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Abstract
A variety of neuroimaging tools are now available for use in studying neurodevelopment. In this
paper we focus our attention on one such tool – the event-related potential (ERP). We begin by
providing an overview of what ERPs are, their physiological basis, how they are recorded, and some
constraints on their use. We then provide an abbreviated glossary of ERP components; that is, what
processes are reflected in ERPs. We conclude by summarizing two areas of atypical development
that have benefited from this method: children experiencing early psychosocial neglect, and children
diagnosed with autism. We conclude by offering recommendations for future research.

In 1997, Bloom and Nelson lamented the paucity of research elucidating the neural bases of
behavioral development. Over the ensuing 10+ years, the field of developmental cognitive
neuroscience has gained considerable traction, with entire single-authored (1,2) and edited
volumes (3,4,5) dedicated to this field, along with special issues of journals (e.g., Journal of
Cognitive Neuroscience; Neuropsychologia: Developmental Review). Among the many
reasons for the progression of this field has been the advances made in neuroimaging.
Specifically, the refinement of existing tools (e.g., event-related potentials; functional
Magnetic Resonance Imaging) and the development of new tools (e.g., functional Near Infrared
Spectroscopy) has now made possible the ability to examine the neural correlates of cognitive
and emotional development.

In this paper we focus our attention on one particular tool – the recording of the event-related
potential (ERP). The ERP reflects the brain's electrical activity recorded from electrodes placed
on the scalp surface and can be utilized across the entire lifespan, thereby permitting one to
use the same methodological tool and dependent measure across a broad range of ages.

What is the Event-Related Potential?
ERPs represent the synchronous activation of electrical fields associated with the activity of
large populations of neurons. This activity volume conducts to the scalp surface, and is
configured in such a way that their individual electrical fields summate to yield a dipolar field
(a field with positive and negative charges between which current flows).

ERPs reflect changes in the brain's electrical activity in response to a discrete stimulus or event.
They are typically collected during the presentation of stimuli that repeat many times.
Recording generally begins 100 or more milliseconds before a stimulus is presented and then
continues for 500 to 2000 msec after the stimulus has terminated. Each “trial” or epoch is
generally averaged in order to eliminate background noise that is not related to the stimulus of
interest. As a result of averaging, the noise theoretically goes to 0 and the signal emerges from
the background, yielding a series of positive and negative deflections – so-called “components”
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- in the ongoing EEG, each of which is presumed to reflect a different neural and perceptual/
cognitive operation. Due to the high temporal resolution (on the order of milliseconds), ERPs
are well suited to index changes in the mental chronometry of a given neural response.

How does one collect ERPs?
Until recently, one typically recorded from 32 or fewer electrodes, mostly due to limitations
in how electrodes were fixed to the scalp and in the size of the amplifiers. However, the field
has increasingly moved to higher-density arrays of electrodes, made possible by new means
of applying electrodes and the miniaturization of the hardware. As a result, it is not uncommon
for many investigators to record from 64, 128, or even 256 electrodes. The advantages to these
larger arrays are multiple. First, the greater spatial sampling permits one to identify components
that might have eluded capture with smaller arrays, where the inter-electrode distances were
greater. Similarly, greater spatial sampling permits one to distinguish one component from
another based in part on scalp topography. Third, great advances have been made in source
modeling/localization, which depend critically on the use of many electrodes. A final benefit,
that has little to do with science per se, is that some dense array systems are quick and easy to
put on, such as the EGI electrode net. As a result, this makes possible the ability to test, using
many electrodes, infants or other difficult-to-test children.

What processes have been investigated using ERPs?
Topics that have received the most attention in ERP research include recognition memory,
attention, working memory, executive functions, auditory and visual sensory processing, face
processing, and language processing. In this section, we review a selection of the processes
that have been examined in developmental populations using ERPs, and some of the associated
ERP components, with an emphasis on those that are most relevant for a developmental
approach to studying psychiatric disorders. We also include a glossary of these and other ERP
components in this section (see Table 1).

Sensory Processing—An auditory sensory component relevant to developmental
psychopathology research is the Mismatch Negativity (MMN). The MMN is a negative-going
component recorded from centro-frontal electrodes approximately 175 ms following a rarely-
presented auditory stimulus, reflecting an automatic change-detection response (6). This early
obligatory component is present from birth through adulthood (7), is typically presented and
analyzed as a difference wave (i.e., standard stimulus waveform minus oddball stimulus
waveform), and is robust to cognitive state to such an extent that it not only occurs when
participants are ignoring the stimuli (8) but also when they are engaged in a cognitively
demanding task in another modality (e.g., 9). The MMN reflects the earliest stage of obligatory
auditory attention, and is generally believed to be the outcome of a mechanism that compares
current auditory input to memory traces from previous auditory inputs and signals (e.g., 10;
but see also 11). The MMN has already been utilized to examine low-level auditory sensory
abilities in infants, children, and adults with a variety of medical and psychiatric disorders (e.g.,
12,13,14,15,16,17).

Face Processing—Human faces provide critical signals for normal social and
communicative interaction, and face processing and the neural and perceptual mechanisms that
underlie it are directly or indirectly relevant for a wide variety of psychiatric disorders. The
face-sensitive adult N170 component is a negative deflection recorded from electrodes over
occipital-temporal cortex that peaks at approximately 170 ms following the presentation of a
picture of a face or object. Decades of research indicate that the N170 exhibits larger
amplitude and shorter latency responses to faces than to a variety of other stimuli (18). The
N170 also exhibits face inversion effects, characterized by larger amplitude and/or longer
latency responses to inverted relative to upright faces but not for inverted relative to upright
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objects (19). In terms of its neural sources, converging evidence suggests that the N170 reflects
specialized activity in several regions of the occipital and temporal lobes that are involved in
face processing (18,20,21,22).

The N170 has been studied extensively as a marker for the specialized neural and perceptual
mechanisms associated with the early stages of face processing, and recent evidence-suggests
that the face-sensitive responding of the N170 may index a collection of specialized early-stage
neural and perceptual mechanisms that are unique to the recognition and identification of faces
as a salient and important visual stimulus (23,24,25,26). Most notably, the results of several
studies suggest that the large amplitude of the N170 component in response to faces compared
with objects may reflect the extensive long-term experience we have with identifying and
discriminating faces from one another (26,27).

There are considerable functional differences between the face-sensitivities of N170 responses
in children and adults (see 28 for review). However, the N170 is observable in children as
young as 4 years of age, and the electrophysiological processing of faces becomes adult-like
during adolescence. Additionally, researchers have identified two infant ERP components, the
N290 and the P400, which may represent developmental precursors to the adult N170 (29).
Like the N170, these components are recorded from electrodes over occipital-temporal cortex,
and are sensitive to faces on a number of dimensions. Specifically, the N290 has been observed
to elicit larger amplitude responses to human faces relative to monkey faces or matched visual
noise stimuli (30,31,32), P400 latency is shorter for faces than for other objects (33), and the
N290 and P400 both exhibit face inversion effects with larger amplitude responding for upright
compared with inverted faces (30,31).

We also recently found that the occipital-temporal P400 (in infants) and N170 (in adults) were
similar in that they both exhibited larger amplitude responses to fear faces versus happy or
neutral faces (34). These findings complement previous research in which we showed that a
later ERP component recorded from electrodes over frontal cortex (Nc) also exhibited
increased amplitude responses to fearful versus happy faces (35,36,37). We have also shown
that the Nc component indexes familiarity in face processing, in that it is larger for familiar as
compared to unfamiliar faces in the first year of life (38). Taken together, these data suggest
that increased neural resources are allocated to the processing of a variety of face-related
processes at the perceptual (N290/P400) and early cognitive stages (Nc), and that several
important aspects of face processing at these two stages are already indexed differentially in
ERP components in infancy. Furthermore, developmental changes observed in face-sensitive
ERP components are believed to reflect the effects of experience in shaping the neural systems
that underlie face processing. Therefore, studying the development of face-related ERP
components in psychiatric populations is an especially promising area of current and future
research.

Memory and Attention—Mnemonic and attentional ERPs are relevant for the study of
psychiatric disorders in at least two respects. First, abnormalities of memory and/or attentional
processes are part and parcel of many psychiatric disorders. Therefore, the use of ERPs can
shed light on the nature and timing of the neural abnormalities that underlie them, as well as
their developmental course. Second, ERPs that reflect memory or attention have proven to be
invaluable tools for exploring new ground in a variety of cognitive domains in both typical and
atypical development (e.g., language, face processing).

The Nc component observed in infants and children is one of the most studied developmental
ERP components. This negative deflection is recorded from electrodes over frontal cortex,
exclusively to visual stimuli, and is involved in both memory and attention. The Nc is present
at birth, and initial studies showed that it is consistently larger in amplitude and/or longer in
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latency in response to infrequently presented (e.g., 25%) as compared to frequently presented
(e.g., 75%) stimuli from three months of age onward (39,40,41). As noted earlier, the Nc has
also been observed to be of larger amplitude in response to fearful versus happy facial
expressions (35). Based on these and other data, it has been suggested that the Nc may
specifically index the allocation of attentional resources to interesting or salient stimuli (39,
42,43).

In addition to the role it may play in indexing attentional mechanisms, there is evidence that
the Nc component also indexes mnemonic mechanisms, either directly or indirectly. For
example, several studies have shown that the Nc distinguishes mother's face from a stranger's
face across several ages, even when the two stimuli are presented with equal probability (38,
33,44,45, but see also 46). Furthermore, in studies of memory for actions performed with
objects in 9- and 10-month old infants, the latency of the Nc was found to be longer for pictures
of the familiar action sequences versus unfamiliar action sequences. Critically, the magnitude
of the latency difference between the familiar and unfamiliar stimuli predicted behavioral
performance in the memory test one month later, suggesting that the Nc was modulated by
mnemonic mechanisms (47,48,49). The role of mnemonic mechanisms in modulating the Nc
component has also received support from research using a cross-modal recognition memory
paradigm in typically developing infants (e.g., 50) and those with putatively impaired memory
systems (51,52).

The specific roles of attention versus memory in modulating the Nc component under various
circumstances remains a topic of debate (see 53 for discussion). However, the results of a recent
source modeling study may provide a basis for resolving this debate in the future. Specifically,
these data suggest the possibility that there may actually be two major generators that underlie
the Nc component, which differentially index mnemonic and attentional mechanisms. One of
the sources identified in this study was a prefrontal source that was active earlier and influenced
by stimulus familiarization, and the other was a frontal pole source that was active later and
not influenced by stimulus familiarization (54). These findings suggest the distinct possibility
that the scalp-recorded Nc may reflect two somewhat distinct processes, which may be more
clearly distinguishable from one another with future research.

Two slow wave components, one positive (PSW) and one negative (NSW), have been observed
to follow the Nc component (55,56,57). These components appear to be more distinctly
involved in mnemonic versus attentional processing (53). Specifically, the PSW is believed to
reflect the updating of memory representations for partially encoded stimuli, and evidence
suggests it may reflect activity in temporal lobe regions involved in memory (54, see also
58). The NSW has been interpreted to reflect the detection of novelty, and evidence suggests
it may be generated by regions of the frontal cortex (54). Together, these three components
(Nc, PSW, NSW) provide a strong context for the study of memory development in infants
and children.

How have ERPs been used to study atypical development?
ERPs have been used extensively to study atypical development or infants/children at risk for
falling off a typical developmental trajectory. Below we sample broadly from just two such
areas: children experiencing early and varying degrees of psychosocial deprivation; and autism.

Neural Correlates of Emotion Processing in Children Experiencing Early
Psychosocial Neglect—Zeanah, Fox, and Nelson have charted the development of three
groups of children in Romania: those abandoned at birth, placed and then raised in institutions;
those abandoned at birth, placed in institutions, and then placed in high quality foster care; and
those reared since birth with biological families (for details, see 59). Two ERP manipulations
were performed. In one, infants/children were presented with alternating images of their
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caregiver's face and the face of a stranger; in another, they were presented with images of
happy, fearful, angry, and sad faces. Across both manipulations, at baseline (prior to
randomization to foster care; mean age=22 months) infants in the institutionalized group
showed remarkably reduced ERP amplitudes compared to the never institutionalized group
(see Figures 1 and 2). Similarly, at 42 months of age, children now living in foster care showed
ERP amplitudes that were at the midpoint between the institutionalized and never
institutionalized children (see Figures 3 and 4).

Over and above reduced ERP amplitudes, two additional observations are worth noting. First,
regarding emotion recognition, the institutionalized group performed very similarly to the
never institutionalized group; that is, the NC was largest to fearful faces than other faces. Thus,
it appears that institutionalization has no effect on discriminating facial expressions of emotion
(for elaboration, see 60,61). Second, there were rather dramatic group differences between
institutionalized vs. never institutionalized children, with the former showing larger ERP
responses to stranger's faces and the latter showing larger responses to caregiver's faces.
Therefore, institutionalization does appear to have an impact on the neural systems involved
in facial recognition (for discussion, see Moulson, Westerlund and Nelson, in press, 60,61).

Overall, these findings illustrate how ERPs have been used to study the neural correlates of
different dimensions of face processing among children experiencing early psychosocial
deprivation. Similar investigations have been conducted on children experiencing
maltreatment, although space limitations prevent us from discussing this work (62,63,64, and
see also 65).

Autism—Researchers using ERPs have revealed abnormalities in the early stages of face
processing in autism (see 66 for review). For example, McPartland and colleagues found that
adolescents and adults with autism exhibited slower than normal peak N170 responses to faces
but normal latency responses to objects relative to typically developing controls (67).
Individuals with autism in this study also failed to show a ‘face inversion effect’ in the N170
component (67). The latter finding suggests a reduced reliance on holistic processing
mechanisms for face processing. Further evidence for impaired holistic processing of faces in
autism comes from a study showing no difference in EEG power in the gamma band (∼40 Hz)
in response to upright versus inverted faces in adults with autism, which was due to reduced
gamma power during upright face processing relative to controls (68). This finding suggests
reduced neural / perceptual binding in response to the upright faces in the individuals with
autism (69,70). More recent ERP data collected from children with autism spectrum disorders
(∼11 years old) showed that these children exhibited reduced source power in frontal regions
during the time window of the N170 component during the processing of faces that were filtered
to include only low spatial frequency information, but no differences in the processing of faces
filtered to include only high spatial frequency information (71). These results also suggest a
reduced degree, or reduced depth, of holistic processing in individuals with autism.

In an effort to determine whether the broader autism phenotype is associated with abnormalities
in early stage face processing, Dawson and colleagues studied ERPs to upright and inverted
faces and objects in parents of children with autism and control participants (72). They found
that N170 responses were faster to faces than to objects in the control group, but not in the
parents of children with autism. They also found that control participants exhibited right-
stronger-than-left responses to the faces but the parents of children with autism did not. These
data reflect early stage face processing abnormalities that are consistent with those observed
in individuals diagnosed with autism and, therefore, indicate that abnormalities in the neural
circuitry involved in early stages of face processing may be a functional trait marker for genetic
risk for autism.
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Several other studies conducted by Dawson and colleagues have shed light on the nature of
face processing impairments in young children with autism (73,74,75). In one study, Dawson,
Carver, and colleagues examined the neural correlates of familiar and unfamiliar face and
object processing in 3- to 4-year old children with autism spectrum disorders (ASD), children
with developmental delays (DD), and typically developing children (TD) (74). As expected,
the ERPs of TD children differentiated between familiar and unfamiliar faces in two ERP
components: The P400 recorded from electrodes over occipital-temporal cortex, and the Nc
recorded from frontal and midline electrodes. Unlike these TD children, 3- to 4-year old ASD
children did not show differentiation of familiar and unfamiliar faces in either of these ERP
components. Like the TD children, however, they did show differential responses to familiar
and unfamiliar objects in both the P400 and Nc components. Control children with DD in this
study did not show differential P400 or Nc responses to familiar and unfamiliar faces or to
familiar and unfamiliar objects. However, they showed differentiation of both in a positive
component that followed the Nc, the Positive Slow Wave (PSW), that neither the ASD nor the
TD children did. These results suggest that autism is associated with face-specific recognition
memory impairment early in life.

In a follow-up study Dawson, Webb, and colleagues examined facial emotion processing in
young children with autism (73). In this study, they found that typically developing children
exhibited larger amplitude responses in the N290 and NSW components to a face posed in a
fearful expression compared with a face posed in a neutral expression, whereas the children
with ASD did not. Furthermore, the latency of the N290 component in response to the fear face
was associated with better performance on naturalistic experimental assessments of diagnostic
social behaviors (i.e., social orienting, joint attention, and attention to distress). These data
provide evidence for abnormal processing of facial expressions of emotion at both the
perceptual and early cognitive stages of processing, and further suggest that these abnormalities
are meaningfully related to impaired social functioning in these children.

In 2006, Webb, Dawson, and colleagues examined early stage face versus object processing
in 3- to 4-year old children with autism (75). To do so, they re-analyzed the ERP data collected
in the study of familiar and unfamiliar face and object processing (74 described above),
collapsing the data across familiarity. Statistical analysis of the face-sensitive N290 component
revealed abnormal patterns of face and object processing in the ASD children relative to
children in the two control groups. Specifically, comparisons of N290 latencies revealed a
significant interaction whereby TD children processed faces faster than objects, but ASD
children processed objects faster than faces. Unlike the TD or ASD children, DD children
showed similar latency N290 responses to faces and objects. However, the relationship between
stimulus type and subject group was different between the ASD children (object latencies
shorter than faces) and DD children (equal latency responses to faces and objects). The ASD
children also exhibited a reduced amplitude response to the object stimulus relative to both
groups of control children. Because effects of familiarity on the N290 were not examined, it
is possible that the observed effects were driven by an interaction among familiarity, stimulus
type, and the subject groups. However, these data provide preliminary evidence to suggest that
early stage face versus object processing is abnormal in young children with autism, and further
suggest that these abnormalities may be characterized by differences in both object and face
processing in these children relative to controls.

Conclusions
Our goal in writing this paper was to introduce the reader to the utility of recording ERPs in
the context of studying both typical development as well as developmental psychopathology.
There is a growing literature using this method with a variety of risk and impaired populations,
including children with ADHD, children with histories of maltreatment, children experiencing
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prenatal drug exposure, children suffering from dyslexia and other learning (and memory)
problems, and children on the autism spectrum (and those at risk for developing autism). The
advantages ERPs hold over other neuroimaging tools include their ease in application, the fact
that they can be used across the entire lifespan, their superb temporal resolution and their
(relative) inexpense. Their disadvantages include (relatively) poor spatial resolution.

What does the future hold? First, serious efforts are currently being implemented to improve
the spatial resolution of ERPs by using higher density arrays of electrodes and in more
sophisticated methods of source modeling. Second, a number of laboratories are currently co-
registering ERPs with other imaging modalities (e.g., fMRI). We contend that continued
refinement of this method, combined with the development of other imaging tools (e.g., Near
Infrared Spectroscopy) has the potential to revolutionize our understanding of disorders. When
combined with genetic/genomic information, we are optimistic that we are on the threshold of
making dramatic breakthroughs in our understanding of mental health problems in children.
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Figure 1.
ERPs recorded from institutionalized and never institutionalized infants at baseline (prior to
placement in foster care; average age=22 months), to happy, fear, anger, and sad faces. Because
there were no group differences in responding to the 4 emotions, the data were collapsed across
emotion to highlight the amplitude differences between the groups.
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Figure 2.
ERPs recorded from institutionalized children, children living in foster care having previously
experienced institutionalization, and never institutionalized children at 42 months of age to
happy, fear, anger, and sad faces. As discussed in the text, the children living in foster care
show ERP amplitudes that are at the midpoint between institutionalized and never
institutionalized children, suggesting improvement over time.
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Figure 3.
ERPs recorded from institutionalized and never institutionalized infants at baseline (prior to
placement in foster care; average age=22 months), to pictures of the child's caregiver and the
face of a stranger. As noted in the text, the groups showed a differential response to these faces;
for purposes of this figure, however, we have collapsed across stimulus to reveal the differences
in ERP amplitudes across the two groups.
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Figure 4.
ERPs recorded from institutionalized children, children living in foster care having previously
experienced institutionalization, and never institutionalized children at 42 months of age, to
pictures of their caregiver's face and the face of a stranger. Again, as with Figure 3, we have
collapsed over stimulus to reveal the group differences in ERP amplitudes. As was the case
with the facial emotion manipulation (see Figure 2), the ERPs of the foster care group are
beginning to normalize.
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