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Agelastatin A and its congeners are a structurally intriguing class of bromopyrrole-based
natural products comprised of a densely functionalized cyclopentane core adorned with four
contiguous nitrogen substituent groups (Figure 1).[1] Agelastatin A and B were first isolated
in 1993 from the Coral Sea marine sponge Agelas dendromorpha.[2] Subsequently,
agelastatin C and D were identified in extracts from the Australian sponge Cymbastela sp.
[3] The unique structural features of these compounds together with their powerful cytotoxic
activities against certain human cancer cell lines have fueled efforts aimed at their de novo
synthesis.[4,5] To date, seven completed syntheses of agelastatin A have appeared, each
presenting a decidedly different strategy for assembly of the natural product.[6,7] For our
purpose, structures such as agelastatin A serve to inspire the development of new catalytic
methods for oxidative C—N bond formation. In this report, we detail an 11-step synthesis of
this natural product made possible with the advent of a highly selective and efficient
intramolecular olefin aziridination method.[8,9] The unique heterocyclic intermediate
generated in this sequence is easily manipulated through two selective nucleophilic ring-
opening reactions to afford the substituted cyclopentane core of the target. The finished
work offers a flexible and highly efficient preparation of (-)-agelastatin A, easily amenable
to analogue design.[10]

Recent work from our lab and others has demonstrated that homoallyl and bis-homoallyl
sulfamate esters react under oxidative conditions to furnish unique bicyclic aziridine
derivatives (Figure 2).[8,11,12] This process generally affords high levels of
diastereocontrol with both cyclic and acyclic starting materials. The products can be
smoothly converted to polyfunctionalized amine derivatives through sequential,
regioselective ring opening. For the purpose of assembling (-)-agelastatin A, an attractive
plan emerged that would capitalize on such a sequence of steps to establish the trans-
substituted vicinal diamine unit embedded at C4 and C8 (Figure 3). Prior to initiating these
investigations, we had little sense if a substrate such as 3 would undergo chemoselective
oxidation to generate the unusual tricyclic structure 2 and whether such a product would be
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isolable. Selectivity in the subsequent aziridine displacement reaction presented an
additional concern. This plan, however, could be quickly assessed due to the ready
availability of sulfamate 3.

Optically enriched lactam 4 is prepared on industrial scale and may be obtained in either
antipode at a relatively inexpensive cost (Figure 4).[13] In two high yielding
transformations, this material can be converted to alcohol 5, also an item of commerce.
Sulfamoylation of 5 following a standard protocol that involves in situ generation of
CISO,NH; is then easily accomplished.[14]

Exposure of sulfamate 6 to a dimeric Rh(Il) catalyst, 1.1 equiv of Phl(OAc),, and MgO,
affords aziridine 7 as a single diastereomer in 95% yield (Figure 5). Less than 1% of the 5-
membered ring product of allylic C—H insertion is obtained in this transformation. By
capitalizing on our recently developed Rhy(esp), catalyst, loadings as low as 0.06 mol%
(>1500 turnovers) can be used, thus enabling the reaction to be easily and inexpensively
scaled.[15] The novel tricylic structure is quite stable and can be isolated in pure form
following chromatography on silica gel. When treated with NaN3 in aqueous isopropanol,
regioselective attack at C4 (agelastatin numbering) proceeds at ambient temperature to yield
predominantly the bridging [1,2,3]-oxathiazepane-2,2-dioxide 8 (C4/C8 regioselectivity =
9:1).[16,17] This versatile intermediate incorporates three of the four stereogenic carbamine
centers found in the natural product, all differentially masked. Accordingly, this
aziridination/ring opening reaction sequence should offer ready access to several derivative
forms of agelastatin.

To forward the synthetic plan, a series of maneuvers was needed that would ultimately
enable a single carbon excision and introduction of the C5 ketone (see Figure 3). Six- and
seven-membered ring cyclic sulfamates possess intrinsic reactivity as electrophilies, which
can be modulated as a result of N-functionalization.[14b,18] Taking advantage of this
property, oxathiazepane 8 was first treated with diethyl pyrocarbonate to furnish the N-
acylated species 9; subsequent introduction of NaSePh (prepared in a separate reaction
vessel) displaces the oxathiazepane C-O bond to afford in a single operation selenide 10
(Figure 6). Access to this product in just 4 steps from 5 underscores the effectiveness of our
aziridination process for the rapid assembly of stereochemically complex, orthogonally
protected polyamine intermediates.

Oxidation of selenide 10 and elimination of the transient selenoxide was intended to furnish
the C5 exo-methylene product 11 (Figure 7). Such a reaction does occur, however, the
resulting allylic azide undergoes facile [3,3]-sigmatropic rearrangement to afford
cyclopentene 12.[19] As it was not possible to prevent this isomerization process, a decision
was made to postpone exo-methylene introduction until the latter steps of the synthesis.
Accordingly, we opted to fashion first the requisite pyrrole unit from 10 (Figure 8). Removal
of the Boc-group with CF3CO,H precedes an efficient Paal-Knorr condensation, which
employs tricarbonyl 13 and mild acid catalysis to forge the heterocycle.[20,21] The desired
pyrrole 14 is generated in 85% yield over this two-step sequence.

To complete the agelastatin synthesis, azide 14 is reduced chemoselectively under
Staudinger conditions (MesP, THF/H,0, Scheme 1). Once reduction is complete, MeNCO
is added to the reaction flask to produce urea 15. This compound is easily purified by
normal-phase silica gel chromatography in spite of the presence of the polar N-methyl urea
moiety. Exposure of 15 to m-CPBA induces selenide to selenoxide conversion and
subsequent elimination to afford alkene 16. While attempts to cleave the C5 exo-methylene
unit under ozonolytic conditions gave only intractable mixtures of products, successful
installation of the C5 carbonyl was realized using a combination of 2.5 mol% OsO4 and

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 January 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wehn and Du Bois

Page 3

NalO4. Once the C5-ketone is exposed, addition of the urea is highly favored and the
product is isolated exclusively as hemi-aminal 17.

The stability of the hemi-aminal in 17 obviates protection as the N,O-acetal. As such,
assembly of the final target can be accomplished by first exposing 17 to KO'Bu in t-amyl
alcohol (Scheme 1).[22] This protocol generates the desired six-membered lactam with
concomitant cleavage of the ethyl carbamate. Having intercepted the penultimate
intermediate formed in prior syntheses of agelastatin A, a literature procedure using N-
bromosuccinimde smoothly and selectively brominates the pyrrole unit and gives the natural
product as a white, crystalline solid.[6e] This material matches reported spectral and optical
rotation data in all respects.[2,6€e] Starting from commercial 5, the 11-step sequence has
been executed in a single pass to prepare >200 mg of the natural product (15% overall
yield).

An efficient, easily scaled, and flexible route to (-)-agelstatin A has been made possible
following the development and application of a selective Rh-catalyzed aziridination method.
With the aid of Rhy(esp),, this reaction is made to proceed in high yield at negligible
catalyst loadings. The resulting tricyclic product 7 represents a unique heterocyclic structure
that is efficiently transformed into a differentially protected cyclopentyltriamine. New
protocols for manipulating the intermediate oxathiazepane and for crafting the pyrrole
lactam also distill from this work. Overall, the preparation of agelastatin A is illustrative of
the manner in which modern oxidative methods for C-N bond formation can alter the
retrosynthetic logic of complex chemical synthesis.[23]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The agelastatin family of natural products.
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Rh-catalyzed aziridination: a versatile method for assembling polyfunctionalized amines.
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Figure 3.
Retrosynthetic analysis of (-)-agelastatin A.
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Figure 4.
Homoallylic sulfamate synthesis from commercial lactam.
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Figure 5.
Catalytic aziridination and regioselective ring-opening affords the desired oxathiazepane

heterocycle 8. Rhy(esp), = Rhy(a,a,0’,0’-1,3-benzenediproprionate),.
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Oxathiazepane 8 activation and ring opening.
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Rearrangement of allylic azide 11 necessitates strategic modification.
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Figure 8.
Paal-Knorr condensation installs pyrrole unit.
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(-)-agelastatin A

a) MesP, THF/H,0; then MeNCO, 81%; b) m-CPBA, DCE, 0 °C; then Et3N, 80 °C, 89%; c)
2.5 mol % OsOy4, NalOy4, THF/H,0, 45 °C, 81%; d) KO'Bu, 'AMOH, 45 °C, 77%; €) NBS,
THF/MeOH, 0—25 °C, 75%. m-CPBA = meta-chloroperbenzoic acid, NBS = N-

bromosuccinimide.
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