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Regions of the temporal and parietal lobes are particularly damaged
in Alzheimer’s disease (AD), and this leads to a predictable pattern of
brain atrophy. In vivo quantification of subregional atrophy, such as
changes in cortical thickness or structure volume, could lead to
improved diagnosis and better assessment of the neuroprotective
effects of a therapy. Toward this end, we have developed a fast and
robust method for accurately quantifying cerebral structural changes
in several cortical and subcortical regions using serial MRI scans. In 169
healthy controls, 299 subjects with mild cognitive impairment (MCI),
and 129 subjects with AD, we measured rates of subregional cerebral
volume change for each cohort and performed power calculations to
identify regions that would provide the most sensitive outcome
measures in clinical trials of disease-modifying agents. Consistent
with regional specificity of AD, temporal-lobe cortical regions showed
the greatest disease-related changes and significantly outperformed
any of the clinical or cognitive measures examined for both AD and
MCI. Global measures of change in brain structure, including whole-
brain and ventricular volumes, were also elevated in AD and MCI, but
were less salient when compared to changes in normal subjects.
Therefore, these biomarkers are less powerful for quantifying dis-
ease-modifying effects of compounds that target AD pathology. The
findings indicate that regional temporal lobe cortical changes would
have great utility as outcome measures in clinical trials and may also
have utility in clinical practice for aiding early diagnosis of neurode-
generative disease.

clinical diagnosis � clinical trials � disease-specific atrophy �
image registration � MRI biomarkers

The healthy adult brain is remarkably stable structurally but
undergoes gradual changes with normal aging. Structural

change is accelerated in neurodegenerative disease, including Alz-
heimer’s disease (AD). The atrophy in AD arises from neuron and
synapse loss that begins in the entorhinal cortex. The pathology
then spreads throughout the limbic regions of the temporal lobe,
including the hippocampal formation. Subsequently, neuron loss
and atrophy is observed throughout neocortical association areas in
temporal, parietal, and frontal lobes (1).

The fact that atrophy associated with AD can be detected in vivo
using MRI has long been known (2). Hippocampal volume loss is
a consistent finding (3) and is predictive of clinical decline (4–7).
However, hippocampal atrophy is not specific to AD, as it is seen
in a number of psychiatric and neurodegenerative diseases (8–10).
Recently, it has been shown that cortical atrophy measured on MRI
parallels the spread of AD pathology (11–13). Accurate measure-
ment of cortical thickness and subcortical volumes across multiple
regions may provide a signature of the disease specific enough to be
useful for early diagnosis of AD (14).

In recent studies, measures of progressive AD-related atrophy
detected from serial MRI scans show promise as biomarkers in
evaluating the effectiveness of disease-modifying agents. So far,
these studies have focused on relatively global measures, such as
whole-brain and ventricular volume change (15, 16), although some
have also looked at hippocampal volume change (17, 18). In these
studies, despite the known regional specificity of AD-related volu-
metric changes, global measures have shown greater sensitivity than

local measurements, possibly because of the difficulty in obtaining
accurate measurement of local brain structure change using existing
methods (17). Nevertheless, these global measures of brain struc-
ture change are highly correlated with gold-standard clinical out-
come measures, such as the Clinical Dementia Rating Scale Sum of
Boxes and Mini Mental State Examination scores (15, 19).

The use of longitudinal anatomical quantification in multicenter
clinical trials presents a number of challenges, including differences
in MRI pulse sequences across scanner manufacturers, scanner-
specific spatial distortions, and changes in scanner hardware and
software over time that can affect image properties. In view of this,
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was
designed to validate and compare imaging and biofluid markers of
disease progression in a realistic multicenter clinical trial setting
(20). The large, publicly available ADNI database thus provides a
realistic setting in which to validate imaging methods aimed at
assessing AD pathology. To this database, we applied a recently
developed method for obtaining precise measures of interval
change in cortical and subcortical regions, based on structural MRI,
and determined the relative statistical power to discriminate pa-
thology afforded by different regional measures.

Results
We examined two models of treatable effects for power calcu-
lations. The first, Model T (for ‘‘total’’), assumes that the study
drug modifies both disease- and aging-related changes; the
second, Model D (for ‘‘disease-specific’’), assumes that the study
drug modifies AD- or mild cognitive impairment- (MCI) related
changes but has no effect on aging-related changes. We found
that multiple regional volume changes, including those of whole
brain, ventricle, hippocampus, entorhinal, fusiform, inferior
temporal and middle temporal cortices, provided powerful
outcome measures, with several measures requiring fewer than
100 subjects per arm to detect a 25% reduction in the rate of total
change in AD, with 80% power at the P � 0.05 significance level
(see Methods for a description of the power calculations). Power
calculations using ventricle and whole-brain volume change as
outcome measures were particularly sensitive to the choice of
treatable-effect model, especially in the case of MCI, where
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Model D required as much as six times the number of subjects
per arm as Model T. When Model D was used for MCI, the best
cognitive measure was as good as or outperformed these mea-
sures of more global structural change in the brain. For AD,
regional cortical-volume change provided consistently superior
power compared to cognitive measures regardless of choice of
treatable effects model. The results indicate that volume loss in
entorhinal, fusiform, inferior temporal and middle temporal
cortices would serve as superior outcome measures for study
drugs specifically targeting AD pathology in patients with MCI
or AD.

Estimated changes across the brain at 6 and 12 months, along
with cortical and subcortical tissue segmentation, are shown in Fig.
1 for an individual from the MCI cohort. Fig. 2 shows the results of
power calculations for imaging measures of regional change, along
with the best clinical cognitive-outcome measure, based on AD
subjects and healthy controls. Results for Model T are in blue, and
results for Model D are in red; numerical values are in Table 1 (see
Fig. S1 and Table S1 for sample size estimates not incorporating
random rates of change).

Imaging measures generally outperformed the best cognitive
measure, regardless of model choice. While power estimates for
cognitive measures were relatively unaffected by model choice, the
power estimates for the imaging measures were strongly dependent
on the treatment model used. Subregional cortical measures out-
performed global imaging measures and were less dependent on
choice of treatment model.

For MCI, as shown in Fig. 3 and Table 2, the dependence on
model choice is even more salient than for AD. Notably, for
ventricular volume, the sample size calculated using Model D is six
times higher than that calculated using Model T, and exceeds that
calculated for the best clinical or cognitive measure. Similar to what
was found in AD, the regional temporal lobe cortical measures
afforded the smallest sample sizes, regardless of model choice (see

Fig. S2 and Table S2 for sample size estimates not incorporating
random rates of change).

Discussion
The findings demonstrate that longitudinal volumetric change
provides powerful outcome measures with which to examine
putative disease-modifying medications for AD and MCI. Whole
brain, ventricle, hippocampus, and cortical volumes of the
entorhinal, fusiform, inferior temporal and middle temporal gyri
undergo high rates of change in AD and MCI, which are
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Fig. 1. Tissue segmentation, with 6- and 12-month volume change fields for an MCI subject. (A) Segmentation of the baseline MRI scan, with different brain structures
represented in different colors. (B) Corresponding coronal slice overlain with a heat map representation of the voxelwise estimates of volumetric change at 6 months
and (C) 12 months. (D) Left hemisphere cortical parcellation of the baseline MRI scan. (E) Cortical surface overlain with a heat map representation of the estimates of
cortical volumetric change at 6 months and (F) 12 months. Region-specific estimates were obtained by averaging the voxelwise change within each region of interest.
In this subject, the left middle-temporal gyrus has decreased in volume by 4.7% at 6 months and by 8.2% at 12 months; the left temporal-horn lateral ventricle has
increased by 17.4% at 6 months and by 35.3% at 12 months.
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Fig. 2. Sample size estimates for AD from a linear mixed-effects model with
random slopes. The bars, with 95% confidence intervals, indicate the expected
number of subjects needed per arm to detect a 25% reduction in rate of change
at the P � 0.05 level with 80% power, assuming a 24-month trial with scans every
6 months. Results for Model T are in blue and results for Model D are in red;
numerical values are shown in Table 1.
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quantifiable using serial MRI and the nonlinear registration
procedures used here. A comparison of the current method with
a standard method for quantifying global change is provided in
the SI, where the analysis was restricted to a common data set
of serial scans at 0, 6, and 12 months (Figs. S3 and S4 and Tables
S3 and S4).

For clinical trial power calculations using longitudinal volumetric
change as an outcome measure, choice of treatable-effect model
influences which brain regions would be most sensitive to detect a
drug effect, especially in MCI. If the drug is presumed to slow both
age- and AD-related brain atrophy, then global and subregional
medial temporal lobe (MTL) and cortical measures provide excel-
lent statistical power to detect treatment effects. However, if the
study drug is presumed to specifically slow AD-related brain
atrophy, then subregional cortical measures provide superior
power. For MCI, entorhinal cortex provided the most powerful
outcome measure, which is consistent with findings suggesting that
atrophy in this region is a sensitive marker of prodromal AD (11,
21).

Choice of treatment model differentially affects cognitive and
MRI variables; cognitive measures often show improvements over
time in healthy controls because of practice effects (22), but
deterioration over time in patients. Therefore, for cognitive mea-
sures, Model T can provide more conservative power estimates and
is the most commonly used model in powering clinical trials. In
contrast, both normal aging and disease are associated with atro-

phic changes over time. Thus, Model D generally provides more
conservative power estimates for imaging measures. For this rea-
son, it is important to consider both models when comparing across
cognitive and imaging measures.

One of the primary motivations for using brain volumetric
changes as outcome measures in clinical trials has been the evidence
for greater statistical power afforded by such measures relative to
clinical and cognitive measures (23). The present results, however,
demonstrate that the most commonly used global imaging measures
may be less powerful than the best clinical and cognitive measures,
when the more conservative, and perhaps more realistic, disease-
specific model is used. These effects are magnified in the MCI
cohort, which is a patient population of particular interest for drug
development (24, 25). Because of the overlap in behavioral features
between MCI and healthy elderly controls, MCI trials would
require particularly large subject numbers when using behavioral
outcome measures alone.

Another motivation for using regional volumetric changes as
outcome measures in clinical trials is the desire to more directly
examine the effects of therapy on the brain’s AD pathology.
Because AD pathology is known to be concentrated in particular
cortical and subcortical gray-matter regions, it would be desirable
to measure change in the specific regions where neuronal dystrophy
leads to pronounced atrophy. By itself, the halting of such neuronal
dystrophy would lead to a stabilization of volume loss, but other
drug effects, perhaps unrelated to therapeutic effect, may also be at
play. For example, a recent active immunization trial against
amyloid showed greater overall brain-volume loss in subjects who
generated an immune response when compared to those who did
not. In this case, global volume loss was attributed to possible
changes in brain hydration state related to therapy. A trial of passive
immunization against amyloid showed an association between
higher doses of the medication and vasogenic edema. Thus, a
short-term effect of the drug might be an increase in global brain
volume that could be mistaken for a neuroprotection. Further study
is needed to determine whether these processes are even more
salient in regions enriched for amyloid and also whether such
processes eventually reach a steady state upon which a drug’s
neuroprotective effect may still be evaluated. Nevertheless, regional
measures of volumetric change offer a finer-grained examination of
these processes and the effects of a therapy on the brain, and might
be proportionally less affected by global effects unrelated to regional
AD pathology (17, 26).

Although not a direct measure of the molecular pathology in AD,
subregional brain structural changes are a direct measure of the
neurodegeneration associated with the disease, and are more
directly associated with progression of clinical symptoms than are
measures of amyloid (27). Imaging of amyloid protein provides a
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Fig. 3. Sample size estimates for MCI (see Fig. 2 for description). Numerical
values are in Table 2. Note that the Model D (red) upper bound on the 95%
confidence interval for ventricles is 2,421.

Table 1. Sample size estimates (N) and annualized percent change for AD

Measure AD only N AD-HC N AD % change* HC % change*

Entorhinal 45 �39 53� 65 �52 83� �3.81 ��4.10 �3.52� �0.64 ��0.85 �0.43�

Inf temporal 79 �65 97� 117 �92 153� �3.64 ��4.00 �3.28� �0.65 ��0.76 �0.53�

Fusiform 72 �60 88� 114 �90 149� �2.90 ��3.17 �2.62� �0.59 ��0.68 �0.50�

Mid temporal 83 �69 103� 122 �95 162� �3.44 ��3.79 �3.09� �0.60 ��0.73 �0.47�

Hippocampus 67 �56 82� 118 �91 158� �3.28 ��3.58 �2.98� �0.80 ��0.95 �0.65�

Inf lat vent 76 �63 94� 157 �117 221� 15.56 �14.04 17.09� 4.71 �3.95 5.47�

Whole brain 101 �81 128� 189 �139 271� �1.50 ��1.67 �1.33� �0.40 ��0.47 �0.34�

Ventricles 86 �71 108� 240 �168 371� 11.06 �9.91 12.21� 4.43 �3.83 5.03�

CDR-SOB 226 �159 345� 236 �165 365� 1.76 �1.43 2.10� 0.04 �0.00 0.07�

ADAS-Cog† 324 �217 536� 283 �192 457� 4.84 �3.76 5.92� �0.34 ��0.59 �0.09�

MMSE† 482 �299 907� 494 �303 948� �2.45 ��3.11 �1.78� �0.03 ��0.14 0.08�

Values in brackets are 95% confidence intervals. ADAS-Cog, Alzheimer’s Disease Assessment Scale—Cognitive; CDR-SOB, clinical
dementia rating, sum of boxes; HC, healthy controls; MMSE, Mini-Mental State Examination.
*Annual percent change in volume for all entries except CDR-SOB, ADAS-Cog, and MMSE.
†Not shown in Fig. 2.
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direct measure of one of the components of AD, but the sensitivity
and specificity of this measure as a biomarker of AD remains an
open question. There is growing evidence that amyloid protein may
be elevated in some subjects who remain cognitively normal during
the period of follow-up. Functional imaging measures (28–30) also
show great promise as biomarkers in AD clinical trials and may be
sensitive to pathology, at even earlier stages of disease.

An essential characteristic of an AD therapeutic is that it
results in clinical or cognitive improvement. This improvement
may be achieved through symptomatic modification (31, 32) or,
preferably, through disease modification (33–36). Assessment of
disease modification therefore relies on detecting a slowing of
clinical decline. Clinical decline in AD occurs slowly over years,
and so detecting a halt to this decline would be aided through
complementary and sensitive measures. Although cognitive
outcome is central to assessing therapeutic efficacy, cognitive
decline is in fact a secondary effect of neuronal damage from the
disease, partially reflected in regional atrophy. MRI longitudinal
measures of regional volumetric change provide a valuable
complement to cognitive measures in that they are not influ-
enced by temporary symptomatic improvements, and they pro-
vide an early index of the drug’s ability to reach the target organ
and have an effect on AD-related atrophy.

Finally, regional volumetric measures of change show promise
for eventual use in clinical practice to assist risk stratification and
differential diagnosis at the earliest stages of neurodegenerative
disease. These measures may be particularly powerful when
combined with baseline volumetry (14) and other diagnostics,
such as cerebrospinal f luid biomarkers, nuclear medicine li-
gands, neuropsychological tests, and genetics. The present re-
sults suggest that change in MTL cortical regions, in particular
the entorhinal cortex, would provide the most sensitive and
specific volumetric imaging measures early in the disease.
Changes in regions such as the hippocampus, ventricles, and
whole brain provide sensitive indices of disease progression but
are also seen in healthy aging adults, thus reducing their spec-
ificity for the detection of AD.

Methods
ADNI. Data used in the preparation of this article were obtained from the ADNI
database (www.loni.ucla.edu/ADNI). ADNI was launched in 2003 by the Na-
tional Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, the Food and Drug Administration, private pharmaceutical
companies, and nonprofit organizations as a $60 million, 5-year public-private
partnership. ADNI’s goal is to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials.

ADNI is the result of efforts of many coinvestigators from a broad range of
academic institutions and private corporations. Subjects have been recruited
from over 50 sites across the United States and Canada. ADNI’s goal was to
recruit 800 adults, ages 55 to 90, to participate in the research: �200 cogni-
tively normal individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years, and 200 people with early AD to be followed for 2 years
(see www.adni-info.org). The research protocol was approved by each local
institutional review board and written informed consent is obtained from
each participant.

Participants. The ADNI general eligibility criteria are described in the ADNI
Protocol Summary page of the ADNI-Info Web site at adni-info.org for 2009.
Briefly, subjects are not depressed, have a modified Hachinski score of 4 or less,
and have a study partner able to provide an independent evaluation of
functioning. Healthy control subjects have a Clinical Dementia Rating (37) of
0. Subjects with AD have a Clinical Dementia Rating of 0.5 or 1.0 and meet
National Institute of Neurological Disorders and Stroke and Alzheimer’s Dis-
ease and Related Disorders Association criteria for probable AD (38).

In this study, we used baseline and follow-up data collected before August
27, 2009 from the ADNI database. Group clinical and demographic baseline
data for the 169 healthy control, 299 MCI subjects, and 129 AD subjects in this
study are presented in Table 3.

Data Acquisition and Preparation. Raw Digital Imaging and Communications in
Medicine MRI scans, including two three-dimensional T1-weighted volumes
per subject per visit, were downloaded from the public ADNI site (www.lo-
ni.ucla.edu/ADNI/Data/index.shtml). These data were collected across a vari-
ety of scanners with protocols individualized for each scanner, as defined at
www.loni.ucla.edu/ADNI/Research/Cores/index.shtml. In our laboratory, MRI
data were reviewed for quality and automatically corrected for spatial dis-
tortion caused by gradient nonlinearity (39). For each subject at each visit, the
two three-dimensional T1-weighted images were rigid-body aligned to each
other, averaged to improve signal-to-noise ratio, and resampled to isotropic
1-mm voxels. Baseline volumetric segmentation (40, 41) and cortical surface
reconstruction (42–45) and pacrellation (46, 47) were performed using a data

Table 2. Sample size estimates (N) and annualized percent change for MCI

Measure MCI only N MCI-HC N MCI % change* HC† % change*

Entorhinal 135 �115 161� 241 �180 340� �2.54 ��2.75 �2.33� �0.64 ��0.85 �0.43�

Inf temporal 199 �164 246� 449 �324 664� �1.93 ��2.13 �1.74� �0.65 ��0.76 �0.53�

Fusiform 185 �153 227� 485 �345 733� �1.54 ��1.69 �1.39� �0.59 ��0.68 �0.50�

Mid temporal 229 �186 288� 501 �353 768� �1.84 ��2.04 �1.64� �0.60 ��0.73 �0.47�

Hippocampus 179 �149 220� 510 �350 811� �1.96 ��2.15 �1.78� �0.80 ��0.95 �0.65�

Inf lat vent 160 �135 194� 550 �371 897� 10.23 �9.30 11.16� 4.71 �3.95 5.47�

Whole brain 158 �133 190� 541 �367 875� �0.88 ��0.96 �0.80� �0.40 ��0.47 �0.34�

Ventricles 189 �157 233� 1,141 �662 2,421� 7.47 �6.73 8.21� 4.43 �3.83 5.03�

CDR-SOB 490 �356 715� 551 �388 842� 0.67 �0.55 0.78� 0.04 �0.00 0.07�

ADAS-Cog‡ 1,232 �748 2,403� 804 �500 1,502� 1.44 �1.03 1.84� �0.34 ��0.59 �0.09�

MMSE‡ 1,214 �744 2,322� 1,304 �751 2,800� �0.84 ��1.08 �0.61� �0.03 ��0.14 0.08�

*Annual percent change in volume for all entries except CDR-SOB, ADAS-Cog, and MMSE.
†Normal values reproduced from Table 1.
‡Not shown in Fig. 3.

Table 3. Group demographics at baseline

Group
HC subjects
(n � 169)

MCI subjects
(n � 299)

AD subjects
(n � 129)

Age* (years) 76.2 � 5.2 74.6 � 7.4 74.6 � 7.8
Female† 83 (49.1%) 111 (37.1%) 63 (48.8%)
Years of Education 16.0 � 2.8 15.8 � 3.0 15.0 � 3.0
CDR-SOB 0.03 � 0.12 1.56 � 0.88 4.23 � 1.54
ADAS-Cog 6.0 � 2.8 11.6 � 4.3 18.5 � 6.2
MMSE 29.1 � 1.1 27.0 � 1.8 23.4 � 2.0
APOE high risk 47 (27.8%) 170 (56.8%) 90 (69.8%)

APOE is apolipoprotein E gene; APOE risk was defined as the presence of
the APOE e4 allele.
*Data are mean � standard deviation
†Data are numbers of subjects, and numbers in parentheses are percentages.
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analysis pipeline based on the FreeSurfer software package and customized
Matlab code, optimized for use on large multisite data sets. The automated
whole-brain segmentation procedure uses a probabilistic atlas and applies a
Bayesian classification rule to assign a neuroanatomic label to each voxel. The
atlas consists of a manually derived training set created by the Center for
Morphometric Analysis (Massachusetts General Hospital, Harvard Medical
School) from 40 non-ADNI subjects across the adult age range, including
individuals with AD. Automated volumetric segmentation required only qual-
itative review to ensure that there was no technical failure of the application.

The cortical surface was reconstructed to measure thickness at each surface
location, or vertex, to allow visualization of group differences at each vertex.
The surface was parceled into distinct regions of interest (ROIs). The cortical-
surface model was manually reviewed and edited for accuracy. Minimal
editing was performed according to standard, objective rules, including cor-
rection of errors in removal of nonbrain areas and inclusion of white-matter
areas of hypointensity adjacent to the cortical ribbon. Qualitative review and
editing were performed, with blinding to the diagnostic status, by one of
three technicians trained and supervised by an expert neuroanatomist with
more than 10 years of experience (C.F.-N.). The technicians had a minimum of
4 months of experience reviewing brain MR images before their involvement
in this project.

Qualitative review and editing required �45 min per subject. Baseline
image construction was carried out on a Linux cluster composed of dual
quad-core 2.5 GHz CPUs (Xeon E5420; Intel) with 16 GB RAM; each image
reconstruction was run as an independent process and took �24 h of compu-
tational time.

Estimation of ROI Volumentric Interval Change. For each subject, follow-up
images were fully affine-registered to the baseline image, and their intensities
brought into local agreement (i.e., corrected for relative B1-induced intensity
distortion). Nonlinear registration of the images was then performed, where
voxel centers are moved about until a good match between the images is
made. Several methods exist for causing this to happen, including fluid
deformation (48–50) and tensor-based morphometry (51). For the results
presented here, however, we developed and applied a method (52) based on
linear elasticity and closer in spirit to tensor-based morphometry. This method
proceeds essentially as follows. The images are heavily blurred (smoothed),
making them almost identical, and a merit or potential function calculated.
This merit function expresses the intensity difference between the images at
each voxel, and depends on the displacement field for the voxel centers of the
image being transformed; it is also regularized to keep the displacement field
spatially smooth. The merit function by design will have a minimum when the
displacement field induces a good match between the images. The displace-
ment field in general will turn cubic voxels into displaced, irregular hexahedra
whose volumes (53) give the volume-change field. The merit function is
minimized efficiently using standard numerical methods. Having found a
displacement field for the heavily blurred pair of images, the blurring is
reduced and the procedure repeated, thus iteratively building up a better
displacement field. Two important additions to this are: (i) applying the final
displacement field to the image being transformed, then nonlinearly regis-
tering the resultant image to the same target, and finally tracing back through
the displacement fields, thus calculated to find the net displacement field; and
(ii) restricting to ROIs and zooming when tissue structures are separated by
only a voxel or two. These additional features enable very precise registration
involving large or subtle deformations, even at small spatial scales with low
boundary contrast.

All available healthy controls, MCI subjects, and subjects with AD who passed
the qualitative baseline review described above were thus registered. From the
deformation field, a volume-change field was calculated; an example is shown in
Fig. 1. For each subject, the volume-change field was averaged over each ROI,
including those of the cortical surface (change in cortical volume to first-order
results from change in thickness), to give the percentage change from baseline.
Further visual quality control, blind to diagnosis, was carried out by a technician
on the volume-change field to exclude cases where there was significant degra-
dation in meaningful registration for at least one ROI because of artifacts or
majorchanges inscannerhardwarebetweenvisits (e.g., changeof scannermodel
or type of RF coil). The most common form of artifact, affecting approximately
half of the rejected scans, was caused by within-scan subject motion. In future
clinical trials, the loss of scans caused by motion artifacts may be greatly reduced

by using real-time motion-correction procedures (54, 55). Artifacts resulting from
change in scanner models between visits typically include differential contrast or
spatial blurring, mostly affecting the fine-scale estimates of change (e.g., within
the cortical ROIs). Artifacts resulting from change in RF coil, specifically from a
traditional quadrature head coil to a phased-array coil, primarily resulted in
dramatic changes in blood inflow effects, which in turn predominantly affected
MTL measures. The combination of artifacts affecting the volume change field
reduced the number of healthy control follow-up scans by 14.2%, the number of
MCI follow-up scans by 14.5%, and the number of AD follow-up scans by 15.8%.

For a subject to be included in our statistical analyses, several criteria
needed to be satisfied: the baseline cortical parcellation and subcortical
segmentation had to pass review, as described above; for a tight comparison
between cognitive and volumetric measures, a subject’s follow-up was elim-
inated unless both volumetric and cognitive data, including a clinical diagno-
sis, existed for that follow-up; there was at least one good follow-up, along
with the good baseline; a healthy control needed to remain such at all
follow-ups; and finally, the volume-change field had to pass review. Quality
control on the volume-change field reduced the number of healthy controls
by 8.6% to 169, the number of MCI subjects by 8.5% to 299, and the number
of AD subjects by 12.2% to 129.

Power Calculations. We examined two models of treatable effects for power
calculations: Model T assumes that the study drug modifies both disease- and
aging-related changes; Model D assumes that the study drug modifies only
AD- or MCI-related changes.

Power calculations were performed using a mixed-effects regression model
for the outcome variable (absolute cognitive measure or subregional percent-
volume change) as a linear function of time, with random (individual-specific)
slope or trend term and, for the cognitive measures, random intercept (base-
line value). Sample sizes per arm were estimated based on a z-test (56) for
absolute mean slopes for AD and MCI subjects (Model T), and the difference
in mean slopes for AD and MCI subjects from healthy controls (Model D). The
sample size required to detect 25% slowing in mean rate of decline for a
hypothetical disease-modifying treatment versus placebo was estimated for a
24-month, two-arm, equal-allocation trial, with a 6-month assessment inter-
val. Power calculations were performed with the requirement that the trial
have 80% power to detect the treatment effect using a two-sided significance
level of 5%. The sample size per arm scales with the variance of the within-
group rate of change (slope), which has both between-subject and within-
subject (residual error variance of the mixed-effects model) components.
Thus, for Model T, the treatment-effect size of interest was 25% of the rate of
change in the patient population (MCI or AD), and for Model D it was 25% of
the difference between the rates of change in the patient and normal pop-
ulations. Confidence intervals of 95% for sample sizes were based on 95%
confidence intervals for the treatment-effect size of interest. Power calcula-
tions were implemented in Matlab version 2008b, using the nlme function in
the Statistics Toolbox. Sample size estimates based on a linear random-effects
model ignoring between-subject variance in the rate of change (i.e., taking
the group-specific rate of change as a fixed effect) are provided in Figs. S1 and
S2, and Tables S1 and S2.
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