on the preresection scan and the green points in the
postresection scan were selected manually as corresponding points. On the bottom panel, the
white arrows show where each white point has been mapped onto the postresection scan.

Ding et al. Page 27

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Top left panel shows the (A) preresection (color) and (B) postresection (gray) textured surface
of patient #3. The top right panel shows these two surfaces registered to each other using the
proposed method. (C) Deformed preresection surface. The bottom left panel shows the same
but from a different angle. The bottom right panel shows a checkerboard image generated with
the registered pre- and postresection textured images, which indicates a good registration
between the two.
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Fig. 10.
Plot of TRE versus the distance to closest feature point used to compute the registrations.
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