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Abstract
We explored the use of a fiber-optic probe for in vivo fluorescence spectroscopy of breast tissues
during percutaneous image-guided breast biopsy. A total of 121 biopsy samples with accompanying
histological diagnosis were obtained clinically and investigated in this study. The tissue spectra were
analyzed using partial least-squares analysis and represented using a set of principal components
(PCs) with dramatically reduced data dimension. For nonmalignant tissue samples, a set of PCs that
account for the largest amount of variance in the spectra displayed correlation with the percent tissue
composition. For all tissue samples, a set of PCs was identified using a Wilcoxon rank-sum test as
showing statistically significant differences between: 1) malignant and fibrous/benign; 2) malignant
and adipose; and 3) malignant and nonmalignant breast samples. These PCs were used to distinguish
malignant from other nonmalignant tissue types using a binary classification scheme based on both
linear and nonlinear support vector machine (SVM) and logistic regression (LR). For the sample set
investigated in this study, the SVM classifier provided a cross-validated sensitivity and specificity
of up to 81% and 87%, respectively, for discrimination between malignant and fibrous/benign
samples, and up to 81% and 81%, respectively, for discriminating between malignant and adipose
samples. Classification based on LR was used to generate receiver operator curves with an area under
the curve (AUC) of 0.87 for discriminating malignant versus fibrous/benign tissues, and an AUC of
0.84 for discriminating malignant from adipose tissue samples. This study demonstrates the
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feasibility of performing fluorescence spectroscopy during clinical core needle breast biopsy, and
the potential of this technique for identifying breast malignancy in vivo.

Index Terms
Biopsy; breast cancer; fluorescence; spectroscopy

I. Introduction
Percutaneous core needle biopsy plays an important role in the early detection of breast cancer
and has been increasingly used as an alternative to open surgical biopsy for the diagnosis of
suspect mammographic abnormalities in the breast. It has many advantages over open surgical
biopsy. It is less invasive and faster, costs less, causes minimal or no scarring, and requires a
short recovery time. Needle biopsy can obviate the need for a surgery in women with benign
lesions and reduce the number of surgical procedures performed in women with breast cancer
[1]–[9]. However, a major caveat of this minimally invasive procedure is that only a few small
pieces of tissue are sampled from the suspicious region, and it is possible that the pathologic
area is missed altogether or undersampled [10]. As a result, the frequency of missed cancers
in trials ranges from 0.3% to 8.2% [3]–[5], [7], [11] and repeat biopsies are required in 9%–
18% of patients [6], [7], [9] primarily due to the discordant mammographic and pathologic
findings. Furthermore, statistics showed that approximately 80% of biopsies are benign,
according to the American Cancer Society [12], which suggests a large number of unnecessary
sampling of nonmalignant tissues.

Given the life time probability that a woman has to undergo a breast biopsy procedure and the
physical, emotional, and financial costs to the patient, it is essential to improve the sampling
accuracy of this minimally invasive diagnostic procedure. The sampling accuracy highly
depends on the appropriate positioning of the biopsy needle. Several imaging modalities are
being used to guide needle positioning into the suspicious lesion, such as mammography and
ultrasonography. However, such imaging techniques rely on a 2-D image to locate a 3-D target;
an error in estimating the location of the target may cause significant offset and the needle may
end up missing the pathologic area even though it appears to project into the lesion [5]. Another
factor that may affect the sampling accuracy is the skill level of the operator. Findings from
previous studies [3], [13] have shown that false negative cases were more frequent among less
experienced radiologists, which elucidated the importance of operator experience in
performing a successful breast biopsy.

One way to improve the sampling accuracy of core needle biopsy is to incorporate a “sensor”
as an adjunct to the biopsy needle, to survey multiple tissue sites and provide nondestructive
tissue pathology before the sample is removed. Optical spectroscopy, and in particular,
fluorescence and diffuse reflectance spectroscopy, have the potential to serve as an adjunct
diagnostic modality to core needle biopsy. The onset of carcinogenesis in tissue can result in
structural, physiological, and biochemical changes, which alters the spectroscopic properties
of tissue fluorescence and diffuse reflectance [14]. Optical spectroscopy can be deployed
through fiber-optic probes, which can be easily adapted for use in the biopsy needle to quickly
and nondestructively characterize tissue pathology at the needle tip during a breast biopsy
procedure. A positive reading from the optical measurement could potentially indicate that a
biopsy is being sampled from a tumor site. If the optical measurement reads negative, then the
needle could be repositioned (along the needle track) to a new tissue site. Currently, six to 24
biopsies are taken during a core needle biopsy procedure. If the optical spectroscopy method
can maximize sampling from tissue sites that are most likely to be cancerous and minimize
unnecessary removal of many normal tissues, it could make the breast biopsy procedure more
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accurate, less traumatic to the patient, and also reduce the number of biopsies that need to be
processed in order to obtain a confirmatory diagnosis.

There have been several studies in which reflectance spectroscopy has been performed on
breast tissues through biopsy needles. Bigio et al. [15] measured diffuse reflectance spectra
from breast tissues using an optical probe through a core biopsy (Trucut) needle. They made
single-point measurements in vivo from 59 normal sites and 13 cancer sites. They reported a
sensitivity and specificity of 69% and 85% using an artificial neural network (ANN)
classification, and 67% and 79% using a hierarchical cluster analysis (HCA) in this pilot study.
van Veen et al. [16] performed differential path length spectroscopy (DPS) on 12 patients
through a modified biopsy gun (Bard Magnum) and demonstrated the feasibility of DPS
combined with large-core needle biopsy to determine the local optical properties of healthy
and malignant breast tissues in vivo. In a recent pilot study by our group [17], frequency-domain
near-infrared (NIR) diffuse optical spectroscopy was performed through a core biopsy needle
on ten normal/benign breast tissues, and the preliminary results showed the feasibility of using
a side-firing fiber-optic probe for in vivo NIR spectroscopy during core needle biopsy of the
breast. Fluorescence spectroscopy has been extensively investigated for breast cancer
diagnosis, as it is sensitive to a number of biological fluorophores in human breast tissues.
Previous studies carried out ex vivo or in vitro have demonstrated that there are significant
differences in the UV–Vis fluorescence spectra of normal, benign, and malignant breast tissues
[18]–[23]. However, to our knowledge, no studies have been carried out to explore the
diagnostic potential of this tool for in vivo breast cancer diagnosis.

In this paper, we present a pilot study to address this gap in the scientific literature. In this
study, fluorescence spectroscopy of breast tissues was performed on patients undergoing
image-guided percutaneous core needle biopsy to assess the feasibility of incorporating in
vivo fluorescence spectroscopy into a clinical core needle breast biopsy procedure. The
measured tissue spectra were also analyzed to evaluate the potential of diagnosing breast cancer
using the spectroscopic contrast contained in the in vivo tissue spectra.

II. Methods
A. Patient Recruitment

The clinical protocol for the optical spectroscopy study was reviewed and approved by the
Institutional Review Board (IRB) at the University of Wisconsin. The clinical study was carried
out at the University of Wisconsin Hospital and Clinics (UWHC). Patients with a
mammographically and/or sonographically visible abnormality and who were scheduled for a
core needle biopsy procedure were invited to participate in the study. An informed written
consent was obtained from each participating patient before the optical intervention was
performed. Patient information including age, menopausal status, number of pregnancies or
year of first full-term pregnancy, personal and family history of breast cancer were obtained
from a self-reporting patient history datasheet. A radiologist (EB) determined the
mammographic breast density from a retrospective review of the patient’s mammography
report.

B. Instrument (Fiber-Optic Probe and Optical Spectrometer)
A fiber-optic probe has been designed to work compatibly in a nine-gauge vacuum-assisted
core biopsy needle (Suros ATEC, Suros Surgical Systems, IN), which is currently employed
for image-guided breast biopsy at the UWHC. The nine-gauge Suros needle has a side-facing
aperture that is 20 mm long and 3.7 mm wide at the needle tip. A side-firing probe has been
configured to enable the illumination and collection of light through this aperture. Fig. 1(a)
shows side view of the side-firing probe inserted in the biopsy needle and Fig 1(b) shows cross
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section of the probe assembly. The arrows indicate the direction of light illumination and
collection. The probe consists of a centrally positioned illumination fiber with a core diameter
of 600 μm and a numerical aperture (NA) of 0.22, and two adjacent collection fibers, each with
a core diameter of 200 μm and an NA of 0.22. The tips of these fibers are obliquely polished
at an angle of 43° such that the light paths are perpendicular to the fiber axis. The illumination
and collection fibers are radially oriented and aligned to yield a center-to-center distance of
approximately 600 μm between the illumination and collection areas at the probe–tissue
interface. The fluorescence sensing depth yielded from this probe geometry was evaluated
using a scalable Monte Carlo simulation [24] and ranges from 560 to 750 μm in homogeneous
tissue phantoms with absorption coefficients ranging from 0.3 to 20 cm−1 and reduced
scattering coefficients ranging from 8.4 to 15 cm−1. These optical properties are representative
of that in breast tissues in the UV–Vis spectral range [25]. In the final probe assembly, all the
fibers were encased in a transparent quartz cap that transmits light in the UV–Vis spectrum
and these fibers relay the optical signals between the tissue and the optical spectrometer via
flexible tubing. The entire fiber-optic probe was fabricated according to our design
specifications by Polymicro Technologies, LLC (Phoenix, AZ).

A multiwavelength spectrometer was used for the fluorescence measurements, which consists
of a 450 W xenon lamp (FL-1039, J.Y. Horiba), a scanning double excitation monochromator
(Gemini 180, J.Y. Horiba), a filter wheel, an imaging spectrograph (Triax 320, J.Y. Horiba),
and a charged-couple device (CCD) camera (CCD3000, J.Y. Horiba). Details of the
spectrometer can be found in earlier publications [23], [26].

C. In Vivo Optical Spectroscopy During Breast Needle Biopsy
A total of 73 patients, including 43 undergoing stereotactic and 30 undergoing ultrasound
guided core needle breast biopsy participated in this study. Out of 73 cases, 51 including 26
from stereotactic and 25 from ultrasound guided biopsy were successful, i.e., yielded good
optical measurements and accompanying histological diagnosis, while the remaining 22 failed.
A case was considered a failure when the quality of optical measurements was very poor or
histological diagnosis of each biopsy core was unavailable. The quality of the spectral
measurement was acceptable if the fluorescence peak intensity was at least twice that of the
background fluorescence intensity measured in water (which does not fluoresce). Several
occurrences can cause the failure, which include but may not be limited to the following:

1. probe failure due to damaged fibers;

2. probe was not correctly oriented to enable the light transmission through the open
aperture;

3. the cutting cannula inside the biopsy needle was not retracted to expose the aperture;

4. the probe was not put in direct contact with tissue;

5. biopsy cores were mixed together, thus correlating the tissue sample pathology with
the corresponding optical measurement was impossible.

During the core biopsy procedure, the biopsy needle was positioned into the lesion with
mammographic (stereotactic) or ultrasound guidance. The sterile probe was then inserted into
the needle to make fluorescence measurements on breast tissues at the needle tip through the
side-facing aperture. A biopsy was taken from the exact site where fluorescence measurements
had been made on in order to obtain the corresponding histopathology for the optical
measurement. Three to six measurements at clock positions within a 360° rotation were made
on each patient. There were two scenarios for measurement and biopsy: for the first 45 (32
successes and 13 failures) study cases, biopsy sampling was done immediately after the optical
measurement at each site, and for the next 28 (19 successes and nine failures) study cases,
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optical measurements on all tissue sites were completed sequentially by rotation of the biopsy
needle and then a biopsy sample was obtained retrospectively from each exact site by
repositioning the biopsy needle at those sites. The change to the protocol was made to speed
up the optical measurements and core needle biopsy sampling procedures.

At each clock position, fluorescence emission spectra were recorded at seven excitation
wavelengths from 300 to 420 nm in 20 nm increments. For each excitation wavelength, the
fluorescence emission spectrum was measured over a 260 nm wavelength range, with the
shortest wavelength red-shifted by 20 nm from the excitation wavelength. This setup allows
for the comprehensive characterization of primary endogenous fluorophores present in breast
tissues including tryptophan, collagen, nicotinamide adenine dinucleotide hydride (NADH),
and retinol content, and indirectly, the affect of absorption and scattering on the fluorescence.
The slit width of the imaging spectrograph was set to provide a spectral resolution of 7.9 nm.
Each intensity-wavelength point in the emission spectrum was binned over 18 pixels on the
CCD chip, resulting in a wavelength increment of 4.7 nm. The integration time for acquiring
one fluorescence spectrum was 3 s. For each tissue site, it took about 1 min to complete the
fluorescence spectral measurements at all seven excitation wavelengths, and with three to six
tissue sites measured, the duration of the optical study was approximately 5–10 min. The
patients were advised of the additional time needed for the study when they were consented.

The measured fluorescence spectrum was corrected for: 1) background; 2) the wavelength-
dependent intensity variations of the system; and 3) the throughput of the system. The
background spectra were measured with the probe immersed in distilled water in a dark
container using the same experimental setup and under the same lighting conditions for
fluorescence spectroscopy of breast tissues. The background spectrum was subtracted point-
by-point from each tissue spectrum prior to further calibration. The fluorescence emission
spectral intensities at each excitation wavelength were divided by the excitation calibration
factor, which is the output power of excitation light measured at the probe tip using an optical
power meter, to account for the wavelength-dependent variation of the excitation light
intensity. The fluorescence spectrum was then corrected for wavelength-dependent response
of the collection fibers, imaging spectrograph, and CCD camera, by multiplying it point-by-
point by the correction factors measured using a National Institute of Standards Technology
(NIST) tungsten calibration lamp. Finally, each fluorescence spectrum was divided by the peak
fluorescence intensity (excitation–emission wavelength pair of 460–580 nm) measured with
the probe immersed in a Rhodamine B (100 mg/L) solution using the same integration time,
to account for the day-to-day changes in the throughput of the instrument.

D. Histopathology of Biopsy Cores
Each biopsy sample was labeled in the sequence of A–E and placed in formalin in a separate
container and submitted routinely for histopathology. Several hemotoxylin and eosin (H&E)
stained sections were cut from each biopsy core for microscopic evaluation. For the purpose
of the optical study, the region of interest on each sample was defined as the 5 mm segment at
the center of biopsy core, which is where the fiber probe tip is positioned within the side-facing
aperture of the biopsy needle. Histopathologic diagnoses of the region of interest as well as
that of the entire biopsy core were performed by a board-certified pathologist (JH). The
diagnosis of the optical sample was assigned as the histology of the region of interest on the
biopsy core. Some biopsy cores broke into multiple pieces during the biopsy procedure and
caused uncertainty in determining the region of interest. In this case, the histology of the entire
core was used to describe the diagnosis of the optical sample. The histological composition of
each tissue sample was recorded as percentage adipose, fibrous, ducts/lobules, benign tissue
content, and cancer. Benign tissue content was further categorized as adenosis, fibroadenoma,
cyst, fibrocystic change, and reparative changes, and cancerous tissue content was divided into
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infiltrating ductal carcinoma (IDC), infiltrating lobular carcinoma (ILC), ductal carcinoma in
situ (DCIS), or lobular carcinoma in situ (LCIS). LCIS, while not considered malignant in
clinical practice, is a high-risk marker that represents a similar clonal proliferation of neoplastic
cells as malignancy. Therefore, we included this pathologic diagnosis in our malignant sample
population. In addition, blood content was also recorded as blood clots due to hemorrhage
presented in some of the biopsy cores. For the purpose of data analysis in this study, each tissue
sample was broadly classified, based on the histologic composition, as benign (samples with
>0% of benign content), normal fibrous/fibro glandular (normal samples with >60% of fibrous
and ducts/lobular content), normal adipose (normal samples with >60% of adipose content),
mixture of fibrous/fibro glandular and adipose (normal samples composed of comparable
amount, i.e., 40%–60% of fibrous/ducts/lobules and adipose content), and malignant (samples
with >0% of cancer content).

A total of 121 biopsy samples with accompanying histopathologic diagnosis were analyzed in
this study, among which 62 were obtained from stereotactically guided biopsy and 59 were
obtained from ultrasound-guided biopsy. In all, five out of 62 samples collected from three
stereotactic patients, and 22 out of 59 samples collected from 11 ultrasound patients had
malignancy. Table I shows the histological breakdown of the biopsy samples and the sample
distribution in the two types of biopsy procedure.

E. Analysis of Tissue Fluorescence Spectra
Prior to spectral analysis, each spectrum was normalized to the integrated spectral intensity
over the entire spectrum. This preprocessing removed interpatient variations and possible in-
trapatient variations due to variations in probe–tissue contact. Partial least squares (PLS)
analysis was then carried out on the normalized fluorescence spectra measured at each of the
excitation wavelengths between 300 and 400 nm, one at a time, to extract the principal
components (PCs) that not only account for a large amount of the variance in the spectral data,
but are also most relevant to the known histological diagnosis (malignant or nonmalignant) of
the samples, thus dimensionally reducing the number of variables needed to represent the tissue
spectra. The fluorescence spectra at 420 nm excitation were excluded because at this excitation
wavelength the spectra had very low SNR. The extracted PCs that accounted for a total of 95%
or greater variance in the spectral data were retained for further analysis. Details about the PLS
analysis are described in previous publications by our group [23], [26].

For nonmalignant tissue samples, the scores of the primary PCs, which account for the largest
amount of variance in the spectra at each excitation wavelength, were evaluated for their
correlation with the percent histological composition of the tissue, including percent adipose,
percent fibrous, and percent ducts/lobular tissue content. Pearson correlation analysis was used
to determine the relationship between the PC scores and the histological variables.

For all tissue samples, a Wilcoxon rank-sum test was carried out on each of the retained PCs
(accounting for a total of 95% or greater variance), in order to identify which ones show
statistically the most significant differences between malignant and nonmalignant tissue types.
Three separate tests were performed on: 1) malignant versus fibrous/benign tissues; 2)
malignant versus adipose; and 3) malignant versus all nonmalignant breast tissues. The scores
of PCs that discriminated between malignant and nonmalignant tissue types can be used to
discriminate breast malignancy. However, some of the diagnostically significant PCs at
different excitation wavelengths may have correlated PC scores, as they may represent similar
spectral features. To remove data redundancy, only the PC scores that were diagnostically
significant as well as least correlated with other diagnostic PCs were input into the classification
algorithms to diagnose breast malignancy. Two sets of PC scores were considered un-
correlated if: 1) p > 0.01 for the Pearson correlation and/or 2) their corresponding PCs have
distinct spectral line shapes (i.e., the spectral line shapes do not overlap), which should be
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characteristic of different fluorophores. The PC that showed statistically the most significant
difference (i.e., lowest p-value) between malignant and nonmalignant tissues was retained as
the first diagnostic PC. The second diagnostic PC was then chosen among the PCs that were
uncorrelated with the first diagnostic PC and which had the lowest p-value. The “uncorrelated”
condition was actually determined by applying the two aforementioned criteria rather than just
by the correlation coefficient. The remaining diagnostic PCs were selected sequentially in this
way.

F. Discrimination Between Malignant and Nonmalignant Tissues
1) Support Vector Machine Classification—Binary classification based on support
vector machine (SVM) learning [27] was performed to discriminate malignant (i.e., class 1,
denoted as c1) from nonmalignant tissue samples (i.e., class 0, denoted as c0), which include
the following tissue groups: fibrous/benign, adipose, or all nonmalignant tissues. Two SVM
classifiers were used in this study, one is a linear SVM and the other is a nonlinear SVM using
a radial basis function (RBF) as the kernel function. Candidate classifiers were trained over a
large range of penalty parameters and the performance of each SVM classifier was evaluated
using a leave-one-out cross-validation scheme, in which a single sample was left out as the
testing data and the remaining samples were used as the training data, and this procedure was
repeated such that each sample was used once for testing. The optimal classifier was chosen
as the one that yielded the best cross-validated classification accuracy. A more detailed
description of the SVM classifier and cross-validation is described in our previous publications
[22], [23].

2) Logistic Regression Modeling—Logistic regression (LR) modeling [28], [29] was also
developed to build the predictive relationship between the tissue category and the scores of
PCs that show statistically significant differences between the two tissue categories. The
logistic function used to describe the predictive relationship was p(c1 |x) = exp(β′x)/(1 + exp
(β′x)), where c1 represents the membership to the malignant category, β represents a vector of
regression coefficients βi, i = 0, …, k, and x represents the predictor variables (i.e., score of
PCs that showed statistically significant contrast between two tissue categories of interest).
Output from this regression model gives the posterior probability of being malignant for each
sample. A probabilistic classification scheme was then constructed by varying the threshold:
if the output probability for a tissue sample is above the threshold, the tissue was designated
as malignant, otherwise nonmalignant. A receiver operating characteristics (ROC) curve was
constructed and the area under the ROC curve (AUC) was calculated and used to evaluate the
diagnostic performance of the classifier.

III. Results
Fig. 2 displays the average in vivo fluorescence excitation–emission matrices (EEMs) of: 1)
malignant (n = 27); 2) fibrous (n = 25); and 3) adipose breast tissues (n = 37) measured with
the side-firing fiber-optic probe during core needle breast biopsy. All figures are plotted on a
log scale. The average EEM of malignant tissues displays three visible fluorescence peaks, at
excitation–emission wavelength pairs of (300, 340), (340, 385), and (340/360, 460) nm. The
average EEM of normal fibrous tissues has similar fluorescence peaks as the malignant tissue
EEM. The average adipose tissue EEM differs from those of malignant and normal fibrous
tissues, with a weak presence of the fluorescence peak at (340, 385) nm and a shoulder adjacent
to fluorescence peak at (340/360, 460) nm extending up to (340/360, 510) nm. These
fluorescence features are very similar to what we have observed in average fluorescence EEMs
of ex vivo breast tissues [22], [23].
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Fig. 3(a) shows the primary PCs obtained from PLS analysis, each of which accounts for the
largest amount of variance in the spectra measured at a single excitation wavelength each
between 300 and 400 nm, and the fluorophores they likely correspond to. Fig. 3(b) and (c)
shows the normalized measured spectra of a representative malignant sample (b) and a
representative normal sample (c) at an excitation wavelength of 320 nm, their corresponding
PLS fit using a linear combination of five PCs PC1–PC5, and the residual of the PLS fit, as an
example. The set of PCs (PC1–PC5) accounted for a total of >95% of the variance of the
normalized spectra. The residual was calculated by subtracting the PLS fit point by point from
the corresponding normalized spectrum. The particular excitation wavelength of 320 nm is
chosen to show here as an example because most fluorophores present in breast tissues can be
excited at this wavelength.

In Fig. 3(a), the 300 nm PC1 displays a peak at 340 nm, which is similar to the fluorescence
spectrum of tryptophan. The 320 nm PC4 and 340 nm PC1 displayed similar spectral profiles,
with a peak appearing at 390 nm, which likely corresponds to the emission maximum of
collagen, and a valley at 515 nm, which most likely corresponds to the emission maximum of
retinol. The 360 nm PC1 and 380 nm PC1 show similar spectral profiles, with shoulders
appearing at around 450 nm, which are likely related to NADH fluorescence. The 400 nm PC1
decreases monotonously with increasing wavelength and likely captures the tail end of the
NADH fluorescence. In Fig. 3(b) and (c), the most notable difference between the malignant
and normal adipose tissue spectra is that malignant tissue has relatively higher fluorescence at
460 nm and lower fluorescence at 520 nm, as compared to the normal adipose tissue. Also the
measured spectra and the PLS fits are very similar, and the residual are within 5% of the
normalized measured spectra across the spectrum.

Table II shows the correlation of the primary PC at each of the excitation wavelengths within
300–400 nm, with %adipose, %fibrous, and %ducts/lobules in the nonmalignant tissues. The
variance accounted by each PC is also listed at the end of the table. The 300 nm PC1 showed
a positive correlation with %adipose tissue content but a negative correlation with %fibrous
content. The 320 nm PC4, 340 nm PC1, and 360 nm PC1 are negatively correlated with %
adipose content and positively correlated with the %fibrous and %ducts/lobules tissue content.
The 380 nm PC1 is negatively correlated with %adipose content but positively correlated with
the %fibrous content.

Table III shows the PCs identified from Wilcoxon rank-sum test that displayed statistically
significant differences (p < 0.01) between the various tissue types: 1) malignant versus fibrous/
benign; 2) malignant versus adipose; and 3) malignant versus nonmalignant. The PCs marked
with * have a p-value of p < 0.001, and the PCs marked with ** have p < 0.0001. Eight PCs
obtained from fluorescence spectra at excitation wavelengths of 300–380 nm, displayed
statistically significant differences between malignant and fibrous/benign breast tissues, while
far more PCs (at all excitation wavelengths) displayed statistically significant differences
between malignant and adipose breast tissues. The PCs that showed statistical differences
between malignant and nonmalignant (including fibrous, benign and adipose, and mix of
fibrous and adipose) tissues is a subset of the combined PCs that displayed differences between
malignant and adipose tissues or between malignant and fibrous/benign tissues.

Table IV lists the PCs that are least correlated and used for the classification between: 1)
malignant and fibrous/benign; 2) malignant and adipose; and 3) malignant and nonmalignant
breast tissues. The PCs marked with * have a p-value of <0.001, and the PCs marked with **
have p < 0.0001. Two sets of PC scores were considered least correlated if: 1) p > 0.01 for the
Pearson correlation or 2) their corresponding PCs have distinct (i.e., nonoverlapping) spectral
line shapes that should characterize different fluorophores even though the scores may have a
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correlation of p < 0.01. This yielded four to six inputs to SVM classifiers to discriminate
malignant from other nonmalignant breast tissues.

Table V shows the results from leave-one-out cross validation of: 1) a linear SVM and 2) a
RBF kernel SVM, for discriminating malignant from nonmalignant tissue types, using the least
correlated and diagnostically significant PCs shown in Table IV. Using a linear SVM classifier,
the malignant breast samples can be discriminated from fibrous/benign samples with a cross-
validated sensitivity and specificity of 70.4% and 86.8%, respectively, and discriminated from
adipose tissue samples with a cross-validated sensitivity and specificity of 81.5% and 81.0%,
respectively. In the nonlinear RBF-SVM classification, the cross-validated sensitivity and
specificity for discriminating between malignant and fibrous/benign tissue samples are 81.5%
and 86.8%, respectively, while that for discriminating between malignant and adipose tissue
samples are 74.1% and 81.0%, respectively. In these SVM classifications, the negative
predictive value (NPV) was over 80%, i.e., over 80% of samples with negative test results were
correctly diagnosed. The positive predictive value (PPV) was over 70% when differentiating
malignant from fibrous/benign or adipose tissues, and 58%–67% for discriminating between
malignant and nonmalignant tissues.

Fig. 4(a) shows the ROC graphs for the classification between malignant versus nonmalignant,
malignant versus fibrous/benign, and malignant versus adipose samples. Fig. 4(b)–(d) shows
the sensitivity and specificity produced in each classification: (b) malignant versus
nonmalignant; (c) malignant versus fibrous/benign; and (d) malignant versus adipose. Each
LR model was selected as the one in which all the predictor variables were significant for an
adequate prediction of the tissue categories of interest (p < 0.05), and which yielded the
maximum AUC. In the LR model for malignant versus nonmalignant samples, the optimal PCs
included were 320 nm PC1, 320 nm PC4, and 340 nm PC4, and the area under the ROC curve
was 0.82. PCs included in the LR model for malignant versus fibrous/benign samples were
300 nm PC1, 320 nm PC1, 340 nm PC4, and 380 nm PC1, and the area under the ROC curve
was 0.87. The selected LR model for malignant versus adipose samples included 340 nm PC1,
340 nm PC4, and 360 nm PC2, and the AUC was 0.84. These AUCs were obtained from the
training set. No cross-validation was performed using the LR model.

In Fig. 4(b), at a sensitivity of 55.6%, which is the cross-validated sensitivity for discriminating
malignant from nonmalignant breast tissue using RBF-SVM, the corresponding specificity of
the LR model classification is 86%–88%, and the corresponding PPV and NPV are 54%–58%
and 87%, respectively. In Fig. 4(c), at a sensitivity of 81%, which is the cross-validated
sensitivity for discriminating malignant from fibrous/benign samples using RBF-SVM, the
corresponding specificity from the LR model classification ranges between 71% and 74%, and
the corresponding PPV and NPV are 68% and 85%, respectively. In Fig. 4(d), at a sensitivity
of 74%, which is the cross-validated sensitivity for discriminating malignant from adipose
samples using RBF-SVM, the corresponding specificity from the LR model classification is
82%, and the corresponding PPV and NPV are 75% and 85%, respectively. Most of these
figures are comparable with those obtained in RBF-SVM classification, except for the
specificity for discriminating between malignant and fibrous/benign samples, where RBF-
SVM yielded higher specificity than the LR model.

IV. Discussion
In this study, we explored the use of a side-firing fiber-optic probe to perform fluorescence
spectroscopy in vivo on patients undergoing percutaneous image-guided breast biopsy. The
goal of this study is to investigate the feasibility of in vivo fluorescence spectroscopy as an
adjunct diagnostic tool to assist the sampling of malignant breast lesions. Fluorescence spectra
of breast tissues were measured in vivo from patients through the bore of a nine-gauge vacuum-
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assisted core biopsy needle. The spectral features observed in the in vivo fluorescence EEMs
(as shown in Fig. 2) were similar to that observed in the fluorescence EEMs measured ex
vivo from freshly excised breast tissues [22], [23].

Four fluorescing components or fluorophores were characterized in the in vivo fluorescence
EEM. The fluorescence peak at excitation–emission pair of (300, 340) nm is likely attributed
to tryptophan, the one at (340, 385) nm is likely attributed to collagen, and the one at (340/360,
460) nm coincide with that of NADH fluorescence. The shoulder shown in the adipose tissue
EEM at the excitation wavelengths of 340–360 nm, and emission wavelength of 460–510 nm
may be attributed to retinol whose precursor β-carotene is primarily stored in fatty tissues. The
spectral features of malignant tissues and normal fibrous/benign tissues were similar, while
that of normal adipose tissues were distinct. The average fluorescence EEM of malignant and
fibrous/benign tissue displayed higher collagen and NADH fluorescence, as compared to that
of normal adipose tissues, while the retinol fluorescence was found to be significant in the
adipose tissue EEM.

In the spectral analysis, the in vivo tissue spectra were dimensionally reduced using PLS
analysis. A set of PCs that not only describe as much of the data variance as possible, but also
are most relevant to the known histological diagnosis (malignant or nonmalignant) of each
sample were extracted to represent the tissue spectra with dramatically reduced dimension.
The primary PCs, which account for the largest portion of data variances, characterized the
differences in the spectra observed between malignant and nonmalignant samples. The 300 nm
PC1 is primarily characteristic of tryptophan fluorescence. The 320 nm PC4 and 340 nm PC1
both captured the features of collagen and retinol fluorescence at these excitation wavelengths
in malignant and nonmalignant tissues. The 360 nm PC1 and 380 nm PC1 characterized
primarily the difference in NADH and retinol fluorescence in malignant and nonmalignant
breast tissues.

In nonmalignant tissue samples, the scores of most PCs above were correlated with the
histological composition of the tissue sample. The scores of 320 nm PC4 and 340 nm PC1
showed negative correlation with %adipose tissue content and a positive correlation with %
fibrous tissue content. Both PCs have positive values over the emission wavelength range of
collagen and negative values over the emission wavelength range of retinol, suggesting that
these PCs reflect increasing collagen and decreasing retinol fluorescence. This agrees with the
fact that fibrous stroma is rich in collagen while adipose tissue is rich in fat [30]. The score of
300 nm PC1, which likely characterizes tryptophan fluorescence, was positively correlated
with %adipose tissue content, while negatively correlated with %fibrous content. Alimova et
al. [31] performed fluorescence and phosphorescence measurements on malignant and normal
adipose and glandular breast tissues, and showed that the ratio of intensity at 345 nm
(tryptophan fluorescence) to the intensity at 500 nm (tryptophan phosphorescence) is five times
greater in adipose tissues compared to that in glandular tissues, indicating greater tryptophan
fluorescence from fat compared to glandular tissues. Our results are consistent with these
findings. The 360 nm PC1 and 380 nm PC1 are both characteristic of NADH fluorescence.
Their negative correlation with %adipose and positive correlation with %fibrous suggested
that adipose has lower NADH fluorescence while fibrous tissue has higher NADH
fluorescence. The 360 nm PC1 also positively correlated with %duct/lobules tissue content,
but the 380 nm PC1 did not show statistically significant correlation with %duct/lobules. In
normal breast, NADH may increase with the increased metabolism associated with the duct
proliferation and secretory activities of the breast lobules, while adipose cells have an indolent
metabolism [30]; thus, lower NADH fluorescence would be expected from adipose tissues.

We have applied both linear and nonlinear SVM classifiers to discriminate malignant from
other nonmalignant tissues. The linear SVM performed better than the nonlinear RBF-SVM
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for discriminating between malignant and adipose tissues, while the nonlinear RBF-SVM
performed better for the discrimination between malignant and fibrous/benign tissues. This
might be due to the fact that the PC scores of malignant and adipose tissues are more linearly
separable than that of malignant and fibrous/benign tissues (as evidenced in Table III), and a
linear SVM works better for linearly separable cases while a nonlinear SVM works better for
linearly less separable cases in the original data space. This may also explain the better
classification accuracy achieved using a nonlinear SVM for discrimination between malignant
and nonmalignant samples, as compared to that achieved using a linear SVM. For a poorly or
nonlinearly separable case in the original data space, the nonlinear SVM uses a kernel function
to map the data from the original data space to a higher dimensional feature space, where the
mapped feature data are linearly more separable and a better linear decision hyperplane may
be obtained [27].

The SVM classification between malignant and nonmalignant tissue samples has lower
sensitivity compared to specificity. This may be attributed to the unbalanced sample size of
each tissue category that was investigated in this study. The sample set investigated in this
study consisted of 27 malignant and 94 nonmalignant breast tissue samples. The number of
nonmalignant samples is more than three times the number of malignant samples. This
unbalanced sample size is inherently related to the fact that approximately 80% of the breast
biopsies turned out to be nonmalignant on histopathology. An SVM classifier built on such an
unbalanced sample set may be skewed toward the class with larger sample size, in our case the
class of non-malignant tissues. The principal idea of an SVM is to determine an optimal
hyperplane that maximizes the margin between two classes, such that the distance of the
misclassified samples in each class from the separation boundary are equalized. When the
numbers of elements in the two classes are unbalanced, especially for the case when the two
classes are not completely separable, a large number of samples from each class become
support vectors (i.e., marginal samples), and it is likely that most of samples from the class
with smaller sample size (in this case, the malignant tissue class) will be misclassified. For the
discrimination between malignant and fibrous/benign, and that between malignant and adipose
tissue samples, the sample size of each tissue type is more balanced (i.e., 27 malignant versus
47 fibrous/benign, and 27 malignant versus 37 adipose), and the sensitivity and specificity do
not seem to bias toward any tissue type.

An SVM classifier provides a “hard” classification rule (i.e., fixed separation boundary) for
assigning an individual to one of two classes. Using this classification rule, a tissue sample is
assigned as either class 1 (malignant) or class 0 (other nonmalignant tissue type) based on the
tissue measurements. However, in the clinical settings, it may be more practical to have a
probabilistic diagnosis, i.e., what is the likelihood or probability that the tissue being probed
is malignant. Thus, a probability predictor may be more amenable in clinical applications such
as providing guidance to the optimal tissue sites for breast biopsy. Also this will enable a “soft”
classification rule (varying thresholds) for assigning the membership of an individual, and thus
allows one to choose the threshold to achieve certain sensitivity or specificity that is desired
for the problem. In this study, we have implemented a probability-based predictive model based
on LR. At the same sensitivity for discriminating malignant from adipose, fibrous/benign, or
all nonmalignant tissue samples, the specificity, and therefore, the PPV and NPV were all
comparable to that obtained from RBF-SVM classification, which suggests that the SVM
classifier may achieve comparable diagnostic accuracy as that yielded from LR.

The study demonstrated the feasibility of performing in vivo fluorescence spectroscopy of
breast tissues during a clinical core biopsy procedure; however, there are many challenges that
call for further investigation and improvement. First, there are experimental obstacles, which
significantly affect the quality of fluorescence measurements and the histological diagnosis of
the biopsy cores. Bleeding during the biopsy procedure is a primary concern, which is very
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common in the study subjects due to the insertion of the biopsy needle and the removal of
breast tissues. The use of a local anesthetic lidocaine-epinephrine in the lesion was effective
in reducing bleeding; however, patient bleeding still persists. The blood absorbs light and fills
the gap between the probe and tissue surface, which may cause significant attenuation of both
excitation and emission light. Although a vacuum was applied to suck out the blood in the
cavity and in the needle during biopsy, residual blood and persisting bleeding is still a concern.
In addition, the cavity resulting from biopsy may also affect the probe–tissue contact, which
can potentially impact the quality of fluorescence measurements.

Another experimental obstacle is that sometimes the biopsy cores break into pieces during the
biopsy or suction. A total of 58 samples broke into pieces in this study, among which 15 have
%adipose of less than 40% (average 18.7%), 12 have %adipose between 40% and 60% (average
46.3%), and 31 have %adipose of 60% or above (average 70.5%). A large portion of broken
samples have %adipose content greater than 60%, suggesting adipose tissues are more likely
to break into pieces. The fragmentation of tissue samples makes it difficult to determine with
certainty the region of interest (i.e., the center of the core) for the histological diagnosis. This
consequently imposes difficulties in correlating the tissue measurements with the
corresponding histological diagnosis. When a biopsy core was broken into pieces, the
histopathological analysis of the entire core was used to describe the histological composition
of the optical tissue sample, and the tissue histology was designated as being the predominant
tissue type presented in the sample. The histological diagnosis of the entire sample may thus
not accurately represent the histology of the tissue site on which the optical measurement was
actually made. However, among the total of 23 samples misclassified in cross-validation using
RBF-SVM, nine were fragmented samples (accounting for 15.3% of the total fragmented
samples) and 14 were intact samples (accounting for 22.2% of the total intact samples). This
suggests that fragmentation did not significantly contribute to the misclassification and the
fragmented samples did not seem to be more likely misclassified than nonfragmented samples.

In addition to the experimental obstacles, there are also hardware limitations for the
fluorescence measurements. The side-firing fiber-optic probe employs obliquely polished fiber
tips to reflect the light and a quartz cap to encase all the fibers. There may be cross-talk between
the illumination and collection fibers due to the internal reflection from the inner and outer
surface of the quartz cap. This cross-talk can bring interfering excitation light to the measured
fluorescence and such interference cannot be completely removed through background
calibration. One way to reduce the internal reflection could be adding a thin-film antireflection
(AR) coating on the inner surface of the quartz cap to reduce the unwanted reflection. A selected
multilayer AR coating may eliminate the reflection at multiple excitation wavelengths.
Offsetting the illumination and collection beams may also help reduce the cross-talk between
the two fibers. In the current probe design, the illumination and collection fibers were aligned
in one plane, and part of the collection fiber may block the light beam from the illumination
fiber; thus, a small fraction of excitation light may be collected by the collection fiber. Pulling
the collection fiber backward and off the illumination plane may help remove the collection
fiber out of the illumination light beam, thus reducing the interference from excitation light.

In conclusion, we have demonstrated the feasibility of in vivo fluorescence spectroscopy of
breast tissues during a clinical core needle breast biopsy and the potential of this technique for
diagnosing breast malignancy. The outcome of this preliminary study sets the precedent for
the next-generation probe design and a larger scale clinical study. It is expected that with the
accrual of clinical data, we will be able to further test the value and capability of the
fluorescence spectroscopy technique as an adjunct real-time diagnostic tool to assist the biopsy
of malignant breast lesion.
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Fig. 1.
(a) Side view of the side-firing probe inserted in the biopsy needle. (b) Cross section of probe
assembly. Arrows indicate the direction of illumination and collection light.
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Fig. 2.
Average in vivo fluorescence EEMs of (a) malignant (n = 27), (b) fibrous (n = 25), and (c)
adipose (n = 37) breast tissue samples.
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Fig. 3.
(a) Primary PCs obtained from PLS analysis, each of which accounts for the largest amount
of variance in the spectra measured at a single excitation wavelength each between 300 and
400 nm, and the fluorophores they likely correspond to. The normalized measured spectra of
(b) representative malignant sample and (c) representative normal sample at an excitation of
320 nm, their corresponding PLS fit using a linear combination of five PCs PC1–PC5, and the
residual of the PLS fit. The set of PCs (PC1–PC5) accounted for a total of >95% of the variance
in the normalized spectra.
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Fig. 4.
(a) ROC graphs for the classification between malignant versus. nonmalignant, malignant
versus fibrous/benign, and malignant versus adipose samples. Figure (b)–(d) shows the
sensitivity and specificity produced in each classification: (b) malignant versus nonmalignant,
(c) malignant versus fibrous/benign, and (d) malignant versus adipose.
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TABLE I

Histological Breakdown of Biopsy Samples Analyzed in this Study

# of samples

Type and Sub-type Stereo US* Combined

Malignant 5 22 27

 Invasive ductal carcinoma (IDC) 0 9 9
 Invasive lobular carcinoma (ILC) 0 8 8
 Ductal carcinoma in situ (DCIS) 4 4 8
 Lobular carcinoma in situ (LCIS) 0 1 1
 IDC + DCIS 1 0 1

Non-malignant 57 37 94

 Benign 14 8 22
 Fibrous/ducts/lobulus 15 10 25
 Adipose 22 15 37
 Mix of fibrous/adipose 6 4 10

Total 62 59 121

*
Note: US-Ultrasound.
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TABLE II

Correlation of PCs (ones that Account for Largest Amount of Variance in Spectra) with %Adipose, %Fibrous,
and %Ducts/Lobules Tissue Content

Excitation λ %Adipose %Fibrous %Duct/lobules Variance accounted

300 nm
PC1

0.26
(p < 0.05)

−0.32
(p < 0.005)

Ø 50.0%

320 nm
PC4

−0.38
(p < 0. 0005)

0.30
(p < 0.005)

0.40
(p<le-4)

38.3%

340 nm
PC1

−0.53
(p<le-6)

0.47
(p<le-5)

0.36
(p < 5e-4)

59.0%

360 nm
PC1

−0.51
(p<le-6)

0.47
(P< le-5)

0.28
(p<0.01)

66.4%

380 nm
PC1

−0.32
(p < 0.005)

0.31
(p < 0.005)

Ø 57.8%

400 nm
PC1

Ø Ø Ø 95.5%
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TABLE III

PCs Obtained from PLS Analysis of Fluorescence Spectra at Each Excitation Wavelength, Which Show
Differences (p < 0.01) between (a) Malignant and Fibrous/Benign, (b) Malignant and Adipose, and (c) Malignant
and Nonmalignant Tissue Samples

Excitation λ
(a) Mal. (n=27) vs. Fibr./Benign

(n=47) (b) Mal. (n=27) vs. Adip. (n=37) (c) Mal. (n=27) vs. Non-mal. (n=94)

300 nm PC1 PC3
320 nm PC1, PC5 PC1*, PC4* PC1*, PC4
340 nm PC2, PC4** PC1**, PC4 PC1*, PC2, PC4*
360 nm PC4* PC1**, PC2, PC4 PC1*, PC4
380 nm PC1, PC3* PC1*, PC2, PC3* PC1*, PC3*, PC4
400 nm PC1** PC1*

Note: PCs marked with

*
p< 0.001, PCs marked with

**
: p < 0.0001.
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TABLE IV

PCs that Are Least Correlated and Used for Tissue Classification. Two Sets of PC Scores were Considered Least
Correlated if 1) p > 0.01 for Pearson Correlation, or 2) Their Corresponding PCs have Disctinct Spectral Line
Shapes even though Scores May Have a Correlation of p < 0.01

Excitation λ
(a) Mal. (n=27) vs. Fibr./Benign

(n=47) (b) Mal. (n=27) vs. Adip. (n=37) (c) Mal. (n=27) vs. Non-mal. (n=94)

300 nm PC1 (50.0%)
320 nm PC1 (8.5%) PC1* (8.5%) PC1* (8.5%)

PC4 (38.3%)
340 nm PC4** (2.0%) PC1** (59.0%)

PC4 (2.0%)
PC4* (2.0%)

360 nm PC2 (19.8%)
380 nm PC1 (57.8%) PC1* (57.8%)

PC4 (2.4%)
400 nm PC1** (95.5%) PCI* (95.5%)

Note: PCs marked with

*
p < 0.001, PCs marked with

**
p < 0.0001
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