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Abstract
Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative
three-dimensional bioluminescent source information obtained by using bioluminescence
tomography can directly and much more accurately reflect biological changes as opposed to planar
bioluminescence imaging. Preliminary simulated and experimental reconstruction results
demonstrate the feasibility and promise of bioluminescence tomography. However, the use of
multiple approximations, particularly the diffusion approximation theory, affects the quality of in
vivo small animal-based image reconstructions. In the development of new reconstruction algorithms,
high-order approximation models of the radiative transfer equation and spectrally-resolved data
introduce new challenges to the reconstruction algorithm and speed. In this paper, a SP3-based (the
third-order simplified spherical harmonics approximation) spectrally-resolved reconstruction
algorithm is proposed. The simple linear relationship between the unknown source distribution and
the spectrally-resolved data is established in this algorithm. A parallel version of this algorithm is
realized, making BLT reconstruction feasible for the whole body of small animals especially for fine
spatial domain discretization. In simulation validations, the proposed algorithm shows improved
reconstruction quality compared with diffusion approximation-based methods when high absorption,
superficial sources and detection modes are considered. In addition, comparisons between fine and
coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image
quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the
potential and effectiveness of the SP3-based reconstruction algorithm.

1. Introduction
Bioluminescence imaging has become an indispensable imaging modality in preclinical
research (Ntziachristos et al. 2005)(Weissleder 2002). It is extensively applied and is an
efficient tool for in vivo small animal research. Usually, in bioluminescence imaging,
bioluminescence probes (such as luciferase gene) are used to label the specified biological
targets. The photons emitted by bioluminescence probes are detected after they are scattered
and partly absorbed within the small animal body. Therefore, when using planar
bioluminescence imaging, the collected surface photon distribution does not accurately and
directly reflect the biological target activity (Virostko et al. 2007). The acquisition of three
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dimensional bioluminescence source information (that is bioluminescence tomography (BLT))
becomes necessary for improved observation of biological phenomena.

Previous work on bioluminescence tomography has demonstrated its potential in simulations
and experimental reconstructions. However, when performing BLT reconstructions on small
animals, several approximations and assumptions can lead to poor bioluminescence source
localization (Virostko et al. 2007). Single wavelength and mixed spectral BLT reconstructions
produce poor results especially when bioluminescence sources are located far from the animal
surface. On the other hand, the use of spectrally resolved information in whole-body small
animal reconstruction violates the assumptions of the diffusion approximation theory in some
cases (such as high absorption tissues, void-like domains, small tissue geometries and so on).
A priori information and high-order approximations to the radiative transfer equation (RTE)
need to be further investigated to improve BLT reconstruction. Anatomical information and
relevant optical properties (Alexandrakis et al. 2005)(Lv et al. 2007), spectrally-resolved
measurements (Kuo et al. 2004)(Chaudhari et al. 2005)(Alexandrakis et al. 2005)(Cong &
Wang 2006)(Dehghani et al. 2006), and the spatial distribution of surface photons (Cong et al.
2005) are validated and extensively applied in reconstructions. BLT reconstructions employing
direct RTE models and high order approximations need to be further developed (Klose et al.
2005)(Klose & Beattie 2008). With respect to the heterogeneous tissue characteristics and high-
order approximation models in small animals, spectrally-resolved BLT reconstruction
becomes costly in speed and even impossible to achieve in terms of the memory requirements
of sequential execution. In this context, parallel execution mode makes BLT reconstruction
feasible.

BLT reconstructions can be realized by establishing an objective function and minimizing the
discrepancies between the surface measurements and the computed photon density. Similarly,
as in statistical reconstruction in positron emission tomography (PET), a source basis function-
based reconstruction has been developed (Alexandrakis et al. 2005). In this method, each point
or element in the discretized domain is treated as a bioluminescence source. The boundary
photon density information is collected as source basis functions and then the corresponding
optimization is performed to obtain the reconstruction results. Source basis functions (such as
the system response P matrix in PET) can be calculated prior to source reconstruction using
deterministic or Monte Carlo methods, allowing for a reduction in reconstruction time.
However, since virtually all of the bioluminescence photons are scattered during their
propagation, and the boundary photon density is sensitive to propagation domain changes
(Alexandrakis et al. 2006), precalculating source basis functions will affect the reconstruction
quality to a certain degree. Moreover, during the reconstruction, “forward projection” and
“back-projection” are time-consuming. Another method is to determine the direct linear
relationship between the unknown source distribution and the boundary photon density (Cong
et al. 2005). Although matrix inversion calculations need to be performed, the obtained least-
square (LS) problem based on the linear relationship facilitates a solution to the BLT problem
and reduces the reconstruction time.

In this work, a spectrally-resolved reconstruction algorithm is developed using the third-order
simplified spherical harmonics (SP3) approximation. A linear relationship between the
unknown source distribution and the measurable boundary flux is established. To handle the
data storage and process problems of sequential execution, the relevant data matrices are
operated in distributed mode. Parallel execution is performed during the entire reconstruction,
making BLT reconstruction feasible especially on the fine mesh of the domain. Validation of
the simulation in the cases of high absorption domain, superficial source positions and single-
and multi-view data acquisitions shows the effectiveness of the proposed algorithm. BLT
reconstructions on coarse and fine mesh demonstrate the effects of domain discretization on
reconstruction quality and the necessity of selecting a suitable fine mesh. Experimental BLT
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reconstructions further show the potential of the SP3-based reconstruction algorithm for
practical bioluminescence imaging. In the next section, we present the SP3-based spectrally-
resolved BLT algorithm. In the third section, we evaluate the performance of the proposed
method with respect to several factors discussed above. In the final section, we discuss relevant
issues and conclude this paper.

2. Formulation
2.1. Spectrally resolved BLT reconstruction with the SP3 approximation

2.1.1. SP3 approximation—The radiative transfer equation (RTE) comes from the energy
conservation principle (Vo-Dinh 2002). In the RTE, some wave phenomena such as
polarization and interference are ignored. When the surface optical signals are collected in
bioluminescence imaging, the light source is generally assumed to be invariant. Therefore, the
steady-state RTE in 3D is used for the wavelength λ (Klose et al. 2005):

(1)

where ψ(r, ŝ, λ), μa(r, λ), μs(r, λ), and S(r, ŝ, λ) are the radiance, absorption coefficient, scattering
coefficient, and bioluminescence source respectively; p(ŝ, ŝ′) is the scattering phase function
and gives the probability of a photon scattering anisotropically from the incoming direction ŝ
′ to the outgoing direction ŝ. Generally, the Henyey-Greenstein (HG) phase function is usually
used to characterize this probability (Ishimaru 1997):

(2)

where g is the anisotropy parameter; cos θ denotes the scattering angle and is equal to ŝ·ŝ′ when
we assume that the scattering probability only depends on the angle between the incoming and
outgoing directions. The HG phase function is easily expanded by the Legendre polynomial
and is therefore convenient for numerical computation. After a series of deductions in the planar
geometry with the spherical harmonics methods (PN), the 3D SP3 approximation is obtained
by replacing the 1D diffusion operator with its 3D counterpart (Klose & Larsen 2006):

(3a,3b)

where μan = μs(1 − gn) + μa(n = 1, 2, 3); and ϕi(i = 1, 2) are the composite moments relevant
to the Legendre moments. The Legendre moments can be obtained by expanding ψ with the
PN approximation. Detailed deductions are described in (Klose & Larsen 2006). We use

(4)

to depict the effect of reflectivity in different angular moments on the SPN approximation.
Since there are no external sources present in bioluminescence imaging, the corresponding
boundaries are given (Klose & Larsen 2006):
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(5a,5b)

The coefficients A1, …, D1, …, A2, …, D2 can be found in (Klose & Larsen 2006). Furthermore,
the exiting partial current J+ is obtained at each boundary point r:

(6)

where the coefficients J0, …, J3 can also be found in (Klose & Larsen 2006). Note that SP1
(the diffusion equation) can be obtained correspondingly by setting ϕ2 = 0. When the optical
data at the discretized wavelength λk is collected in an experiment, the general equation form
for Eqs. 3a and 3b is followed to describe the proposed reconstruction algorithm

(7)

2.1.2. Reconstruction method—In the frame of the finite element analysis, after applying
the Gauss divergence theorem and considering Robin boundary conditions (Eqs. 5a–5b), we
get the following equation for BLT reconstruction:

(8)

The function fv·ϕi(·) can be obtained through solving the boundary equations (5a–5b), and
expressed by the linear combination of ϕ1(λk), ϕ2(λk).

When the reconstruction domain Ω is discretized as a volumetric mesh T, the space of the linear
finite element V is introduced on T, satisfying V ⊂ H1(Ω). In that case, ϕi(λk) and Si(λk) are
approximated as:

(9a,9b)

where ϕi,p(λk) and si,p(λk) are the discretized values at a discretized point p when using the basis
function vp(r); NP is the total number of discretized points on the entire domain. Considering
Equ. 8 and the SP3 approximation, for a volumetric element τe, we have

(10)

where
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(11)

and

(12)

After assembling all the submatrices, we get

(13)

By inverting the matrix at the left side of Equ. 13, we have

(14a,14b)

where IMiϕj(λk) are the submatrices of the inverse matrix IM(λk) corresponding to Miϕj (λk).
Note that the matrix at the left side of Equ. 13 is considered as the entire one when the inversion
is performed. After we remove the rows in matrices  and

 corresponding to the boundary measurable discretized points, we
use Eq. 6 to get

(15)

where β1(λk) and β2(λk) can be calculated based on Eq. 6; G1(λk) and G2(λk) are the
corresponding matrices after the operation of rows removing in Eqs. 14a and 14b. When the
surface optical data at K wavelengths are collected, we get

(16)

where
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(17)

Generally, A is considered as an ill-conditioned matrix because of the ill-posed problem of
BLT. The surface measured data J+,m corresponding to J+,b will likely lead to a reconstruction
failure when solving Eq. 16 directly due to the noise. We can though solve the bound-
constrained least squares problem

(18)

where Ssup is the upper bound of the source density; δ the regularization parameter; and η(·)
the penalty function.

By minimizing the objective function Θ(S), BLT reconstruction is possible. Since the least
square problem easily obtains the Hessian matrix, several types of Hessian matrix based
optimization algorithms have been adopted to obtain good reconstructions (Cong et al. 2005)
(Lv et al. 2007). However, these methods require a significant amount of memory during the
optimization procedure, especially when fine discretization at the whole-body level of small
animals is used in the reconstruction. In addition, when computing the search direction, it is
necessary to invert the Hessian matrix, a time-consuming process that severely affects the speed
of BLT reconstruction. One solution to this is to use a quasi-Newton method. Generally, this
method builds up an approximate Hessian matrix through the use of gradients and iterative
algorithms. This approximate matrix is obtained in real-time by vector-vector multiplications
and is easy to invert, saving memory and time requirements. Here, the limited memory variable
metric bound constrained quasi-Newton method (BLMVM) is used for BLT reconstruction.
The detailed algorithm is found in (Benson & Moré 2001).

2.2. Parallel implementation
When the reconstruction domain is discretized into NP points, the SP3-based BLT
reconstruction needs to process a 2NP × 2NP matrix compared with a NP × NP matrix in
diffusion approximation-based reconstructions. The computational complexity of the matrix
inversion is O(N3). Therefore, the computation burden is increased remarkably in the SP3-
based reconstruction. Although computer hardware technology is rapidly improving, it is very
difficult to process a matrix that has a very large number of elements. In addition, sequential
execution is severely time-consuming. Time analysis of the simulation of photon propagation
using the SPN approximation has shown a significant reduction in time when using a parallel
implementation (Lu & Chatziioannou 2009).

To make this reconstruction algorithm possible, a fully parallel version was developed. All of
the components in the reconstruction were parallelized, including the FEM-based matrix
assembly, the matrix inversion, and the BLMVM-based optimization. To perform the parallel
reconstruction and reduce the load imbalance problem, a multilevel k-way partitioning method
was used to perform the partitioning after the input of the volumetric mesh (Karypis & Kumar
1998). This method achieves improved performance by reducing the dimensions of the mesh,
partitioning it into a smaller size, and refining it back to the original.
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3. Results
3.1. Simulation verifications

Ever since the BLT concept was proposed in 2003 (Wang et al. 2003), a number of possible
research scenarios have been investigated which use liquid or solid optical phantoms (Gu et
al. 2004)(Cong et al. 2005)(Dehghani et al. 2006)(Kuo et al. 2007) as well as real mouse
subjects (Wang et al 2006)(Kuo et al. 2007). There are though significant differences between
real mice and optical phantoms, and the differences between them need to be addressed. One
important factor is the optical properties at the time of the experiment. Table 1 shows a
comparison of the optical properties between mouse muscle and a commercial mouse-shaped
phantom fabricated by Caliper Life Sciences (Hopkinton, Massachusetts, USA). Three
wavelengths (580, 620, 660nm) are commonly used for spectrally-resolved data acquisition in
luciferase-based bioluminescence imaging. The optical properties of mouse muscle were
derived using Bevilacqua’s method (Bevilacqua et al. 1999). One parameter of interest is the
ratio of  and μa. Generally, if the ratio of these parameters is larger than 10.0, it can be said
that the corresponding optical domain has high-scattering characteristics. In this case, the
diffusion approximation is considered to be suitable for successfully modeling the photon
propagation. However, this ratio for mouse muscle is much lower compared with that of the
mouse-shaped phantom, as shown in Table 1. Even if the wavelength is 660nm, the ratio is just
11.3. Another important parameter is the mean free path . The diffusion
approximation tends to fail if the depth of the bioluminescence source is less than one or even
several (typically two) mean free paths. In this case, the reconstruction localization and quantity
is significantly affected (Virostko et al. 2007). The data in Table 1 demonstrates that the actual
mouse muscle has a longer mean free path when compared with the mouse-shaped phantom.

In recent years, several groups have attempted to develop multiview-based data acquisition
systems for BLT based on CCD camera (Kuo et al. 2005)(Wang et al. 2006). Multiview-based
data are very useful since the photon distribution can be obtained more accurately. However,
more efficient methods of combining the data from multiple views need to be developed. In
addition, one distinct advantage of bioluminescence imaging is its ability to achieve high
throughput. This is usually limited in multiview-based data acquisitions. Therefore, single view
measurements and new reconstruction methods should be further investigated for BLT
reconstruction. Adaptive mesh evolution-based reconstruction methods are being developed
to improve BLT reconstruction quality and speed (Lv et al. 2006), but the selection of an
optimal initial coarse mesh is always a critical and sometimes problematic step. Furthermore,
sequential executions limit reconstructions on fine meshes, especially for large volume
domains. It is therefore necessary to explore reconstruction differences when using meshes
with different discretized scales.

Monte Carlo (MC) methods can produce accurate simulation results and also avoid the inverse
crime problem. However, these methods are severely time-consuming. To accelerate
simulations, MPI-based parallel MC codes has been developed based on the Molecular Optical
Simulation Environment (MOSE) (Li et al. 2004) in order to perform spectrally resolved
simulations. The simulation reconstruction domain was based on the mouse-shaped phantom.
To acquire the shape of the phantom, an Imtek microCAT system (Siemens Preclinical
Solutions, Knoxville, TN) was used. The commercial software Amira 3.0 (Mercury Computer
Systems, Inc. Chelmsford, MA) was used to convert the CT images into a tetrahedral-based
finite element volumetric mesh. About 2/3 of the entire phantom was selected for mesh
generation. Two volumetric meshes (called Fine mesh and Coarse mesh) were obtained with
different discretized scales. The average element diameter of the Coarse mesh and Fine
mesh were 2.0mm and 1.5mm respectively. Note that the memory cost of the inverse matrix at
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the single wavelength was about 1.6GB when SP3-based BLT reconstruction was performed
on the Fine mesh.

In the simulation settings, a solid spherical source with 1.0mm radius was placed at different
deep positions in a MC simulation, that is (4, −3, 0), (4, −3, 5), and (4, −3, 10) (Unit: mm). A
total of 107 photons at each wavelength were tracked due to the high absorption coefficient of
the selected domain. The distance of the first source from the bottom flat boundary of the
phantom was about 7mm. The distance of the third source from the top curved boundary was
about 2mm. These source settings were suitable for verifying the effects of the mean free path
and different source locations from the reconstructed results. The regularization parameter δ
is difficult to be selected in advance. Furthermore, it is difficult to quantify the reconstructed
results due to the use of the regularization term. Spectrally-resolved measurements as a
priori information were used to help obtain a unique and stable BLT solution. To fully verify
the effect of this information and evaluate the performance of the SP3 approximation, we set
δ to “0” in the entire reconstruction. All the reconstructions were performed on a cluster of 27
nodes (2 CPUs of 3.2GHz and 4 GB RAM at each node).

3.1.1. Multiview-based reconstructions on the Fine mesh—In the first case, we just
considered multiview-based BLT reconstructions on the Fine mesh since this setting can
produce adequate information with minimal discretized numerical errors. Figure 2 shows the
reconstructed results based on the DA and SP3 approximations. When 10 CPUs were used, the
reconstruction time was 1, 592sec and 4, 001sec corresponding to DA and SP3 approximation
when the source was at (4, −3, 5). The effect of the mean free path was evaluated first. When
multiview measured data was used, the source at (4, −3, 10) was the most superficial among
the three sources. From Figure 2(c), it is apparent that it is almost impossible to reconstruct
this source accurately. The reconstructed values are distributed and the center position offset
is 7.2mm as shown in Table 2. The reason leading to such large errors most likely is that the
diffusion approximation cannot accurately describe photon propagation when the source is
very superficial. The counterpart reconstruction based on the SP3 approximation is shown in
Figure 2(f). The reconstructed results more accurately reflect the real source information not
only in the position offset (0.8mm) but also in the distribution. Furthermore, Figures 2(a) and
2(d) display the reconstructed results when the source was placed at (4, −3, 0). The source was
reconstructed well based on both DA and SP3 approximation. The difference was that the
reconstructed position offsets were 2.4mm and 1.1mm corresponding to DA and SP3
approximation. The mean free path and high absorption should contribute to this difference
since the source was about 7mm away from the boundary. The deepest source reconstructions
for multiview data acquisitions are shown in Figures 2(b) and 2(e). The reconstructed position
offsets are 1.9mm and 0.5mm for DA and SP3 approximation respectively. Another important
problem is that the DA-based results show a reconstruction artifact, severely affecting the
reconstruction quality.

3.1.2. Multiview-based reconstructions on the Coarse mesh—In FEM-based photon
propagation simulations, the simulation error is bound by C1hC2, where h is the largest element
diameter; C2 is related to the degree of the basis function and the singularity of the problem;
and C1 reflects other factors (Zienkiewicz & Craig 1986). The element diameter has a
significant effect in the forward simulation precision. However, its effect in BLT
reconstructions should be further investigated. When the Coarse mesh is used, the
reconstructed results are shown in Figure 3 and the reconstructed center position information
is also summarized in Table 2. As a whole, the reconstructed results become inferior compared
with those on the Fine mesh. One observation is that the reconstructed results cover larger
regions as is obvious after comparing the results in Figures 2 and 3. The second observation
is that almost all the reconstructions have artifacts. The third observation is that the
reconstructed position errors become larger than those on the Fine mesh, as shown in Table 2.
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One exception is that the reconstructed position offsets were 7.2mm and 2.3mm on the Fine
mesh and Coarse mesh respectively with diffusion approximation when the source was at (4,
−3, 10). Since regularization methods were not used in the reconstruction, one possible
explanation was that the condition number of the matrix A on Coarse mesh was smaller than
that on the Fine mesh, reducing the sensitivity of the measurement noise to model errors.
However, SP3-based BLT reconstructions show good results despite the fact that reconstruction
artifacts exist. With respect to the Coarse mesh and SP3 approximation, reconstruction methods
with adaptive mesh evolution strategy improve BLT reconstruction quality.

3.1.3. Single view-based reconstructions on the Fine mesh—Another BLT
reconstruction investigation was based on single view data collection because of the facile
implementation and the high throughput potential. In this case, we assume that the side used
for data acquisition is the bottom flat surface of the mouse. Regarding the domain discretization
errors, Fine mesh was used for BLT reconstructions. The reconstructed results are shown in
Figure 4. With respect to the bottom surface, the most superficial source was at (4, −3, 0). Its
distance from the detection surface was about 7mm, which is much larger than the mean free
path. We could acquire a similar source reconstruction localization with multiview data
acquisition when the SP3 approximation was used, as shown in Figure 4(d) and Table 2.
However, DA-based reconstruction could not localize the bioluminescence source (Figure 4
(a) and Table 2). Since the same volumetric mesh and synthetic measured data were used in
BLT reconstructions, the reasonable explanation is that model errors of the diffusion
approximation are more sensitive than the SP3 approximation to the noise in MC-based
synthetic data. When the source was at (4, −3, 5), the DA-based reconstruction produced similar
results (Figure 4(b)) with the source at (4, −3, 0). We could also obtain good reconstruction
with the SP3 approximation as shown in Figure 4(e). The difference of the reconstructed results
between the above source settings is that the reconstructed source distribution was enlarged
when the source was at (4, −3, 5). The reconstruction became sharper when the source was
localized at (4, −3, 10), which is shown in Figure 4(f). The localization errors of the latter two
sources were 0.6mm and 2.8mm respectively, as shown in Table 2. Note that the distance
between the sources and the measured surface were about 12mm and 17mm. The maximal
diameter of the mouse volume is about 25mm. Therefore, a single view data acquisition could
be suitable for real mouse geometries with the SP3 approximation.

3.1.4. Quantitative BLT reconstructions—Quantitative BLT reconstruction means that
the reconstructed source intensities are consistent when the same source is placed at different
locations, especially at different depths. Compared with planar bioluminescence imaging,
quantitative reconstruction is another important advantage of BLT besides the 3D source
localization. In this case, we just show the reconstructed source intensities, obtained by
integration over the entire reconstruction domain. The relative errors (RE) between different
deep positions are calculated by |Sr − Sar|/Sar, where Sr and Sar are the reconstructed source
intensity and the average of three source reconstructions. Figure 5(a) shows the DA and SP3
reconstructed results. Compared with the multiview (MV) data acquisition, single view-based
(SV) reconstructed source intensities have larger deviations. However, the SP3-based SV
reconstructions are much better than the DA-based counterparts. The maximal REs are 21%
and 11% for DA- and SP3-based MV reconstructions. Note that the reconstructed intensities
with the sources at (4, −3, 0) and (4, −3, 5) were more consistent compared with those at (4,
−3, 10). The effect of the mean free path most likely is the key factor here. This phenomenon
is more distinct when the ±20% errors in optical property are considered in SP3-based MV
BLT reconstructions, as shown in Figure 5(c). However, these reconstructions have much
better performance compared with the DA-based counterparts. From Figure 5(d), we see that
the maximal REs are 170% and 40% for the DA- and SP3-based reconstructions.
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3.2. Experimental reconstructions
To further verify the SP3-based reconstruction algorithm, living mouse experiments were
performed on a Maestro 2 in vivo imaging system (CRI, Woburn, Massachusetts). This system
uses a cooled CCD camera and a liquid crystal tunable filter (LCTF) to acquire spectrally-
resolved data. To simulate a bioluminescence source, a calibrated luminescent bead (Mb-
Microtec, Bern, Switzerland) was used with an emission spectrum similar to that of a firefly
luciferase-based source (Kuo et al. 2007)(Klose & Beattie 2008). In this bead, tritium is used
to excite phosphor that generates photons, making it a very stable source. Its dimensions are
0.9mm in diameter and 2.5mm long. Figure 6(a) shows a SKH1-hr hairless mouse (Charles
River, San Diego, CA) used in this experiment. Before performing the experiments, the mouse
was anesthetized and the bead was surgically inserted into the mouse body. When the filter
bandpass width was set to 20nm, the optical data at two wavelengths (600 and 660nm) was
collected from a dorsal view. The exposure time for each wavelength was 5min to obtain high
signal-to-noise ratio (SNR). After finishing the optical signal acquisition, the mouse was
imaged using the microCAT system to obtain X-ray CT images. These CT images were used
to generate the volumetric mesh for image reconstruction through a commercial software
package (Amira). The same software was also used to register the volumetric mesh and the
mouse photograph for measured data mapping.

Figure 7(a) shows the volumetric mesh used in this reconstruction and the mapped photon
distribution on the mouse surface. This mesh has the average element diameter of 1.5mm and
contains 9, 193 discretized points and 44, 333 tetrahedral elements. Regarding the signal quality
and the differences of the measured data at different wavelengths, two wavelengths were used
to perform BLT reconstruction. Since it is difficult to distinguish other organs besides lung
and bone using CT images, while the photon propagation region is almost totally comprised
of muscle, the corresponding optical properties at 660nm shown in Table 1 (μa: 0.187 and

: 0.929 at 600nm (Virostko et al. 2007)) were used in reconstruction. The tritium source was
easily distinguished in CT images and we could confirm that the actual position of the source
was (44.6, 50.2, −4.9). Figures 7(b) and 7(c) show the reconstructed results corresponding to
DA- and SP3-based algorithms. The center positions of the reconstructed sources are (43.7,
52.0, −3.8) and (43.7, 50.7, −4.2) respectively. Although both of them are very close to the
actual source position, the reconstructed localization with the SP3-based reconstruction is more
precise. However, there is little difference between the experimental reconstructions and the
simulations especially regarding the DA-based reconstruction. The key factor is that the
measured view on the curved surface of the mouse is wider compared with the flat surface
measurement of the source, resulting additional measurement information in the experimental
reconstruction. Another reason is that the distance between the tritium source and the top
surface is about 8mm, making the source deep with respect to the mean free path. In addition,
the complexity of in vivo mouse tissues also introduces some effects in the reconstructed results
when only the optical property of the muscle is used. However, the experimental
reconstructions show the potential of the proposed SP3-based reconstruction algorithm
especially when the regularization method is not used in the reconstructions. This further
demonstrates the source uniqueness in BLT reconstructions when sufficient a priori
information is used.

4. Discussions and conclusion
In this paper, a SP3-based spectrally-resolved BLT reconstruction algorithm is developed. The
strategy of establishing the simple linear relationship between the unknown source variable
and the boundary measured data is introduced for the SP3 high-order approximation. Parallel
execution of the proposed algorithm makes possible and accelerates the reconstruction of
sources in the whole-body of a mouse on a fine discretization domain. Simulation
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reconstruction comparisons between DA- and SP3-based algorithms show the effectiveness
and numerical stability of the developed algorithm, with respect to superficial source settings,
single view-based data acquisitions and quantitative BLT reconstruction. Experimental real
mouse BLT reconstructions further show the possibility and potential of the SP3-based
algorithm for practical BLT applications.

In BLT, several approximations and assumptions have significantly affected the performance
of bioluminescence source reconstructions. Four types of bioluminescence reporters can be
used currently, that is luciferase enzymes from firefly (FLuc), click beetle (CBRLuc), Renilla
reniformis (hRLuc), and more recently Gaussia princeps (GLuc). The spectrum range of these
luciferases are about 400–750nm (Zhao et al. 2005). Even if BLT is used at 660nm, in vivo
tissues such muscle, skin and liver (Virostko et al. 2007) show high absorption characteristics.
Due to the high scattering assumption of tissues, the diffusion approximation theory has been
extensively applied in optical imaging. The comparisons between DA- and SP3-based
reconstructions have shown that high-order approximations to the RTE can bring much better
numerical stability and reconstruction quality. Note that the diffusion approximation has a
significant adverse effect in BLT reconstruction quality when the source is very close to the
animal surface, something that is not being considered currently, but is often the case in
biological in vivo experiments. The proposed algorithm significantly improves BLT
reconstructions in this case.

Another important assumption is that the mouse is optically homogeneous. The optical
properties between different organs of in vivo mice are very different. Multiple BLT
reconstructions have shown that the knowledge of the heterogeneous geometry and optical
properties are necessary for improved BLT reconstruction. Although preliminary surface flux
comparisons with MC methods have shown that SPN approximations provide slight
improvement compared with the DA in heterogeneous cases, fully parallel FEM reconstruction
framework in the proposed algorithm is also suitable for second-order self-adjoint
approximation formulas to the RTE. Future work will explore more precise approximation
models to improve BLT reconstruction.

In conclusion, we have developed a fully parallel BLT reconstruction algorithm with high-
order approximations to the RTE compared with DA. Simulation and experimental
reconstruction verifications demonstrated that BLT reconstructions using the proposed
algorithm acquire good source localization and quantity and better numerical stability and
efficiency. Further research will focus on real mouse experiments with disease models and the
relevant bioluminescence probes (Loening et al. 2007) for the recently developed Optical-PET
(OPET) system (Douraghy et al. 2008).
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Figure 1.
The volumetric meshes used in simulation validations. Figure (a) and (b) are Coarse mesh and
Fine mesh, with average element diameters of 2.0mm and 1.5mm respectively. The surface and
total discretized points of the Coarse mesh are 2, 598 and 5, 102 respectively and the
counterparts on the Fine mesh are 4, 287 and 10, 293.
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Figure 2.
Multiview-based reconstruction comparisons between DA and SP3 approximation on the Fine
mesh. Figures (a), (b), and (c) are the DA-based reconstruction results when the source was
located at (4, −3, 0), (4, −3, 5), and (4, −3, 10) respectively (Unit: mm). Figures (d), (e), and
(f) are the counterparts with the SP3-based reconstruction. Cross-sections with blue and red
boundaries are the center position of the actual and reconstructed sources respectively. The
volumetric mesh denotes reconstructed values larger than 10% of the reconstructed maximum.
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Figure 3.
Multiview-based reconstruction comparisons between DA and SP3 approximation on the
Coarse mesh. Figures (a), (b), and (c) are the DA-based reconstruction results when the source
was located at (4, −3, 0), (4, −3, 5), and (4, −3, 10) respectively. Figures (d), (e), and (f) are
the counterparts with SP3-based reconstruction. Cross-sections with blue and red boundaries
are the center position of actual and reconstructed sources respectively. Volumetric mesh
denotes the reconstructed values larger than 10% of the reconstructed maximum.
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Figure 4.
Single view-based reconstruction comparisons between DA and SP3 approximation on Fine
mesh. Figures (a), (b), and (c) are the DA-based reconstruction results when the source was
located at (4, −3, 0), (4, −3, 5), and (4, −3, 10) respectively. Figures (d), (e), and (f) are the
counterparts with SP3-based reconstruction. Cross-sections with blue and red boundaries are
the center position of actual and reconstructed sources respectively. Volumetric mesh denotes
the reconstructed values larger than 10% of the reconstructed maximum.
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Figure 5.
Quantitative BLT reconstruction comparisons between DA and SP3 approximation on Fine
mesh. Figures (a) and (c) are the absolute reconstructed source intensity respectively without
and with optical property errors, which are obtained by integration over the entire domain.
Figures (b) and (d) are the relative errors corresponding to Figures (a) and (c).
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Figure 6.
(a) The photograph of the hairless mouse for bioluminescence imaging; (b) The acquired
optical data at 660nm corresponding to (a).
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Figure 7.
Single view experimental BLT reconstructions with DA- and SP3-based algorithms. Figures
(a) shows the volumetric mesh and the mapped photon distribution. Figures (b) and (c) are the
reconstructed results corresponding to DA and SP3 methods. Cross-sections with blue and red
boundaries are the center position of actual and reconstructed sources respectively. Volumetric
mesh denotes the reconstructed values larger than 10% of the reconstructed maximum.
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Table 2

Source reconstructed position comparisons between DA and SP3 approximation. (FM: Fine mesh, Multiview;
CM: Coarse mesh, Multiview; FS: Fine mesh, Single view; Reconstruction: the center position of reconstructed
source; Relative Errors: the absolute distance between the reconstructed and actual positions at X-, Y-, and Z-
axis directions; Distance: the absolute distance between the reconstructed and actual positions)

DA

Reconstruction Relative Errors Distance

FM
(4, −3, 0) (2.8, −2.6, 2.0) (1.2, 0.4, 2.0) 2.4
(4, −3, 5) (4.1, −4.8, 4.4) (0.1, 1.8, 0.6) 1.9
(4, −3, 10) (3.2, −8.3, 5.2) (0.8, 5.3, 4.8) 7.2

CM
(4, −3, 0) (5.9, −4.0, 2.1) (1.9, 1.0, 2.1) 3.0
(4, −3, 5) (2.8, −4.4, 4.2) (1.2, 1.4, 0.8) 2.0
(4, −3, 10) (5.2, −1.8, 8.4) (1.2, 1.2, 1.6) 2.3

FS
(4, −3, 0) (4.4, −2.2, 14.2) (0.4, 0.8, 14.2) 14.2
(4, −3, 5) (3.7, −3.5, 14.0) (0.3, 0.5, 14.0) 14.0
(4, −3, 10) (4.6, −2.6, 11.0) (0.6, 0.4, 1.0) 1.2

SP3

Reconstruction Relative Errors Distance

FM
(4, −3, 0) (3.7, −2.2, 0.7) (0.3, 0.8, 0.7) 1.1
(4, −3, 5) (4.1, −2.6, 4.7) (0.1, 0.4, 0.3) 0.5
(4, −3, 10) (3.9, −3.2, 9.2) (0.1, 0.2, 0.8) 0.8

CM
(4, −3, 0) (5.1, −2.2, 0.2) (1.1, 0.8, 0.2) 1.4
(4, −3, 5) (3.7, −1.3, 4.7) (0.3, 1.7, 0.3) 1.7
(4, −3, 10) (3.7, −4.0, 7.9) (0.3, 1.0, 2.1) 2.3

FS
(4, −3, 0) (3.7, −2.6, 0.5) (0.3, 0.4, 0.5) 0.7
(4, −3, 5) (4.2, −3.2, 5.5) (0.2, 0.2, 0.5) 0.6
(4, −3, 10) (4.6, −1.3, 7.9) (0.6, 1.7, 2.1) 2.8
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