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Abstract
This paper presents an analysis on the performance of the prewhitening beamformer when applied
to magnetoencephalography (MEG) experiments involving dual (task and control) conditions. We
first analyze the method’s robustness to two types of violations of the prerequisites for the
prewhitening method that may arise in real-life two-condition experiments. In one type of violation,
some sources exist only in the control condition but not in the task condition. In the other type of
violation, some signal sources exist both in the control and the task conditions, and that they change
intensity between the two conditions. Our analysis shows that the prewhitening method is very robust
to these nonideal conditions. In this paper, we also present a theoretical analysis showing that the
prewhitening method is considerably insensitive to overestimation of the signal-subspace
dimensionality. Therefore, the prewhitening beamformer does not require accurate estimation of the
signal subspace dimension. Results of our theoretical analyses are validated in numerical experiments
and in experiments using a real MEG data set obtained during self-paced hand movements.
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I. Introduction
ONE MAJOR problem with magnetoencephalography (MEG) measurements is that the
measured MEG data contain not only signals from brain regions of interest, but also large
interfering magnetic fields generated from spontaneous brain activities all over the brain. Such
background interference degrades the quality of source reconstruction results, and often makes
interpreting the results difficult. Such background interference is sometimes referred to as brain
noise or physiological noise.
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A common strategy for extracting the signal of interest from measurements overlapped with a
large amount of interference is to design experiments with dual (control and task) conditions.
Subtraction between the reconstruction results obtained under these two conditions is a
common procedure to reconstruct signal sources of interest [1]. (This subtraction is often
performed as a part of calculating pseudo-t statistics, which is used for statistically evaluating
the source configuration difference between the two conditions.) However, when the source
reconstruction is performed with adaptive spatial filter methods [2]-[4], such subtraction-based
methods cannot effectively remove the influence of the background interference [5]. This is
because the influence of the background activity is not simply additive. It involves spatial blur
and source location bias, as will be shown in our computer simulation in Section V.

Recently, we have proposed a novel prewhitening method suitable for reconstructing sources
from evoked measurements overlapped with large background interference [6]. The goal of
this paper is to show that the prewhitening method can also be effective for measurements
involving task and control conditions. We first analyze the prewhitening method’s robustness
to two types of violations of the prerequisites for the prewhitening method that may arise in
real-life two-condition experiments. We refer to these two types violations as the control-only
source scenario and the modulating source scenario in this paper. In the control-only-source
scenario, some sources appear only in the control measurements and that they do not appear
in the task measurements. In the modulating-source scenario, some signal sources of interest
exist both in the control and the task measurements, and they change intensity between the two
conditions. In real-life measurements, one or both of these scenarios may arise. In this paper
we demonstrate that the prewhitening method is still effective under these scenarios.

This paper also presents an analysis on the influence caused by the overestimation of the signal
subspace dimensionality, and it shows that the method is considerably insensitive to such
overestimation. Therefore, the accurate determination of the signal subspace dimension is not
essential for implementing the prewhitened beamformer, and an intentionally large value can
be used for the signal subspace dimension.

Section II briefly reviews the prewhitening method that has already been proposed in [6].
Section III presents our theoretical analysis on the method’s performance under two realistic
scenarios with dual-condition experiments. Section IV shows the effects of overestimation of
the signal subspace dimension. The arguments in Sections III–IV are validated first by
numerical experiments in Section V and by an application to real MEG data collected during
self-paced finger flection in Section VI. Throughout this paper, plain italics indicate scalars,
lower-case boldface italics indicate vectors, and upper-case boldface italics indicate matrices.
The eigenvalues are numbered in decreasing order.

II. Prewhitening Beamforming Under an Ideal Scenario
We use a model for measurements b(t) expressed as

(1)

where bs(t) is the magnetic field generated by signal sources of interest, bI(t) is the magnetic
field generated by background activity, and n(t) is the additive sensor noise. These vectors are
M × 1 column vectors where M is the number of sensors. The covariance matrix of the
measurements is denoted R such that R = 〈b(t)bT(t)〉 where 〈·〉 indicates an expectation operator.
We define the covariance matrix of the signal magnetic field as Rs, such that

. We assume that the signal is low rank, i.e., the rank of Rs is Q, which is
smaller than M, the number of sensors. We also define the interference-plus-sensor-noise
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covariance matrix Ri+n, such that Ri+n = 〈[bI(t) + n(t)][bI(t) + n(t)]T〉. Note that this Ri+n is a
positive definite matrix, because we assume that the sensor noise is the white Gaussian noise
uncorrelated between different channels. Under the assumption that the signal source activity
is uncorrelated with the background interferences and sensor noise, the relationship

(2)

holds. In the conventional (nonprewhitened) minimum-variance spatial filter, the source power
reconstruction Φ̂(r) is obtained using this covariance matrix R such that

(3)

where l(R) is an M × 1 column vector representing the sensor lead field in the estimated source
direction1 at location r. Equation (3) indicates that the influence of the additive interference is
not simply additive, but it affects the final source-reconstruction results through Ri+n in a highly
nonlinear manner. The influence actually involves spatial blur and source location bias, as will
be shown in our computer simulation in Section V.

We next explain the prewhitening method of estimating the signal covariance matrix Rs; the
method was first reported in [6]. We here assume the ideal scenario, in which control-state
measurements bc(t) contain only the interference and sensor noise, i.e.,

and the interference-plus-noise covariance matrix Ri+n can be obtained from such control-state
measurements. Namely, defining the covariance matrix from the control measurements as

Rc, i.e., , the relationship

(4)

holds. To estimate the signal covariance matrix, we first calculate the prewhitened
measurement covariance matrix , which is defined as . Thus, from (4), we
have the relationship

(5)

where

(6)

We define the eigenvalues and eigenvectors of an M × M matrix  as γ1, . . . , γM and u1, . . . ,
uM. Since Rs is a positive semidefinite matrix with rank Q and  is a nonsingular matrix,

1The method of estimating the source orientation at each voxel location is presented in [7] and [8].

Sekihara et al. Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 is also a positive semidefinite matrix with rank Q. Thus, the eigenvalues γ1, . . . , γQ are
positive and the other eigenvalues γQ+1, . . . , γM are zero. (Here, we assume that the eigenvalues
are ordered in a decreasing manner.) Namely, we have

(7)

Therefore, the eigendecomposition of  can be expressed as

(8)

The above equation indicates that the Q largest eigenvalues of  are greater than 1 and the
corresponding eigenvectors are the same as those for the nonzero eigenvalues of . The
eigenvalues of  greater than 1 are referred to as the signal-level eigenvalues and their
corresponding eigenvectors as the signal-level eigenvectors. Equation (8) indicates that it is
possible to retrieve  from the signal-level eigenvalues and their corresponding eigenvectors
of . That is, defining a matrix US as US = [u1 , . . . , uQ], the signal covariance matrix, Rs,
can be obtained using

(9)

In actual cases, the covariance matrices R and Rc are unknown, and instead we should use the
sample covariance matrices, which are obtained using

(10)

where t1, . . . , tK are the time points contained in a certain time window. We define  such

that . Using (9), the estimate of the signal covariance matrix  can be
obtained using

(11)

where ÛS = [û1, . . . , ûQ], and û1, . . . , û>Q are the signal-level eigenvectors of . Given the
estimate of the signal covariance matrix R̂s, a reasonable estimate of the signal-plus-sensor-
noise covariance matrix, R̂s+n, can be obtained using
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(12)

where μ is the regularization constant that should be set close to the variance of the sensor noise
. (Actually, since the noise variance  is unknown, an appropriate value of μ should be

determined from the measured data, and some empirical methods, such as that of using the
minimum-eigenvalue of R, are employed to determine μ.) Consequently, using the minimum-
variance spatial filter, the prewhitening source power reconstruction free from the influence
of the background activity, can be obtained using

(13)

III. Prewhitening Beamforming Under Nonideal Scenarios
In this section, we analyze the performance of the prewhitening method under two kinds of
nonideal scenarios that may arise in real-life task and control-type measurements. In the
scenario argued first, there are some sources that appear only in the control state and do not
appear in the task state. Such sources are called the control-only sources in this paper, and this
scenario is referred to as the control-only-source scenario. In the scenario argued next, the
signal sources of interest are active in the control state as well as in the task state but they
change their intensities between the two states. Such sources are called the modulating sources
in this paper, and this scenario is referred to as the modulating-source scenario.

A. Control-Only Source Scenario
In the control-only-source scenario, we assume that there are P sources that exist only in the
control state and do not appear in the task state. We also assume that the observed signal space
is still low-rank, i.e., Q+P < M. When such control-only sources exist, the control state
measurements bc(t) can be expressed as

(14)

where bΔ(t) indicates the magnetic field generated by control-only sources. The covariance
matrix relationships are then expressed as

(15)

where

(16)

In deriving (15), we assume that the activity of control-only sources is uncorrelated with the
interference and sensor noise. Using (15), we have

(17)
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and thus

(18)

where . Since Rδ is a nonnegative definite matrix with rank P and 
is a nonsingular matrix,  is a nonnegative definite matrix with rank P. Thus,  is
decomposed as

(19)

where βj, (j = 1, . . . , P) are P nonzero eigenvalues of , and vj are the corresponding
eigenvectors. Substituting (7) and (19) into (18), we have

(20)

When the control-only sources are well separated from the signal sources of interest, the
relationship

(21)

approximately holds. Under this assumption, we will show that a set of vectors

(22)

are the eigenvectors of , where {d1, . . . , dM - P - Q} are the orthonormal basis set of the

subspace , which is defined as .

We first show that the relationship

(23)

holds. That is, we show that the vectors ui (where i = 1, . . . , Q) are the eigenvectors of  and
their corresponding eigenvalues are γi + 1. To show this, we calculate the right multiplication
of ui (i = 1, . . . , Q) to , and using (20) this multiplication results in

(24)
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The first term in the right-hand side becomes γiui. The second term becomes ui, because the
relationship

(25)

holds. The validity of (25) is shown in the Appendix. The third term in the right-hand side of
(24) vanishes due to the orthogonality assumption in (21). Therefore, we can derive the
relationship in (23), i.e., we can show that the vectors ui (where i = 1, . . . , Q) are the eigenvectors
of .

Next, we show that the relationship

(26)

holds. That is, we show that the vectors di (i = 1, . . . , M - P - Q) are the eigenvectors of  and
the corresponding eigenvalues are equal to 1. To show this relationship, we calculate the right
multiplication of di to , which is equal to

(27)

Since di is orthogonal to both the subspace spanned by uj (j = 1, . . . , Q) and that spanned by
vj (j = 1, . . . , P), the only nonzero term in the right-hand side is the second term, which is equal
to di, because di ∈ span {vP+1, . . . , vM}. Thus, we have proved (26).

Finally, we calculate the right multiplication of vi (i = 1, . . . , P) to , which produces that

(28)

On the right-hand side, the first term becomes zero due to the orthogonality assumption in (21)
and the second term becomes zero due to the orthogonality relationship between the signal and
the noise subspaces. Thus, we have

(29)

Therefore, vi (i = 1, . . . , P) are eigenvectors of  and the corresponding eigenvalues are 1 -
βi. We can also show that these eigenvalues are positive but less than 1, i.e., 0 < 1 - βj < 1,
although we do not include the proof here. In summary, we have shown that the vectors
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are the eigenvectors of . The corresponding eigenvalues, in a decreasing order, are

(30)

Here, the largest Q eigenvalues γ1 + 1, . . . , γQ + 1 are greater than 1, and therefore, (9) is still
effective at retrieving Rs, even when the control-only sources exist.

In general, however, the subspace angle between span{u1, . . . , uQ} and span{v1, . . . , vP}
may not be so large and the assumption that these two subspaces are orthogonal may not be
satisfied. In such cases, (23) is changed to

(31)

This equation shows that ui (i = 1, . . . , Q) is no longer the eigenvector of  and the second
term on the right-hand side of (31) indicates the error term. Thus, if the relationship

(32)

holds, the error term is negligibly smaller than the first term, and ui are still approximately the
signal-level eigenvectors of . Conversely, when the error term is not small, the signal-
covariance estimate obtained from (9) could be erroneous.

B. Modulating-Source Scenario
We next examine the modulating-source scenario. We define the covariance matrix of the
signal activity in the control state as . Then we have the relationship

(33)

Thus, we have

(34)

We consider a general case where some signal sources have their intensities greater in the
control state than in the task state, but others have their intensities smaller in the control state
than in the task state. The power of the jth signal source in the task and the control conditions

are denoted, respectively,  and . We assume that the signal sources with j = 1, . . . ,

Sekihara et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Qp have the relationship of , and that the signal sources with j = Qp+1, . . . , Q have

the relationship . Therefore, defining , we have

(35)

where

(36)

(37)

Therefore, we have

(38)

and thus

(39)

where

Because both  and  are the positive semidefinite matrices, (39) is in principle the same
as (18), and exactly the same arguments hold as those in Section III-A. Therefore, we can
estimate Dp by using

(40)

where ÛS = [û1, . . . , ûQp] is a matrix containing Qp eigenvectors of . We

can estimate Dn by changing the role of R̂ and R̂c. That is, we first calculate  such that

, and then obtain an estimate of Dn using

(41)
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In the equation above,  is defined as , which is a matrix containing Qn

(where Qn = Q - Qp) signal-level eigenvectors of . The prewhitening method in which the
roles of R̂ and R̂c are reversed is referred to as the “flipped” prewhitening method in this paper.
Therefore, the sources that are stronger in the task state than in the control state can be
reconstructed using

(42)

The sources that are stronger in the control state than in the task state can be reconstructed
using the flipped prewhitening, i.e.,

(43)

IV. Overestimation of Signal-Subspace Dimensionality
The prewhitening method requires us to determine Q, the dimension of the signal subspace of
R (or the rank of Rs). This determination is usually performed by counting the number of
distinctively large eigenvalues of data covariance matrix R̂. In actual MEG measurements,
however, it is often problematic to accurately determine Q because the eigenvalue spectrum
does not have a clear separation between these two subspaces. Here, we presents an analysis
on the influence caused by the overestimation of the signal subspace dimensionality, and we
show that the prewhitening method is very insensitive to such over-estimation. Therefore, the
accurate determination of Q is not needed and we can use an intentionally large Q to implement
the prewhitening method.

In the following, we discuss the influence caused when the dimension of the signal-subspace
of  is overestimated. We assume the ideal scenario in this section. Let us assume that the
signal subspace dimension is overestimated as Q + Qε and define Uε as Uε = [uQ+1, . . . ,
uQ+Qε]. Ideally, the prewhitened data covariance matrix, , has Q signal-level eigenvalues
greater than 1 and M - Q eigenvalues equal to 1. Therefore, according to (9), the overestimation
of Q does not affect the signal covariance estimate R̂s because the relationship

 holds. However, the prewhitened covariance matrix  is usually estimated
from finite time samples, and in such cases, the noise-level eigenvalues are generally not equal
to 1. We denote the noise-level eigenvalues of the estimated prewhitened covariance matrix

 as δj + 1 and assume δj ≥ 0 for j = Q + 1, . . . , Qε. Then, the estimated signal covariance
matrix, R̂s, is expressed in this case as

(44)

The second term on the right-hand side of the above equation indicates the error term caused
by the overestimation. The error term, R̂ε, is expressed as

Sekihara et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(45)

where .

Let us define the signal and noise subspaces of the measuremnt covariance matrix R, as εS and
εN, i.e.,

where ej is the jth eigenvector of Rs. Then, assuming that , we can expand R̂s
using ej such that

(46)

where . On the righthand side of (46), the first term is the signal
subspace component and the second term is the noise subspace component. To obtain the source
reconstruction in (13), we need to calculate the signal-plus-sensor-noise convariance matrix.
The estimate of the signal-plus-sensor-noise convariance matrix, R̂s+n, is in this case given by

(47)

where λi is the ith eigenvalue of Rs, and we assume that λi ≫ Δλi for i = 1, . . . , Q.

The equation above indicates that the influence of the over-estimation is mainly an increase of
the regularization constant. The regularization in the minimum variance beamformer, known
as diagonal loading, has been widely used and a significant increase of the regularization
constant is known to cause a spatial blur in the reconstruction results [5]. Therefore, the
overestimation of the signal subspace dimension should cause a spatial blur. However, the blur
should not be large if Qε and the resultant Δλi are small. In Section V, examples are presented
in which the prewhitening method can still provide successful reconstruction, even when the
signal subspace dimension is significantly overestimated. In the analysis presented in this
section, we assume the ideal scenario. Considering the fact that large eigenvalues are the same
in the ideal and the nonideal scenarios, it is obvious that the arguments here are also valid for
the nonideal scenarios.

V. Computer Simulation
A. Data Generation

A computer simulation was performed to demonstrate the validity of the arguments in the
preceding sections. In our experiments, we used a sensor alignment of the 275-sensor array
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from the Omega™ (VMS Medtech, Coquitlam, Canada) neuromagnetometer. Three sources
were assumed to exist on a single plane (x = 0 cm), and their (y,z) coordinates were (−2.1,9.5)
cm, (2.6,10.5) cm, and (1.4,7.5) cm, respectively. The source-sensor configuration and the
coordinate system are depicted in Fig. 1(a). The spherical homogeneous conductor model
[10] with the sphere origin set as (0,0,4) cm was used for the forward calculation. The powers
of the three sources were set equal in the sensor-domain, i.e., the relationship,

, held where rj, , and l(rj) were the location, the power,
and the lead field vector of the jth source, respectively. Multiepoch measurements were
simulated.

Each epoch had two sets of data: the task and the control data sets. The task and the control
data sets in the ℓth epoch are denoted B(ℓ) and , respectively, and they are expressed as

B(ℓ) = [b(ℓ)(t1, . . . , b(ℓ)(tK)], and , where K is the number of time
points. Since K was set at 600 in our computer simulation, B(ℓ) and  resulted in 275 × 600
spatio-temporal data matrices. To calculate B(ℓ)(tk) and , we assumed uncorrelated
sinusoidal time courses for the three sources; the source time course for the jth source and for

the ℓth epoch is expressed as , where ΔT is the time
window equal to tK - t1, and the constant Aj controls the frequency, which was set at 6.3 for

the first source, 9.1 for the second source, and 13.1 for the third source. The phase offset 
was generated using the random number between 0 and 2π, and different random number was

used for  depending on j, ℓ, and the two conditions. We therefore simulated induced source
activities, which are elicited by the stimulus but not phase-locked to it.

B. Simulation for the Control-Only-Source Scenario
We first check the performance of the prewhitening method under the existence of a control-
only source. In this computer simulation, the first source is the control-only source, and the
second and the third sources are the signal sources, which appear only in the task state. Namely,

 contains the magnetic field from the second and the third sources, and  contains
the magnetic field from the first source. Real spontaneous MEG was used as the interference

, and the signal-to-interference ratio (SIR) was set equal to 0.3. That is, values of the

source power  were determined in order for the SIR defined as

 to be equal to 0.3. A total of 96 epochs of  and B(ℓ)

(ℓ = 1, . . . , 96) were generated. The representative examples of  and B(ℓ) are shown in
Fig. 1(b). The sample covariance matrices R̂c and R̂ were calculated using

 and  where Le indicates the number
of epochs, which is equal to 96 in this computer simulation. The total covariance matrix was
calculated for later use, using

(48)

The conventional beamformer source reconstruction was performed for the control and the

task data, using  and Φ̂(r) = 1/ [lT(r)R̂−1lT(r)] where Φ̂C(r) and
Φ̂C(r) are the source power reconstruction for the control and the task states, respectively. The
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results are shown in Fig. 2(a) and (b). These results contain severe blur due to the interference
inherent in the task and the control data. The source reconstruction was next performed with
the prewhitening estimate of the signal covariance matrix R̂s, using (13). The prewhitening
estimate of RΔ, R̂Δ, was also obtained from the flipped prewhitening method using

, and the source reconstruction was performed using (13) with R̂s replaced
by R̂Δ. The results of prewhitening and flipped prewhitening source reconstructions are shown
in Fig. 2(c) and (d). Compared to the results in Fig. 2(a) and (b), the results in Fig. 2(c) and (d)
show that the signal and the control-only sources were reconstructed at the correct locations
with much higher spatial resolution, demonstrating that the prewhitening method is still
effective in the control-only-source scenario.

C. Simulation for the Modulating-Source Scenario
In this computer simulation, the intensity of the first source was decreased by 30% from the
control to the task conditions, while the intensity of the third source was increased by 30%
from the control to the task conditions. The intensity of the second source remained the same
between the two conditions. The SIR was set equal to 0.3.

The existing method of processing this type of data calculates the following pseudo-F image
[3], such that F(r) = (Φ̂(r) - Φ̂(C(r))/Φ̂(r), where Φ̂C(r) and Φ̂(r) are obtained using Φ̂C(r) =
wTR̂cw, and Φ̂(r) = wTR̂w, and where the beamformer weight is obtained using

(49)

In the above expression, the total covariance matrix R̂total is calculated using (48). The results
of calculating Φ̂(r), Φ̂C(r) and F (r) are shown in Fig. 3(a)-(c), respectively. In the pseudo-F
image in (c), the third source forms a positive peak, and the first source forms a negative peak.
Although these peaks are blurred and the peak locations are biased, the pseudo-F image F (r)
can at least detect these two sources. Next, the methods of prewhitening and flipped
prewhitening source reconstruction were performed, and the results are shown in Fig. 3(d) and
(e). In these results, the signal source and the control-only source form clear peaks around the
correct locations of these sources, although a small bias of the reconstructed source location
can be observed, particularly for the third source.

To compare the source localization biases for the pseudo-F and the prewhitening results, we
performed a Monte Carlo-type computer simulation in which 40 data sets, each containing
B(ℓ) and , were generated and 40 sets of reconstruction results were obtained.
In each set of the results, the distance between the peak location and the true location of the
third source was calculated as the source locatization bias. The mean and the standard deviation
of the 40 sets of the source-bias results are plotted for four SIR values in fig. 4. (The values of
1/SIR were set to 1, 2, 3, and 4.) According to these results, the amount of the source bias is
almost the same for the prewhitening and pseudo-F results when the SIR is moderately high
(1/SIR ≤ 2). However. When the SIR is low (1/SIR > 2), the prewhitening results have a
significantly smaller source bias. These results demonstrate the effectiveness and superiority
of the prewhitening method in the modulating-source scenario.

Finally, we show the robustness of the prewhitening method to the overestimation of the signal-

subspace dimension Q. The eigenvalue spectrum of  for obtaining the results in Fig. 3(d) is
shown in Fig. 5(a). This spectrum indicates that there is no clear separation between the noise-
and the signal-level eigen-values, and there should be some ambiguity when determining the
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signal subspace dimension. When obtaining the results in Fig. 3(d), the signal subspace
dimension was set to 15. The reconstruction results obtained with the signal subspace
dimension set to 30 are shown in Fig. 5(b). Results almost identical to those in Fig. 3(d) were
obtained in spite of the fact that the signal subspace dimension was significantly overestimated
in this case.

VI. Experiment
The effectiveness of the prewhitening method is further demonstrated using real MEG data
collected during finger flection. The measurement was performed using the 275-channel
Omega-275™ whole-cortex biomagnetometer installed at the Biomagnetic Imaging
Laboratory, University of California, San Francisco. Here, a subject was asked to press a button
with his right-index finger every 3–4 s. The onset of the movement was indicated by a button
press and defined as the time-origin. A total of 200 epochs were acquired at a 1-kHz sampling
rate.

We set two time windows for covariance matrix estimation: the first from 1000–1300 ms, and
the second from −300–0 ms. The fourier transforms of the ℓth epoch data in the first and the

second time windows are respectively denoted  and . The frequency-domain
sample covariance matrices for the first and the second time windows, Ω ̂1 and Ω ̂2, are obtained
using

(50)

where l = 1 and 2. In this equation, ℓ is the epoch index and the notation  indicates the
summation over a specific frequency band Fw, and Fw was set to the beta-band region between
15 and 25 Hz inour experiments. In these experiments, Ω ̂1 and Ω ̂2 were used as the task and
the control covariance matrices.

It is well-known that the intensity of the magnetic field in the beta-band spectral region
decreases preceding and during the button-press finger movements [11]. Therefore, these
measurements represent the modulating-source scenario where signal sources are present both
in the task and control conditions but modulated in their amplitudes. First, we calculated the
pseudo-F map F (r) with the results shown in Fig. 6(a). Although the Pseudo-F map was able
to detect source activities in the left temporal region, the results are considerably blurry. We
next applied the prewhitening source reconstruction and the results are shown in Fig. 6(b). We
can see that the proposed method can reconstruct a clear, localized source in the left temporal
region. The MRI overlay of these results in shown in Fig 6(c). The overlay shows that the
center of the reconstructed activity is located in contralateral hand-cortex. The results in Fig.
6(b) and (c) demonstrate the effectiveness of the prewhitening source reconstruction for this
data set.

We again check the sensitivity of the prewhitening method to the overestimation of the signal

subspace dimension. The eigenvalue spectrum of  is shown in fig. 6(d). We can see that there
is no clear separation between the noise and the signal level eigenvalues and that there would
be some abiguity when determining the signal-subspace dimension. When obtaining the results
in Fig. 6(b), the signal-subspace dimension was set to 15. (This value was determined by our
computer algorithm that detects a point where the spectrum starts to rise above th noise slope.)
The reconstruction results obtained with the dimension set at 25 are shown in Fig. 6(e). These
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results are almost identical to those in Fig. 6(b), demonstrating that results from the
prewhitening method are largely insensitive to the overestimation of the signal subspace
dimension.

Acknowledgments
This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Culture and Sports in
Japan under Grant C16500296 to K. Sekihara and supported in part by grants from the Whitaker Foundation and the
National Institute of Health (R01-DC004855-01A1 and NS006435) to S. Nagarajan.

Appendix
This appendix presents the proof of (25). We first point out that the following relationship
holds:

(51)

where ∅ indicates the empty set. Although we do not provide the formal proof, it is easy to
prove this relationship. Because this relationship holds, we can then show uj (j = 1, . . . , Q) ∈
span{v1, . . . , vp}. That is, uj (j = 1, . . . , Q) belongs to the complementary subspace of span
{v1, . . . , vp}, which is equal to span{vQ+1, . . . , vM}, i.e., uj ∉ span{vQ+1, . . . , vM}. Therefore,

because  is the projector onto sapn{vQ+1, . . . , vM}, the application of this projector
to ui results in

which is (25).
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Fig. 1.
(a) Source-sensor configuration and the coordinate system used in the numerical experiments.
The plane at x = 0 cm is shown. The small filled circles indicate the locations of the three
sources. The large circle indicates the boundary of the sphere used for the forward calculations.
The center of the sphere was set to (0,0,4) cm. (b) Representative examples of the generated
single-epoch data  (upper panel), and B(ℓ) (lower panel).
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Fig. 2.
Results of the source reconstruction experiments simulating the control-only-source scenario.
(a) Results of conventional reconstruction for the task condition, Φ̂(r). (b) Results of
conventional reconstruction for the control condition, Φ̂C(r). (c) Results of the prewhitening
source reconstruction. (d) Results of the flipped prewhitening source reconstruction.
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Fig. 3.
Results of the source reconstruction experiments simulating the modulating-source scenario.
(a) Results of conventional reconstruction for the task condition, Φ̂(r). (b) Results of
conventional reconstruction for the control condition, Φ̂C(r). (c) Results of calculating the
pseudo-F image F (r). (d) Results of applying the prewhitening source reconstruction. The
signal subspace dimension was set to 15. (e) Results of the Flipped prewhitening source
reconstruction.

Sekihara et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Results of the Monte Carlo-type computer simulation performed to estimate the amount of the
source localization bias. The mean of the 40 sets of the calculated distance between the true
and the estimated locations of the third source are plotted for four SIR values. The solid line
represents the average source localization bias for the prewhitening beamforming, and the
broken line represents that for the pseudo-F method. The error bars indicate ±1 standard
deviation.
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Fig. 5.

(a) Eigenvalue spectrum of  used for reconstruction in Fig. 3(d). (b) The results of the
prewhitening source reconstruction obtained with the signal subspace dimension set to 30.
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Fig. 6.
Results of the source reconstruction experiment using hand-motor MEG data. The maximum-
intensity projections of (a) the pseudo-F results F(r) and (b) the prewhitening results. The left,
middle, and the right columns, respectively, show the maximum intensity projections of the 3-
D reconstruction onto the axial, coronal, and sagittal planes. The uper-case letters L and R
show the left and the right hemispheres. The signal subspace dimension was set to 15. (c) MRI
overlay of the prewhitening source reconstruction results in (b). (d) The eigenvalue spectrum

of  used for reconstructing the results in (b). (e) the results of the pewhitening source
reconstruction obtained with the signal subspace dimension set to 25.
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