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Abstract

The drift-diffusion model (DDM) describes decision making in simple, two-alternative forced choice
(2AFC) tasks. It accurately fits response-time distributions and implements an optimal decision
procedure for stationary 2AFC tasks: for a given accuracy, no other model achieves faster average
response times. The value of a decision threshold applied to accumulated information also determines
a speed-accuracy tradeoff (SAT) for the DDM, thereby accounting for a ubiquitous feature of human
performance in speeded response tasks. However, little is known about how participants settle on
particular tradeoffs. One possibility is that they select SATs that maximize the rate of earned rewards.
For the DDM, there exist unique, reward-rate-maximizing values for its threshold and starting point
parameters in free response tasks that reward correct responses (Bogacz et al, 2006). These optimal
values vary as a function of response-stimulus interval, prior stimulus probability and relative reward
magnitude for correct responses. We tested the resulting quantitative predictions regarding response
time, accuracy and response bias under these task manipulations and found that grouped data
conformed well to the predictions of an optimally parameterized DDM.

When an organism extracts signals out of noisy inputs from the environment, it faces a
fundamental tradeoff: should it spend more time observing a stimulus to increase certainty
about its identity and the appropriate response to it, or should it act more quickly at the cost of
greater inaccuracy? Such a tradeoff between speed and accuracy has long been recognized as
a ubiquitous feature of human behavior in speeded response tasks (Fitts, 1966; Garrett, 1922;
Pachella & Pew, 1968; Schouten & Bekker, 1967; Wickelgren, 1977). Yet the factors that lead
to a particular tradeoff are still not well understood.

Clues about the nature of speed-accuracy tradeoff (SAT) selection have emerged from
theoretical and behavioral research on decision making in simple, two-alternative forced choice
(2AFC) tasks, which require participants to choose one or the other alternative on every trial
(e.g., Audley & Pike, 1965; Busemeyer & Townsend, 1993; LaBerge, 1962; Laming, 1968;
Link, 1975; Link & Heath, 1975; Ratcliff, 1978; Smith & Vickers, 1989; Stone, 1960; Usher
& McClelland, 2001; Vickers, 1970). Other clues come from physiological research on the
neural mechanisms that may underlie this type of decision making (e.g., Carpenter & Williams,
1995; Gold & Shadlen, 2002; Hanes & Schall, 1996; Ratcliff, Cherian, & Segraves, 2003;
Roitman & Shadlen, 2002; Schall, 2001; Shadlen & Newsome, 2001; Smith & Ratcliff,
2004). In particular, a large body of evidence (e.g., Palmer, Huk, & Shadlen, 2005; Ratcliff &
Rouder, 2000; Ratcliff, Thapar, Gomez, & McKoon, 2004; VVoss, Rothermund, & Voss,
2004) now strongly suggests that decision making in 2AFC tasks can be accurately described
by the drift-diffusion model (DDM) (Ratcliff, 1978), for which the SAT can be controlled by
adjusting a single parameter (the decision threshold parameter, described below).
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In its simplest form, the DDM is simply an application of the sequential probability ratio test
(SPRT) to a decision making task (Stone, 1960). The SPRT (Wald, 1945) is the optimal
algorithm for two-alternative hypothesis testing when the likelihoods of data samples under
each hypothesis are known and stationary (constant from trial to trial): that is, on average, the
SPRT will be fastest to reach a decision for a given level of accuracy, and most accurate for a
given response time (RT), relative to any other procedure (Wald & Wolfowitz, 1948).

In sequential sampling models (which include the SPRT as a special case), evidence favoring
each of the two alternatives is added to any prior expectations by repeatedly sampling a given
stimulus. When the sampling happens continuously, the iterative log-likelihood-ratio
computation of the SPRT is equivalent to a drift-diffusion (DD) process (Feller, 1968), which
we discuss in the following section. If the task involves free responding, in which participants
can respond at any time after stimulus onset, then the corresponding response is made when
the evidence favoring one alternative crosses a decision threshold. The choice of threshold
determines the SAT: lower thresholds permit faster responses, but at the expense of less
accumulation of information and therefore less accurate performance; higher thresholds
support greater accuracy but at the expense of slower responding. The choice of starting point
determines the response bias: if the starting point of evidence accumulation is closer to one
response's threshold, then the probability of that response increases.

The drift parameter of the DDM is equivalent to the average rate at which information
accumulates. If drift is determined by the logarithm of the stimulus likelihood ratios (and not
modulated, for example, by strategic control processes), then the conditions of the SPRT-
optimality theorem apply, and no other model can make decisions faster on average than the
DDM, for a given level of accuracy. But what level of accuracy — and therefore, which point
along the model's SAT function — should be preferred? And how should prior expectations
be incorporated into the decision process?

The SPRT does not specify how to select a particular SAT (by specifying a threshold value)
or a particular response bias (by specifying a starting point), and little is known about how
human participants do so. One possibility is that they seek to maximize the number of correct
responses per unit time, especially in fixed-duration tasks in which faster responding leads to
agreater total number of trials. This is equivalent to maximizing the rate of reward when correct
responses earn rewards. Reward maximizing behavior has long been used in signal detection
theory to construct receiver-operating-characteristic (ROC) curves (Tanner & Swets, 1954),
and the effectiveness and logical consistency of payoffs as feedback in human behavioral
research in general has been recognized at least since the 1960s (Edwards, 1961). Recent
theoretical work has demonstrated that, for any given set of task parameters, there is a unique,
optimal combination of threshold and starting point for the DDM that will maximize the
expected reward rate (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). This result can be
used to make quantitative predictions about the way in which task factors should influence
SAT and response bias. In this study, we sought to test these predictions and determine whether
human participants adjust SATs and response biases in order to maximize reward rate.

Our study focuses on three factors in particular: the average response-stimulus interval (RSI),
which determines the pace of the task, the prior probability of each of the two stimuli, and the
relative reward associated with correct responses to each stimulus. Bogacz et al. (2006)
examined the influence of these variables on the optimal threshold and the optimal starting
point of evidence accumulation for the DDM. In the section that follows, we briefly review
this theoretical work, and the behavioral predictions it entails. We then describe three
experiments conducted to test these predictions. Their results provide new support for the DDM
as a model of human decision making performance in 2AFC tasks; additionally, they support
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the hypothesis that human participants adapt response thresholds and starting points in order
to maximize rewards, as predicted by a reward-rate-optimized DDM.

The Drift Diffusion Model

We now briefly describe the DDM and the quantitative RT and accuracy predictions that we
test in our experiments.

A drift-diffusion (DD) process is the limiting case of a random walk in which the time between
steps becomes vanishingly small (Feller, 1968). Technically, it is defined by the simple
stochastic differential equation:

dx=A dt+c dW. (1)

Here x represents the net evidence accumulated in favor of one of the two alternatives (and
—x evidence in favor of the other); the drift A represents the discriminability of the stimulus
favoring one alternative (with —A favoring the other, assuming equal discriminabilities); and
c weights the influence of a Wiener (Brownian motion) process W, which represents the
cumulative effect on x of white noise in the stimulus® (see Fig. 1). A sample path of the process
(i.e., a particular random walk trajectory) begins with x at a specified starting point xg, which
can be taken to represent the decision maker's prior belief about the relative likelihood of each
stimulus type. It ends when the value of x exceeds a threshold £z in the positive or negative
direction. This “first-passage’ across a threshold defines the decision time (DT) of the process.
In fitting to empirical data, an additional residual latency component T (reflecting sensory
and motor processes unrelated to the decision itself) is added to DT, to derive the predicted
RT: RT =DT + T,.

For the DDM with starting point equidistant from both thresholds,? expected decision time

(denoted ) and the expected proportion of errors (denoted gr) depend only on the signal-
to-noise ratio A/c and the threshold-to-signal ratio z/A, as described by the following analytic
expressions (Busemeyer & Townsend, 1992; cf. Bogacz et al., 2006 and Gardiner, 2004):

- 1

ER=——

1+e(242/%) )
.2 Z

DT —Ztanhc—z. 3)

This allows quantitative predictions to be made about p and g for a given drift A, noise
level ¢, and threshold z. Drift and noise reflect the influence of two primary factors: the intrinsic

1Specifically, a Wiener process describes the idealized Brownian motion of a point-particle moving in one dimension whose position
(plotted on the vertical axis in Fig. 1) becomes more and more uncertain over time as a result of continuous bombardment by upward
and downward impulses constituting a Gaussian white-noise process. Such a particle's vertical position is distributed normally with

standard deviation € ‘/; where t is the amount of time elapsed since the start of the process (Gardiner, 2004). This distribution therefore
describes the process of diffusion in a liquid of a substance consisting of many such particles. As a description of evidence integration,
it also follows directly from the assumption of sequential sampling from one of two Gaussian distributions with equal variance ¢ and
means equal to —A and A respectively (Ratcliff, 1978); in the terminology of signal detection theory, =0, and d’= 2Ac (Green & Swets,
1966). Under this interpretation, x represents the logarithm of the odds ratio that the signal comes from one or the other distribution.

2When the starting point is not equidistant, as is optimal when one stimulus is more likely than the other, E_R and D_T have more
complicated expressions that are given in Appendix B.
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discriminability of the stimulus in the environment, and the signal-to-noise properties of the
internal processes responsible for transducing, encoding, and attending to the stimulus. The
former can be experimentally manipulated, and the latter is frequently assumed to be relatively
stable for motivated performance within a given task condition. Accordingly, A and ¢ can be
estimated for a particular stimulus and individual. What is less clear is the basis on which
decision makers choose the threshold z and the starting point xo — that is, how they choose to
trade off speed against accuracy, and how they choose a response bias (if any). We test the
hypothesis that participants make decisions using a DD process and that they parameterize the
process so as to maximize reward rate, under the assumption of a physically unavoidable upper
bound on the signal-to-noise ratio (SNR), A/c.

Reward-rate optimization of the DDM

Recent theoretical work (Bogacz et al., 2006) has shown that when drift, noise, mean RSI
(RsD Prior stimulus probability and the relative reward for correct responses to each stimulus
are held constant in a free-response, 2AFC task, there exist unique, optimal threshold and
starting point values for the DDM3 that maximize expected reward rate (g ), defined as follows
(Gold & Shadlen, 2002):
RR-_ “ER
DT +T)+ RSI @

Here we assume that errors are unrewarded. We now examine how optimal DDM
parameterizations (those that maximize Eq. 4) depend on the task conditions that we manipulate
in our experiments.

Response-stimulus interval

By substituting Eq. 2 and Eq. 3 into Eq. 4, and solving for the maximum gR, the following

equation can be derived describing the optimal value of z as a function of A, ¢, Tg and gg
(Bogacz et al., 2006):

/2 2A2 ~ Z
e24¢) _ 1= [RSI +T, - = |.
c? A ®)

(Here we assume that the starting point is equidistant between the two thresholds — xg =0 —
since this maximizes expected reward rate in tasks with equally likely and equally rewarded
stimuli.)

Since the left-hand side of Eq. 5 increases with z while the right-hand side decreases, there is
a unique value of z that solves Eqg. 5 for a given combination of A, ¢, To and grgy. This can be
seen clearly in panel A of Fig. 2, where expected reward rate (g, given by Eq. 4) is plotted
as a function of threshold for representative values of A, ¢ and T (obtained by fitting the DDM
to behavioral data), and for a variety of average RSI values. The figure shows that a unique,
reward-rate-maximizing threshold exists for each RSI, and that this optimal threshold value

3An analogous result holds in the case of equally likely and equally rewarded stimuli for any model that produces a concave speed-
accuracy tradeoff function (SATF) relating accuracy to response time; see Appendix C. See also related derivations of thresholds and

starting points that minimize a weighted sum of decision time and accuracy rather than maximizing R_R (Edwards, 1965; Rapoport &
Burkheimer, 1971).
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grows as RSI increases (the specific value can be determined by solving Eq. 5 numerically,

e.g., by Newton's method). Insofar as A, ¢, Tp and z are stable for a given individual and task
condition, their values can be estimated from behavioral performance, and used to evaluate the
goodness of fit of the DDM. Furthermore, if evidence suggests that A, ¢ and Tg are stable for

a given individual across manipulations of task variables such as ggy, then changes in z can
be estimated in response to such task manipulations, and compared to the optimal values
predicted by Eq. 5. Panel B of Fig. 2 plots optimal threshold values as a function of g 1. Optimal
threshold predictions in turn entail specific expected reward rates, RTs and accuracies that can
be compared to data (remaining panels of Fig. 2). Experiment 1 was designed to test these
predictions.

Stimulus probability

Thus far we have focused on conditions in which each stimulus is presented equally often. If
one stimulus appears more often than the other, then maximization of reward requires that the
starting point of evidence integration for the DDM (Xg) be moved closer to the threshold
corresponding to the more frequent response (Bogacz et al., 2006; cf. Edwards, 1965, and
Laming, 1968). This produces faster RTs when the drift is in the direction of the closer threshold
and more errors when the drift is in the opposite direction. However, the reduced frequency of
trials for this case makes their increased inaccuracy worth the cost. Specifically, if IT denotes
the probability of stimuli for which crossings of +z are correct, then for optimal performance
(Edwards, 1965) the initial condition of x should be set as

2 11
x():—]n( )

Note that xq should equal 0 when IT = 1/2. In addition, a value of IT greater than 0.5 produces
a reduction in the optimal threshold value, which in the case of unequal stimulus ratios is
obtained by numerically solving the following equation (Bogacz et al., 2006):

2 _
(2Az/c?) _ 1:ﬁ. RSI +7, — = 1-2I0)1 1
e 2 *To =7 |+ (= 2n{ 7= |- @)

(Eq. 7 reduces to Eq. 5 for IT = 1/2.) Expected accuracy and decision time for the optimally
parameterized DDM with IT > 1/2 are given in Appendix B.

Although the optimal value of xg does not depend on RSI, it interacts in interesting ways with
the optimal threshold as the mean RSl is changed. Fig. 2 (second panel from left) shows that
as RSl increases, the optimal threshold also increases. This relationship also holds in the case
of unequal stimulus frequencies. Thus, simultaneously decreasing the RSI while increasing the
inequality in stimulus ratios effectively exaggerates the shift of the starting point toward the
threshold for the favored response (i.e., the response corresponding to the more likely stimulus).
For RSlIs that are sufficiently short and values of I that are sufficiently close to 1, Eq. 6 places
the optimal starting point beyond the favored response threshold. In this case, the simplest
interpretation of the theory predicts that the decision maker should forgo integration and choose
the favored response on every trial. Assuming that there is a penalty for anticipatory responding
(that is, responding before stimulus onset), RT should simply reflect signal detection and
therefore equal Ty, and the proportion of errors should equal the probability of the less likely
stimulus. We will refer to this behavior as non-integrative responding to indicate that no
integration of evidence is being carried out by the decision maker; non-integrative responding
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is equivalent to making fast-guess responses (Ollman, 1966;Yellott, 1971), except that it
involves always making the same guess that the favored response is correct.

Bogacz et al. (2006) describe task conditions in which non-integrative responding is expected
by dividing the three-dimensional task parameter space into two regions separated by a curved,
two-dimensional critical probability surface. This surface — on which the optimal starting

point and threshold coincide — is defined by Eq. 8, which describes it in terms of ggyas a
function of I1, A, ¢ and Ty:

n-1/2 I
i1 +Hln(m)
- — T().

RSI =
A2/c? (8)

This surface is depicted in Fig. 3. The parameters defining this space are the SNR (A/c), the
average RSI, and the probability of the more likely stimulus, IT. The residual decision latency
(To) determines the height of the surface. For asymmetries IT above this surface, non-integrative
responding is expected. For points below the surface, integrative responding is expected.

It seems reasonable to expect that a sufficiently strong asymmetry in stimulus ratios would
lead participants to choose exclusively one alternative in speeded-response, 2AFC tasks
irrespective of other factors, such as RSI. However, Eq. 8 prescribes a parametric and possibly
counterintuitive relationship between DDM parameters and task parameters that should
produce non-integrative responding. In particular, this relationship implies that a given
asymmetry IT should produce non-integrative responding for short RSIs, but not for longer
RSIs. Fits of the DDM parameters (particularly Tg and the ratio A/c) allow prediction of the

values of IT and Ry at which this transition should occur if reward rate is being maximized.
In Experiment 2, we covaried mean RSIs and stimulus ratios in order to determine whether
such a surface exists, and if so, whether its shape conforms to the predictions of the DDM
concerning reward rate maximization.

Relative reward

Since we assume that participants seek to maximize reward rate, direct manipulations of the
reward associated with each response should also produce predictable effects on behavior.
Bogacz et al. (2006) also investigated tasks in which a proportion r of some unit of reward is
assigned to one response (when it is correct), and the remaining proportion 1 — r is assigned
to the other response when correct. In contrast to the case of unequal stimulus proportions,
analytical expressions for optimal starting points were not obtainable in the case of reward
asymmetries. However, numerical results indicated that differences in reward should produce
effects similar to those of unequal stimulus proportions, except that values of r were predicted
to produce stronger response biases than those produced by equivalent values of IT (in contrast
to relative reward, the absolute magnitude of the rewards was predicted to be irrelevant).

Specifically, two expressions were obtained that define an interval within which the optimal
starting point should lie. As the sum of ggy and Tg grows small, Eq. 9 defines the upper
boundary of this interval, which is the same as the optimal starting point for unequal stimulus
probabilities if IT is replaced by r:

(i)
- — .
0= NI,

As the sum of ggp and Ty grows large, Eq. 10 defines the lower boundary of this interval:
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c? r
xo—>—ln( )

4A 1-r (10)

The optimal starting point shift is thus smaller in the case of reward asymmetry than in the case
of an equivalent stimulus ratio (r = IT). Optimal thresholds, in contrast, are dramatically reduced
in response to reward asymmetry relative to stimulus proportion asymmetry. The net effect is
that the optimal separation between the starting point and the favored response threshold is
smaller in the case of reward asymmetry.

Thus, we should expect unequal rewards to bias decision makers toward one response over the
other in a manner qualitatively like that predicted for unequal stimulus probabilities. Bogacz
et al. (2006) numerically computed a critical reward surface that is analogous to the critical

probability surface of Fig. 3, but which predicts a transition to non-integrative responding at

larger values of gg. Experiment 3 was designed to test this prediction.

Extended DDM and data fitting

The theoretical work described above has focused on the simplest version of the DDM, in
which the absolute value of the drift, the starting point, and the residual latency are all assumed
to be constant for a given participant and a given task condition. We will hereafter refer to this
version of the DDM as the pure DDM. The pure DDM, like the SPRT itself, predicts equal
mean RTs for correct and error responses, but this prediction is frequently violated in practice
and has led some to reject the SPRT as a decision-making model (e.g., Luce, 1986). However,
assuming random variability across trials in A, xg, and Tq corrects this deficiency (Ratcliff &
Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1999). We will refer to this form of the model
(the pure DDM with three additional parameters, sp, Sy, and s; respectively, as well as a fourth
parameter, pg, specifying the proportion of contaminant RTs uniformly distributed between
the minimum and maximum RT as in Ratcliff & Tuerlinckx, 2002) as the extended DDM
(depicted in Fig. 1). (Assuming thresholds are set optimally, the pure-DDM/SPRT equivalence
and the theorem of Wald and Wolfowitz (1948) imply that rewards are maximized when sp,
Sy, Stand pg are all 0.)

The extended DDM fits a broader range of empirical data sets (especially those with differences
inaverage RT between correct and error responses), but it has not yet been found to be amenable
to formal analysis (although see Bogacz et al. (2006) for analytical approximations and
numerical approaches). Thus the extended DDM does not yield explicit relationships such as
those of Egs. 5-7. Furthermore, although adding more parameters gives the DDM enough
flexibility to fit data, it also exacerbates a problem that occurs during fitting: this is that fitted
values of DDM parameters are correlated with each other (Ratcliff & Tuerlinckx, 2002). For
example, when fitting data, a minimum-fit-error parameter set can be modified by
simultaneously increasing both drift and threshold; this leads to a parameter set with larger
values that may nevertheless have a fit-error nearly as low as the original; reducing multiple
parameters simultaneously can similarly result in good fits. Thus there is a tendency for
parameter values to rise and fall together during fitting. However, since variability parameters
are equal to 0 in the pure DDM and cannot be less than 0 in the extended DDM (indeed, fitted
values of these are almost always greater than 0), these correlations among parameters appear
to explain why in fits to our empirical data, the extended DDM always results in larger drift,
threshold and Ty parameter values than in fits of the pure DDM.4

The values of these parameters are critical for the numerical accuracy of the predictions of Egs.
5-7, but no widely accepted method exists for controlling parameter inflation as parameters
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are added to the simpler, pure DDM. If fit error is the only criterion on which parameter values
are judged, then larger values are acceptable. If a source of bias toward larger values exists,
however, then techniques should be considered for limiting the growth of parameters during
fitting.

Our approach to the parameter-inflation phenomenon was to use the extended DDM to fit data,
but to constrain its variability parameters by applying upper bounds on their allowable values.
This approach left the pure-DDM parameters free to take on any values (including those that
would disconfirm our hypotheses) while demonstrably reducing parameter inflation. Fig. 4,
for example, demonstrates that drift and T increased as upper bounds on drift variability,
starting point variability and residual latency variability were relaxed in fits to the data from
Experiment 1 (standard error bars were generated in a cross-validation procedure that involved
fitting 150 subsets of half the data at each upper bound value). Threshold values in the three
RSI conditions, in contrast, remained flat across bound values. Starting points (not plotted),
showed the same constancy. At the same time, fit error naturally decreased as constraints were
relaxed. Validation error, computed by applying the fitted parameters in each fit to the unfitted
half of the data, showed no signs of overfitting — that is, it never increased as bounds were
relaxed. However, failure to find evidence of overfitting does not imply the absence of possible
bias in the fitting procedure.

Since we currently have no method for selecting an optimal tradeoff between parameter-
inflation and fit-error, we relied on simulations to determine the best bound values. We set the
bounds in our data analyses (listed in Table 1) roughly equal to the variability-parameter values
recovered in the most accurate fits of A and Ty to the simulated data sets of Ratcliff and
Tuerlinckx (2002) (see Fig. 6 in that paper). We relied on these extended DDM simulations
because they used parameter values that were relatively close to those obtained by fits to our
data, and because these values are representative of fits to data from a wide range of experiments
(e.9., Ratcliff & Rouder, 1998,2000;Ratcliff & Smith, 2004;Ratcliff et al., 1999). Also, since
the simulated data in the correlation analyses of Ratcliff and Tuerlinckx (2002) assumed a
constant value of T, the bound on its corresponding variability parameter s; came from our
cross-validation procedure. The bounds occur roughly half way between an asymptotic fit-
error of approximately 100 for completely unconstrained fits at the right edge of the graphs,
and a fit-error of approximately 300 for the maximally constrained model (which better
approximates the pure DDM) at the left edge. (The exact placement of these bounds does not
drastically affect the numerical accuracy of our analytical predictions of optimal parameter
values until it results in drift values well above 0.2 and Ty values well above 370 msec, at which
point predictions and fitted values match only qualitatively.)

The result was a model that could be fit much faster than the pure DDM. Resulting fit errors
were small enough for the model to pass an Akaike information criterion (AIC) test for model
selection (Akaike, 1974) over the pure DDM, but fitted values of the theory-critical A and Tg
parameters were nevertheless close to those obtained by fitting the pure DDM. We used the
resulting estimates of A and Ty to make predictions about the effects of g g on threshold setting
in Experiment 1, the interaction of RSI with stimulus probabilities in Experiment 2, and the
effect of unequal rewards for left and right responses in Experiment 3.

4To understand why this might happen, we have generated simulated data sets using the DDM and then contaminated them by a small
proportion of RTs from other distributions. Although parameters can be recovered accurately by extended-DDM fits to uncontaminated
data, this appears not to be the case when unmodeled contaminants are included (e.g., contaminants that are narrowly distributed, rather
than uniformly distributed between the minimum and maximum RT). In such cases, extended-DDM fits tend to inflate the variability
parameter estimates (making them greater than 0) and also the theory-critical drift, threshold and residual latency parameters. Thus,
parameter inflation in fits to our empirical data may result from the inclusion of unmodeled contaminants.
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Experiment 1

Method

In this experiment, we held the SNR of the stimulus constant and manipulated the mean RSI
across blocks of trials in a free-response, 2AFC motion discrimination task with equally likely
stimuli (i.e., IT = 0.5). We sought to test the hypothesis that participants' SATs would shift
across conditions in the absence of explicit instructions. We also sought to determine whether
the extended DDM could account for RT distributions and accuracy in all conditions, and
whether fitting the model to data would produce parameter estimates that conform to the
following predictions of the pure DDM,® parameterized to maximize reward rate (Bogacz et
al., 2006):

1a) Estimates of drift (A) should be constant across all RSI conditions, reflecting the
assumption that participants are motivated and allocate maximum attention to the task,
and further reflecting the fact that the optimal strategy is to extract as much information
as possible from the stimulus (which has a fixed SNR) in all task conditions,;

1b) Estimates of residual latency (Tg) should be constant across conditions and
commensurate with an independently observed signal detection RT (in a signal detection
task with easily detectable signals);

1c) Estimates of the starting point xg should be 0 in all conditions, reflecting no
predisposition toward either response;

1d) Estimates of the threshold parameter (z) should increase as ggy increases, reflecting
a shift toward accuracy (see Fig. 2, panel B);

1e) Estimates of the threshold parameter should equal the function z(A, ¢, To, rgy) defined
implicitly by Eq. 5, evaluated at the current RSI and with the fitted values of A/c and T

Participants—Twelve participants, ranging in age from 19 to 64 (mean 26), were recruited
from the Princeton University campus area to participate in ten, one-hour task sessions.
Experiment 1 consisted of the first five sessions; the second five sessions constituted
Experiment 2. For their performance, participants were paid the greater of $10.00 or their total
earnings in the task. Participants earned one cent for each correct response given, and no explicit
penalties were imposed for errors. Average earnings were around $15.00 per session.

One participant performed at chance in all sessions, and this data was discarded. One participant
dropped out after a single session. Data from two sessions was corrupted by power failures for
a third participant, and this participant's remaining data was excluded from analysis. Another
participant did not comply with instructions and did not wear vision-correcting glasses during
some sessions, so this data was excluded as well. Finally, an older participant's data was
excluded (reducing average age to 23 and maximum age to 27) so that age-related performance
changes would not affect our findings. Data was therefore analyzed for seven participants who
completed the ten sessions. Data for each participant was analyzed only for the last seven of
ten sessions in order to reduce the impact of practice effects on the analysis.

Apparatus and stimuli—Stimuli were presented on a standard computer monitor; button
press responses were entered on a standard keyboard. Stimulus display and response collection
were done with the Psychophysics Tool-box (Brainard, 1997; Pelli, 1997) extensions to

SThese predictions are approximately the same for the extended DDM, but the approximation is worse for larger values of the variability
parameters (SA, Sx, and st) in the extended DDM.
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MATLAB running on an Apple G4 Power Mac with the OS 9 operating system. Stimulus
generation software was created for use with the Psychophysics Toolbox by J. I. Gold.

Stimuli were random dot kinematograms, similar to those used in a series of psychophysical
and decision making experiments involving monkeys as participants (e.g., Britten, Shadlen,
Newsome, & Movshon, 1992; Gold & Shadlen, 2001; Shadlen & Newsome, 2001). Stimuli
consisted of an aperture of approximately 3 inch diameter viewed from approximately 2 feet
(approximately 8 degrees visual angle) in which white dots (2 x 2 pixels) moved on a black
background. A subset of dots moved coherently either to the left or to the right on each trial,
and the remainder of dots were distractors that jumped randomly from frame to frame of the
display. Motion coherence was defined as the percentage of coherently moving dots. Dot
density was 17 dots/square degree, selected so that individual dots could not easily be tracked.

Procedure—Motion coherence was adapted manually at the end of each of the first three
experimental sessions in order to produce errors in at least 10% of responses. This was done
to produce a substantial sample of error RTs, which is useful for constraining fits of the DDM
(Ratcliff & Tuerlinckx, 2002). Some participants required no coherence adaptation, and
average motion coherence ranged from the default value of 10% to a lower limit of 5%. No
participants required an increase in motion coherence (except for the participant who performed
consistently at chance, and whose data was excluded from analysis).

Responses involved presses of the Z key on the lower left of the keyboard with the left index
finger to signal perception of leftward motion and presses of the M key on the lower right with
the right index finger to signal perception of rightward motion, as in the empirical work
presented in Bogacz et al. (2006) and Bogacz, Hu, Cohen, and Holmes (in review). Correct
responses were signaled by an auditory beep, and after every five trials, the current total of
correct responses was displayed in the center of the screen in place of the motion aperture for
a duration equal on average to the mean RSI duration in each block of trials. Errors were
indicated by the absence of the auditory beep.

Two measures were taken to prevent anticipatory responses, in which participants do not
integrate stimulus information but instead prepare a response before stimulus onset in order to
reduce RT and thereby increase the total opportunity for reward.% First, the RSl ona given trial
was selected from a normal distribution with a standard deviation of 100 msec to make stimulus
onset unpredictable. Second, whenever responses were recorded prior to or within 100 msec
after the stimulus onset, a penalty delay of four seconds was imposed to reduce the opportunity
to earn rewards, and a buzzing error tone was presented.

In the first five, hour-long task sessions, the two stimulus types were equally likely. Each
session consisted of one practice block of four minutes (practice was reduced to two minutes

in sessions 4 and 5), followed by twelve four-minute blocks within each of which g gy was held

constant. gy was 500 msec in three blocks, 1 second in three blocks, and 2 seconds in six
blocks. There were twice the number of two second-RSI blocks since these produced a
significantly smaller number of trials within a four-minute block. The order of blocks and
conditions was counterbalanced across sessions and across participants with a Latin square
design. Self-paced rest periods occurred between blocks.

6ina pilot experiment in which RSIs were completely predictable, anticipatory responding was produced by most participants in all
conditions, regardless of RSI, as evidenced by RTs of as little as 25 msec. This pattern of behavior is consistent with a strategy of
maximizing reward rate by effectively reducing the residual latency Tg — indeed, it produced much higher reward rates than were
observed in Experiment 1. However, it precludes any study of the effects of reward on integration processes in decision making, whereas
the theory discussed in Bogacz et al. (2006) applies when overall rates of stimulus presentation are predictable, but individual stimulus
onsets are unpredictable and anticipatory responding is not beneficial.
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Participants were informed that the RSI might be different in different blocks, and that blocks
would always last four minutes — therefore, faster responding would lead to more trials overall.
They were encouraged to earn as much money as possible.

The twelve blocks in each session were followed by two, two-minute blocks of a signal
detection task with easily detectable stimuli. In each signal detection block, stimuli were the
same as in previous blocks (with a mean RSI of 500 msec), but only a single response earned
rewards (a left button press in one block, and a right button press in the other). In these blocks,
participants were instructed to respond as quickly as possible with the designated button press
as soon as the stimulus appeared, regardless of coherent motion direction. While discriminating
motion direction was relatively difficult in the preceding 2AFC blocks, simply detecting the
presence of a high-luminance, moving-dots stimulus was not — signal detection RT was rapid
and narrowly distributed; no misses occurred, and false alarms (anticipations) were rare. These
blocks were used to establish a minimum signal detection RT for each response (left finger
and right) that could be compared as a baseline to estimates of T from the signal discrimination
trials, as well as to the RTs of any potentially non-integrative responses in Experiments 2 and
3.

Analysis—We directly examined RT distributions to assess the magnitude of SAT adjustment
across RSI conditions, and also compared observations to speed and accuracy predictions based
on model fits of the DDM and on the theory of optimal threshold parameterization in Eq. 5.

In order to maximize statistical power, and assess the generality of findings, we focused our
analysis on group averaged data (while noting that similar results hold for almost all individual
participants; individual performance for a selected participant is examined in Appendix E).
Although pooling raw data from multiple participants presents potential dangers for
interpretation (Estes & Maddox, 2005; Ratcliff, 1979), group RT distributions have been shown
to be useful for analysis of RT data from multiple participants (Ratcliff, 1979), and they have
been used successfully in practice (Spieler, Balota, & Faust, 1996; Ratcliff et al., 2004).

Group performance was assessed by pooling together the data from all participants. Frequently,
a Vincentizing procedure is used to construct group RT distributions from individual RT
distributions (Ratcliff, 1979; Van Zandt, 2000). This involves averaging (or taking the median
of) the quantiles of individual RT distributions in order to derive the quantiles of an estimated
RT distribution for the ‘average’ participant. One virtue of this approach is that a set of
unimodal, individual distributions cannot lead to a multimodal ‘average’ distribution (which
clearly would not represent the typical participant), although some evidence suggests that this
approach has drawbacks (Rouder & Speckman, 2004). In our case, though, the Vincentized
distribution appeared nearly identical to the distribution of RTs obtained simply by pooling
the raw data from multiple participants (possibly because our manipulations of motion
coherence in the first three sessions in order to obtain at least 10% errors tended to equalize
response time and accuracy among participants). We therefore carried out the analyses that
follow by pooling untransformed RT data from multiple participants; the analysis of
Vincentized data leads to nearly identical results.

While five out of seven participants displayed clear evidence of SAT adaptation across RSI
conditions by the fifth session of Experiment 1, two participants did not. However, data from
these participants was not excluded from the pooled data analysis (and these participants did
show evidence of SAT adaptation in Experiment 2).
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Differences in SAT across RSI conditions

A boxplot of RT data across three conditions in Fig. 5 (left panel) shows that RTs for the

average participant increased as ggy increased. All pairwise median RT differences were
significant (p < 0.05, Wilcoxon rank-sum test). Notches in the boxes in Fig. 5 represent
nonparametric 95% confidence intervals around the median, which is denoted by the horizontal
line in each box. The observed average RTs are indicated with circle markers and superimposed
on these plots, and the corresponding predictions based on optimal threshold values and fitted
values of A and T are shown with X's. (Note that the mismatch between predictions and
observations in Fig. 5 cannot derive entirely from suboptimal threshold selection, which would
lead to longer RTs and greater accuracy, or shorter RTs and lower accuracy, than predicted.
Instead, the estimates of A and Ty must be somewhat noisy, since RTs are longer than predicted
and accuracy is lower than predicted in the 1 and 2 sec-RSI conditions.)

Accuracy also increased as ggy increased, as shown in the center panel of Fig. 5. Error bars
indicating the standard error of the mean are barely visible; differences in error proportions
were highly significant. These results are consistent with an increase in threshold as RSI
increases, in accord with prediction 1d.

A predicted speed-accuracy tradeoff function (SATF) is shown in the right panel of Fig. 5,
where accuracy is plotted as a function of RT. The solid SATF curve is generated by holding
all DDM parameters constant while gradually increasing thresholds. Observed RT/accuracy
pairs are marked with circles; predictions for SATs in corresponding RSI conditions are marked
with X's.

Quantile probability plots

Quantile probability plots (Ratcliff, 2001) provide a compact form of representation for RT
and accuracy data across multiple conditions. In a quantile probability plot (such as Fig. 6),
quantiles of a distribution of RTs of a particular type (say, correct responses) are plotted as a
function of the proportion of responses of that type: thus a vertical column of N markers would
be centered above the position 0.8 if N quantiles were computed from the correct RTs in a task
condition in which accuracy was 80%. (Following Ratcliff and Tuerlinckx (2002) in both
plotting and model-fitting, we used five RT quantiles: 0.1, 0.3,0.5,0.7 and 0.9.) The ith quantile
in each distribution is then connected by a line to the ith quantiles of other distributions.

Here we have further elaborated quantile probability plots to include a superimposed scatterplot
of individual RTs in each condition. Each sample point is plotted at a vertical coordinate
corresponding to its RT value, and at a horizontal coordinate corresponding to the response
probability, plus a normally distributed, random offset (laterally scattering individual RTs so
that they can be discerned). This adds a visual representation of the number of responses in
each condition to a quantile probability plot. Correct response RTs are plotted in green; error
RTs are plotted in red.

In Fig. 6, the quantile probability plot for the pooled participant data is shown for the fourth
and fifth sessions together. The five lines correspond to the five RT quantiles that were
computed. The six RT distributions depicted in the plot correspond to correct and error RTs in
each of the three different RSI conditions: 500 msec, 1 sec and 2 sec. Performance was much
better than chance in all conditions, so the correct RT distributions appear on the right side of
the plot.

For the average participant (represented by the pooled data), blocks with longer RSIs were
associated with a higher likelihood of a correct response (since accuracy increased with
increasing RSI). (This pattern also held for all but two of the participants individually.) Thus
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the correct responses for the 2 sec-RSI condition appear as the rightmost column of quantiles.
The error responses in this condition form the leftmost column.

Fig. 6 clearly shows that the more likely correct responses coincided with longer RTs.
Similarly, the corresponding error RTs were longer for the less likely errors. Thus a tradeoff
between speed and accuracy is depicted in the U-shaped plot. In fact, the data are consistent
with the theory of optimal DDM parameterization and SAT adaptation: blocks with longer
RSIs were associated with more accurate but slower responses. In contrast, when changes in
the drift parameter produce changes in accuracy, speed and accuracy do not trade off against
each other; instead, response time and accuracy are negatively correlated. The resulting
quantile probability plot in that case has an inverted U shape, as in Ratcliff and Tuerlinckx
(2002), where variations in drift, but not threshold, were simulated. This pattern of increasing
RT as RSI increased was observed in all but two participants. The results for the average
participant are thus — so far — consistent with threshold adaptation, but not with drift
adaptation.

There is also no significant difference between the median correct RT and the median error
RT in the 500 msec (p = 0.3239, Wilcoxon rank-sum test) and 1 sec (p = 0.28) RSI conditions,
although there is a trend in which average error RT is slower than average correct RT by about
30 msec. Data from these conditions are therefore arguably consistent with the pure DDM.
Average error RTs are significantly slower, by about 50 msec, in the 2 sec-RSI condition
(medians are significantly different at p = 0.0192); data from this condition are therefore
inconsistent with the pure DDM.

We fit RT distributions using a constrained optimization algorithm implemented in MATLAB's
fmincon.m function. Appendix D details the model-fitting procedure, but we note here that
researchers often use an unconstrained Simplex algorithm (Nelder & Mead, 1965) to fit the
DDM to data (e.g., Ratcliff & McKoon, 2008). In contrast, constrained optimization
approaches allow a user to restrict parameter values with equality and inequality constraints,
including bounding parameters above or below by a constant. As we noted previously, we
restricted the extended DDM's additional variability parameters by bounding them above.
Table 1 lists the bounds we used during fitting. We examined a range of upper bound values
and found that fitted A and T values bottomed out at values near those obtained from a pure
DDM fit as the bounds were reduced to the following: 0.04 for s;, 0.03 for s and 0.08 for
To. As previously discussed, we chose the bounds in Table 1 (0.03, 0.08, 0.1, respectively, as
well as 0.05 for contaminant proportion pg) because they appeared to be the variability
parameter values that were recovered in the most accurate fits of A and Ty in the simulated data
sets of Ratcliff and Tuerlinckx (2002) (see Fig. 6 in that paper), and because their simulations
used pure DDM parameter values close to those obtained by fits to our data.

Table 1 lists parameter values from a fit to the group data. Following the practice of Ratcliff
and colleagues, we set the value of the noise parameter c to 0.1 (c is a ‘scaling parameter’,
meaning that multiplying this term by any factor k will produce identical fits by multiplying
the other DDM parameters by k — thus, the actual value of c is irrelevant (Ratcliff &
Tuerlinckx, 2002)). In these simultaneous fits to data from each RSI condition, all parameters
other than threshold and starting point were constrained to be equal across RSI conditions. This
is consistent with the notion that drift is constant when the DDM is parameterized optimally,
and it maximizes the power of the analysis to see changes in threshold. At the same time, it
leaves open the possibility that starting points will violate the prediction of being equidistant
from the two thresholds. (Furthermore, a separate parametric bootstrap analysis with
unconstrained fits showed no significant differences between any parameters other than
threshold across conditions.)
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Fig. 7 shows a graphical comparison between histograms of the empirical data and the
appropriately scaled RT densities corresponding to this model-fit, separately for correct and
error responses (top and bottom rows of plots respectively). Visually, the match is close.
However, model-data mismatches are more visible in quantile-probability plots than in density
plots, so we superimpose fitted quantile-probability plots (X markers) on the empirical plots
in Fig. 6. Visually, the match in Fig. 6 is also close, except in the case of the 500 msec-RSI
condition, where accuracy is slightly overestimated and the 0.9 quantile RT is significantly
underestimated, and in the last two error quantiles for the 1 sec-RSI condition, where RT is
underestimated. These shortcomings can be rectified by leaving the extended DDM's
variability parameters completely unconstrained, but this comes at the cost of inflated drift and
To estimates. Fit-error can be further reduced by allowing all parameters to vary, but this comes
at the cost of weakening the power to detect threshold changes across conditions.

Quantitatively, the extended DDM's variability parameters contributed to a large reduction in
fit error relative to pure DDM fits (pure DDM fits, not listed, had chi-square fit errors on the
order of 1800, compared to 195 for the constrained, extended DDM). However, these
variability parameters were not obviously so large as to rule out application of the optimality
theory developed for the pure DDM. To confirm this, we simulated the extended DDM with
the fitted parameter values and a range of threshold values to numerically estimate the expected
reward rate as a function of threshold. This approximation (plotted in Fig. 10) was close to the
function predicted analytically by the pure DDM, with optimal thresholds appearing to be
generally smaller than the optimal thresholds for the pure DDM (peaks of the extended DDM's
simulated reward rate function are to the left of the peaks of the pure DDM's analytical reward
rate function). We discuss this figure in more detail when we compare fitted thresholds to
optimal values for the pure DDM below.

Confidence intervals for parameter estimates

In order to carry out hypothesis tests regarding the adaptation of model parameters across task
conditions, we used the parametric bootstrap method (Efron & Tibshirani, 1993) to construct
confidence intervals around the fitted parameter values in each condition.

To test whether thresholds were adapted across conditions — and that other parameter
adaptations were not the primary contributors to SAT adaptation — we generated 300 bootstrap
samples of simulated RTs for the parameters obtained by fitting the extended DDM to the
pooled RT data. Simulated RTs were generated with the probability integral transform method
discussed in Tuerlinckx, Maris, Ratcliff, and De Boeck (2001) and computed in MATLAB
with the cumulative RT distribution function CDFDif.m of Tuerlinckx (2004). We then fit each
simulated data set and computed non-parametric 95% confidence intervals around the median
of the parameter estimates in order to test the statistical significance of parameter adaptations
across RSI conditions.

Fig. 8 shows superimposed histograms for the three different threshold estimates. The leftmost
histogram corresponds to the 500 msec condition, the middle histogram to the 1 sec RSI
condition, and the rightmost histogram to the 2 sec RSI condition. Whisker-bars plotted at the
top of the tallest histogram bins denote 95% percentile confidence intervals for each parameter-
estimate. They indicate significant differences in the parameter estimates across conditions.

Thresholds and starting points were the only parameters that were allowed to range freely
across RSI conditions in this bootstrap analysis. In other fits to group data that allowed all
extended-DDM parameters to range freely, only the threshold parameters showed any
significant differences across conditions. In contrast, fits to data from some individual
participants did appear to show an increase in drift with increasing RSI. Such an increase in
drift is inconsistent with prediction 1a. Whether this increase in estimated drift was due simply
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to correlations between drift, threshold and residual latency (which showed an increasing trend
as RSl increased in individual fits), or whether the SNR for the individual participants
concerned actually increased when RSI was longer is an open question. However, no
participants displayed an inverted-U shape in their quantile probability plots, and most clearly
displayed a U-shape. This suggests that at minimum, thresholds were increasing
simultaneously with adaptations in drift across RSI conditions. Fits to individual performance
for some participants also suggested that To may have increased as RSl increased. This increase
violates prediction 1b, but again, this may be an artifact of parameter correlations. There is no
evidence of Tg adaptation for the average participant.

Proximity of fitted thresholds to optimal values

Fig. 9 shows fitted thresholds plotted as a function of the optimal thresholds for each condition.
Optimal values were computed by numerically solving Eq. 5 after substituting fitted drift and
residual latency parameters. The best approximation to the optimal threshold occurred in the
2 second RSI condition (the optimal value was within the 95% confidence interval obtained
by the parametric bootstrap analysis). The approximation was worse in the 1 second RSI
condition, and was quite far off in the 500 msec RSI condition. In the latter two cases, thresholds
were suboptimally large. This is consistent with previous observations in the literature, which
have been interpreted as reflecting an emphasis on accuracy over speed that results in a failure
to maximize reward (Maddox & Bohil, 1998).

As we relaxed the upper bounds on the extended DDM's variability parameters during fitting,
the fitted values of A and Ty inflated. Substituting these inflated values into Eq. 5 led to
decreased values of the predicted optimal threshold, causing fitted thresholds to appear much
larger than optimal. It is possible, however, that if participants implement the DDM but cannot
control variability in starting point, drift and Ty, then they may still be able to set thresholds to
nearly optimal values for the extended DDM. These values might then only appear to be
suboptimal according to an analysis based on Eq. 5.

Analytical expressions for reward rate as a function of threshold do not exist for the extended
DDM, so we tested this hypothesis by numerically simulating the extended DDM with the
parameters from Table 1. The resulting reward rate curves are close to the analytical curves
for the pure DDM, but appear to have even smaller optimal thresholds (we also did this for a
completely unconstrained fit of the extended DDM; results shown in Fig. F1 of Appendix F
demonstrate a larger mismatch between fitted and optimal thresholds). The match between
simulations of the constrained, extended DDM and analytical results suggests that predictions
based on the pure DDM are likely to be useful in practice even if there is some variability in
parameters that the pure DDM assumes to be constant.

Fig. 10 shows these simulation-based curves along with the analytical reward rate curves for
the pure DDM, and illustrates the efficiency of reward gathering in the different RSI conditions
of Experiment 1. Participants were able to achieve 97% of the maximum reward rate in the
500 msec-RSI condition, 99% of the maximum in the 1 second-RSI condition, and 99.9% in
the 2 second-RSI condition. Since relative reward harvesting efficiency increases as RSI
increases, we speculate that performance might be even closer to optimal with longer RSIs (a
4 second-RSI curve is plotted in Fig. 10 for comparison).

Fig. 10 also shows the effect of anticipations. X's mark the fitted threshold and the reward rate
earned in each condition. Blue X's are based on summing up all rewards and dividing by the
duration of blocks of trials. This duration may also include a number of 4-second penalty delays
incurred for anticipatory responses. The DDM predictions of Eq. 4 do not incorporate these
delays, however, so we subtracted out the total penalty duration from the block duration in
each condition to get a corrected, earned reward rate estimate for comparison with the DDM
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predictions; these estimates are plotted with red X's. The differences between the blue and red
X's in each condition therefore indicate the proportion of anticipations in each condition, and
they demonstrate that the frequency of anticipations decreased dramatically as RSI increased.

Discussion

Consistent with the predictions of an optimally tuned DDM, fits to pooled data from all
participants (and to data from individual participants) suggest that threshold values increased
with RSI across blocks (prediction 1d), and that starting points remained equidistant from both
thresholds (prediction 1c). In the case of pooled data, no other parameters were seen to covary
with mean RSI (predictions 1a and 1b). An SAT function relating expected RT and accuracy
is also determined by the drift parameter of the DDM, and this function was approximated by
the observed SATSs in the three RSI conditions. However, both individual participants and the
average participant represented by pooled data appeared to set thresholds at values higher than
optimal in two of the RSI conditions (violating prediction 1e).

A possible explanation for suboptimally high thresholds and the suboptimally high accuracy
that results is that participants may derive intrinsic value from accuracy itself (Maddox & Bohil,
1998). Another possible explanation for a propensity toward suboptimally high thresholds was
proposed in Bogacz et al. (2006). There it was argued that if errors in threshold selection were
to occur, then it would be better to err toward higher rather than lower thresholds. This argument
derives from the skewed shape of the curve defining reward rate as a function of threshold (see
Fig. 2A and Fig. 10). This skew implies that reward rate decreases more rapidly as thresholds
become suboptimally small than as they become suboptimally large.

The proportion of anticipatory responses in each RSI condition suggests a third possibility:
this is that participants may need to set thresholds higher than the optimum in conditions where
anticipations are more likely. It may be that anticipation becomes a prepotent behavior at high
response rates (which are much higher in the 500 msec-RSI condition than the 2 second-RSI
condition, for example). If so, then setting thresholds artificially high may reduce the likelihood
of anticipation by slowing the response rate, and the need for this slowing should decrease as
RSI increases. Consistent with this explanation — or at least with a general impairment of
strategic control at short RS1s — several researchers have found that RTs increase and accuracy
decreases as RSI decreases below 500 msec (Jentzsch & Dudschig, 2009; Sommer, Leuthold,
& Soetens, 1999).

Another curious aspect of the data is that the reward rate curves plotted as a function of
threshold in Fig. 10 flatten as the RSI increases. Under simple hill-climbing strategies for
optimizing thresholds (e.g., Myung & Busemeyer, 1989), this flatness would suggest that
deviations from optimal thresholds should be larger as RSIs increase. However, it may be that
the amount of reward earned as a proportion of the total possible is the quantity that determines
performance (such proportional judgments have often been proposed to underlie Weber's law
for just-noticeable differences in perceptual judgments, for example). If such ratios are what
determine performance, then absolute amounts of reward (and flatter maxima of reward rate
curves for longer RSIs) are irrelevant. These two factors together — proportional reward rate
estimation and performance degradation with increasing task pace — constitute a possible
explanation for improvements in performance as RSls increase.

A fourth possibility is that reward simply does not have as strong an effect as predicted on
behavior. Importantly, though, the theory of optimal DDM parameterization also predicts
dramatic, qualitative changes in behavior in the case of unequally likely stimuli and unequally
rewarded responses that result from optimal threshold and starting point shifts. Observing
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behavior consistent with these predictions would bolster the case for strategic threshold
adaptation in Experiment 1. We assess these predictions in Experiments 2 and 3.

Experiment 2

In decision making tasks involving multiple trials, stimulus ratios provide potentially useful
information to the decision maker. When stimuli are unequally likely, a decision maker can
exploit estimates of prior probability to improve earnings by favoring the response to the more
frequent stimulus (we refer to this response as the favored response, and the more likely
stimulus as the favored stimulus). Optimizing the pure DDM produces precise, quantitative
predictions about how the decision maker should respond to changes in stimulus probabilities
(ITand 1 —TIT) when stimulus discriminability is held constant. The first two of these predictions
are identical to those in Experiment 1, and the remainder are modified to account for unequal
stimulus probabilities:

2a. Estimates of drift (A) should be constant across all stimulus-probability and RSI
conditions.

2b. Estimates of residual latency (Tg) should be constant across conditions.

2c. Estimates of the starting point xg should be shifted toward the favored response
threshold as specified by Eq. 6, reflecting a bias toward the favored response; the size of
the optimal starting-point shift should be independent of the mean RSI.

2d. As in Experiment 1, estimates of the threshold parameter (z) should increase as ggy
increases, reflecting a shift of the SAT toward greater accuracy; threshold magnitudes in

this case should equal the function z(A, ¢, To, sy, IT) defined implicitly by Eq. 7, evaluated
at the current values of RSl and IT and the fitted values of A, ¢, and T,

2e. Estimates of the threshold parameter (z) should decrease according to Eq. 7 as IT
increases; as shown numerically in Bogacz et al. (2006), the optimal threshold decrease
should be smaller than the optimal starting-point shift.

Expected reward rate for the pure DDM in Experiment 2 is thus maximized by shifting the
starting point of evidence integration (xg) in the direction of the favored response threshold,
by slightly reducing both thresholds, and by leaving drift to be determined entirely by the
stimulus. (In contrast, for the extended DDM, it is possible that strategically adapting the mean
drift value along with thresholds and starting points across conditions could maximize the
expected reward rate.)

A particularly strong prediction of the optimally parameterized DDM is that for particular

combinations of a sufficiently short RSI and sufficiently asymmetric stimulus ratios, the shift
in starting point places it beyond the response threshold for the correct response. At this point,
participants should exhibit non-integrative responding. That is, on every trial they should make
the response corresponding to the more frequent stimulus, with average RT comparable to that
observed in an easy signal detection task. Eq. 8 expresses this prediction as a function of task

conditions (rgy and stimulus probability) that defines the surface depicted in Fig. 3. For
conditions falling below the surface, participants should exhibit non-integrative responding.
Behavior conforming to these predictions would constitute strong support both for the DDM
and for the hypothesis that participants adjust the parameters of their decision processes to
maximize reward rate. To test these quantitative predictions, we conducted an experiment that
was similar to Experiment 1, but that also involved manipulating the probabilities of the two
stimuli in addition to the RSI.
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Participants—~Participants were the same as in Experiment 1. They had completed the five
sessions of Experiment 1 prior to the five sessions constituting this experiment.

Apparatus and stimuli—Apparatus and stimuli were identical to those in Experiment 1.

Procedure—~Participants engaged in five, hour-long task sessions consisting of blocks of
trials in which one stimulus (one direction of coherent motion) was more likely than the other.
Within each block of trials, the direction of motion chosen to be more likely was selected
randomly and with equal probability. Participants were informed that the stimulus probabilities,
in addition to the RSI, might be different in different blocks. They were once again informed
that blocks would always last four minutes — therefore, faster responding would produce more
trials overall. They were encouraged to earn as much money as possible.

Each session consisted of one practice block of 2-4 minutes (practice was reduced in later
sessions), followed by twelve four-minute blocks, within each of which a given set of task
parameters was held constant. The task parameters were the RSI and the proportions of leftward
and rightward stimuli (equivalently, the prior probability IT of the favored stimulus). For each
participant, motion coherence was set to the same value as in sessions 4 and 5 of Experiment
1. As in Experiment 1, the actual RSI on a given trial was jittered around the average value
with a standard deviation of 100 msec, in order to discourage anticipations. A 4-second penalty
delay between trials was again enforced whenever responses occurred prior to 100 msec

following stimulus presentation. gy and IT were factorially covaried, with gy taking values
of 500 msec, 1 sec, or 2 sec, and IT taking values of 0.6, 0.75 or 0.9. The order of conditions
was counterbalanced across sessions and across participants with a Latin square design. Two

consecutive blocks of trials were allocated to each condition in which gy was 2 seconds, since

a2 second RSI produced far fewer trials within a four-minute block than did an gy of 1 second
or 0.5 seconds. Finally, the twelve blocks in each session were followed by two, two-minute
blocks of a signal detection task identical to that of Experiment 1.

Analysis—To assess predictions, we examined in detail the performance of the average
participant, represented by the pooled data from all participants. (Data for an individual
participant is presented in Appendix E.) Since estimates of A and Ty were all that were required
to make behavioral predictions, we were able to base our predictions in Experiment 2 entirely
on a fit to the data from Experiment 1. Estimates of A and T were used to predict the optimal
threshold z and starting point xq based on Eq. 5 and Eq. 6 respectively (¢ was assumed to be
0.1, as noted previously). These values of A, Tg, Xg and z (and the values of the variability
parameters s;, Sy, andsp derived from extended DDM fits) in turn predicted a specific RT,
accuracy and proportion of right vs. left responses as a function of mean RSI and stimulus
probability in the various conditions of Experiment 2.

We also fit the data of Experiment 2 itself simultaneously with the data from Experiment 1
(these simultaneous fits are the ones listed in Table 1 and 2), and the critical A and Ty parameters
were within 8% of the values found in fits to the data from Experiment 1 alone. However,
fitting in this experiment was complicated by the stimulus-proportion manipulation. Although

the data conformed to our prediction of non-integrative responding when ggy was small and
ITwas large, the resulting RT distributions (both for pooled data and for individual participants)
were bimodal, or showed hints of bimodality, in most conditions. Bimodality appeared to result
within participants from runs of non-integrative trials interspersed with runs of integrative trials
(see Fig. E2), as well as in the pooled data from integration by some participants and non-
integration by others in some conditions. Since the DDM with a single set of parameters cannot
predict a bimodal RT distribution, this made fitting the DDM to data from Experiment 2
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effectively impossible when stimulus ratios were greater than 60:40 and ggy Was less than 1
7
sec.

Although a mixture of integrative and non-integrative responding is not predicted by an
optimally parameterized, pure DDM, this result should be expected if there is variability in the
model's parameters from trial to trial; this is precisely what is assumed in the extended DDM.
In order to fit the data from Experiment 2, we therefore fit a model that was a mixture of a non-
integrative or fast-guess distribution (consisting only of guesses that the more likely stimulus
was present), together with an RT distribution generated by the DDM. Since the fast responses
made in the signal detection blocks at the end of each session appeared almost normally
distributed, we modeled the non-integrative mixture component as coming from a normal
distribution.®

We also fita model that allowed an increment to be added to the drift term; in this way, response
biasing could be achieved by increasing drift toward the more likely response threshold, no
matter which stimulus was presented. This is equivalent to changing the reference point in the
1-dimensional stimulus space that determines a drift value of O (see Ratcliff, 1985 for
discussion of how the 0-point of drift relates to the criterion parameter of signal detection
theory). This type of model has been successfully fit to monkey behavioral and
neurophysiological data in tasks that vary signal discriminability from trial to trial (e.g., Yang
et al., 2005). Adapting the average drift across conditions may also be the optimal strategy in
tasks with constant discriminability if the variability parameters of the extended DDM are large
enough (and if participants cannot act to reduce this variability below a given level) — the
current lack of analytical results for the extended DDM makes this result (or its opposite)
difficult to prove. Empirically though, including a drift increment term that can vary across
conditions allowed us to test whether human participants can be modeled as adapting drift
across conditions when signal discriminability is constant from trial to trial (a circumstance in
which optimal performance, in contrast, requires a pure DDM and no drift-adaptation).

Quantile probability plots—The top row of panels in Fig. 11 displays the quantile
probability plots for trials in which the favored stimulus is presented; the bottom row displays
the quantile probability plot for the unfavored-stimulus trials.

In the superimposed scatterplot of RTs, correct response RTs are plotted in green; error RTs
are plotted in red. This makes visible the shift of error and correct RT probabilities in response
to unfavored stimuli as IT increases (bottom row of panels in Fig. 11). This approach also
highlights the occurrence and relative frequency of anticipatory responding across conditions.

For a stimulus ratio of 60:40 (IT = 0.6), quantile probability plots (shown in the leftmost column
of Fig. 11) continue to show SAT adaptation of the type shown in Experiment 1: for both types
of stimuli, the plots retain roughly the U-shape seen in Fig. 6, consistent with prediction 2d.

In response to unfavored stimuli, accuracy decreased (as indicated by the shift of the quantile

7In contrast to our difficulty in fitting the DDM to data produced by unequally likely stimuli, Ratcliff and McKoon (2008) were able to
fit data reliably with RSI values comparable to our fastest condition, and with a stimulus ratio of 75:25. However, their experiment
involved several differences in design: response deadline bands, with ‘Too Fast’ and ‘Too Slow’ messages for feedback along with
correct/error feedback; course credit for undergraduates as payment instead of payment for correct responses; and explicit instruction
about the stimulus proportions within each block. Nevertheless, SAT adjustment was observed and was qualitatively consistent with the
Eredicted starting point and threshold adjustments of (Bogacz et al., 2006).

The DDM with a single absorbing boundary, which has previously been used to model simple reaction times (Pacut, 1977), might be
a suitable model for non-integrative responses. The Wald distribution describes this model's first-passage times (Luce, 1986), but this
approximates a normal distribution when drift is large, as we should expect for the highly salient signals in our tasks. There is also reason
to suppose that the deterministic accumulation model with random thresholds of Grice (1972) might be a good model for such simple
reaction times, and the RT distribution for this model is exactly the normal distribution.
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columns toward the middle of the graph). In response to favored stimuli, correct responses in
a given condition tended to be faster than errors. Conversely, in response to unfavored stimuli,
error responses were typically faster than corrects.

For a stimulus ratio of 75:25, performance resulted in quantile probability plots with radically
different shapes (middle column of Fig. 11). Accuracy in response to favored stimuli increased
markedly relative to the 60:40 condition, moving correct quantile columns to the right edge of
the plot and error columns to the left. Unfavored stimuli, in contrast, produced quantile columns
that are shifted further toward the center, and correct responses became less likely than errors

when ggp was 500 msec. Furthermore, errors were much faster than correct responses to the
unfavored stimulus, and this asymmetry in RT was more exaggerated for shorter RSIs. Both
of these phenomena are consistent with an optimally tuned DDM, in which threshold

magnitudes decrease as ggy decreases, and the starting point moves closer to the response
threshold for the favored stimulus as IT increases. Similar starting point shifts and relative
constancy of drift (but not anticipatory responding) were observed by Ratcliff and McKoon
(2008) in their investigation of stimulus probability effects in a two-alternative motion
discrimination task similar to Experiment 2, but using a fixed RSI and response deadline bands.

The quantile probability plots in the 90:10 conditions show more exaggerated versions of the
patterns in the 75:25 conditions. The rightmost column of panels in Fig. 11 shows favored
stimulus quantile columns pushed even farther to the extreme right and left of the plot than in
the 75:25 case. Overall correct RT was also faster, and error RT was slower, than in the 75:25
case. In response to unfavored stimuli in the 90:10 conditions, correct responses were less

likely than error responses for all values of ggy. These results are also consistent with an
optimally tuned DDM, in which the starting point is shifted near or beyond the response
threshold for the favored stimulus.

Model fits—Table 2 lists the parameters estimated by fitting a mixture model consisting of
anon-integrative component (anormal distribution) and an integrative component (an extended
DDM first-passage time distribution). Fig. 12 shows predicted RT densities based on these fits
superimposed on the empirical histograms; correct and error RTs to favored and unfavored

stimuli are plotted separately. The first feature to notice in these plots is that the proportion of

correct responses to unfavored stimuli decreases as ggp decreases and as IT increases, which
is consistent with the increase in response bias predicted by the optimally parameterized DDM
(prediction 2c).

Also noteworthy in these plots are the clear signs of bimodality in the favored-correct panels
of all conditions (except the 60:40 stimulus-ratio/2 sec-RSI condition), with the earlier peak

decreasing in height relative to the later peak as ggy increases and as stimulus ratios approach
50:50. In all 90:10 stimulus-ratio conditions and in the 500 msecRSI/75:25 stimulus-ratio

condition, the narrower, faster, non-integrative component of the bimodal mixture had a larger
RT density peak than the slower integrative component in the favored, correct RT panel (upper
right corner of the 2 x 2 plot panels in Fig. 12). Non-integrative peaks that were smaller than

the integrative peaks occurred in the 75:25 stimulus-ratio conditions with ggy equal to 1 second
and 2 seconds, and all 60:40 stimulus-ratio conditions.

Table 2 lists the fitted mixture weights on the non-integrative component (with integrative
weights equal to 1 minus the non-integrative weights). These weights are greater than 0.5 in

the 90:10 stimulus-ratio conditions with g gy equal to 500 msec and 1 second, and they decrease
in the same condition-order as the non-integrative RT density peaks. Qualitatively, this is the
pattern of shifting relative weights on the two mixture components that should be expected for
a model that approximates an optimally parameterized DDM, but which has variability in its
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parameters across trials (and may therefore switch between integrative and non-integrative
responding as the starting point crosses back and forth across the favored response threshold
from trial to trial).

Extended DDM parameter-estimates for the integrative mixture component are also listed in
Table 2.9 In contrast to Experiment 1, thresholds were frequently smaller than the optimal
value for the pure DDM (see Fig. 13), except, again, in the 500 msec-RSI conditions, and in
the 90:10 stimulus-ratio conditions with the shortest RSIs. However, these estimates may
become less reliable as the mixture weight on the non-integrative component becomes large,
because of the relatively small number of integrative responses in these conditions, and possibly
because the fast RTs may not be properly apportioned to the two mixture components. In the
90:10 conditions, for example, thresholds do not appear to be modulated at all across conditions
(in contrast, the effect of RSI on the mixture weight is enormous for these 90:10 conditions).

Starting points were similarly smaller than pure-DDM-optimal in all cases. Fig. 14 shows fitted
starting points, normalized by the distance from the lower threshold to the upper threshold,
plotted against similarly normalized optimal starting points. In this figure, values greater than
0.5 imply a bias toward upper threshold crossings. As predicted, starting points increased as
IT increased, but not as much as predicted. Note, however, that many of the data points come
from mixture component fits in conditions in which responses were primarily non-integrative,
and were predicted to be so (all data points to the right of the vertical line, indicating starting
points that exceed the upper threshold). A possible explanation for the difference in both
starting point and threshold patterns between Experiments 1 and 2 derives from the fact that
participants know Experiment 2 involves manipulations of stimulus probability, and that
Experiment 1 does not. Thus they may consciously try to develop a response bias in Experiment
2 that involves both lowering thresholds and shifting starting points.

Finally, the drift increment value did not show the systematic pattern across conditions that
would be expected for a parameter that was strategically adapted in order to produce a response
bias (i.e., growing as IT increased, and perhaps as RSI decreased). It was significantly different
from 0 in four conditions, but two of these involved 90:10 stimulus ratios, and thus a relatively
small number of integrative responses. Therefore, there appears to be little evidence of strategic
drift adaptation across conditions.

Comparing decision RT densities to the signal detection RT density—Another
test of the hypothesis that RT distributions are a mixture of integrative and non-integrative
responding is to compare the RT distribution for a given condition of discrimination trials to
the RT distribution for signal detection trials (signal detection blocks occurred at the end of
each session of Experiments 1 and 2). We predicted that these distributions would be
comparable in conditions eliciting non-integrative responding.

The three panels of Fig. 15 compare empirical decision RT densities to the signal detection RT
density (these are Gaussian-kernel-smoothed densities of empirical data rather than predicted
densities based on parameter fits — using smoothed densities rather than histograms makes it
easier to superimpose data-plots from multiple conditions). Within each panel, decision RT
densities are plotted for a single RSI and the full range of stimulus ratios. Data from the 90:10-
ratio conditions show how non-integrative responding created relatively peaked densities in

the 0.5 second and 1 second-g gy conditions, with peaks located near the peak of the signal
detection RT density. In contrast, the densities for the 60:40-ratio conditions, and for the 50:50

9Data from Experiments 1 and 2 were fit simultaneously, leading to identical values for A, Tg, SA, Sx, St and pg in both experiments.
Drift-increment and mixture weight parameters were not significantly different from 0 in all conditions of Experiment 1, and fits to data
from Experiment 1 (not listed) that constrained these parameters to 0 led to very similar values of A, Tg, SA, Sx, St and pg.
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conditions of Experiment 1, are located about 200 msec to the right. The 75:25 ratio conditions
are particularly interesting: they have a wide spread, providing a transitional form between the
60:40 densities and the 90:10 densities, consistent with a mixture between integrative and non-
integrative responding.

These plots show a very clear pattern: as gy decreases and IT increases, decision RT densities
develop a second mode with the same location as the signal detection density. This mode
increases in amplitude while the mode located farther to the right (closer to the 50:50-ratio/2
sec-RSI location) decreases in amplitude. Ultimately, the density becomes unimodal, and very
similar to the signal detection density (the main difference being the presence of anticipatory
responses indicated by a tail to the left of the signal detection density).

Response proportions, RT and accuracy—We now compare the observed response
proportions, response times and error percentages to their predicted values, given fitted values
of A and Ty. As IT increases, maximizing reward rate should cause a bias toward the favored

response to develop as a result of starting point shifts (determined by Eq. 6); as gy decreases,
this bias should at some point cause non-integrative responding — that is, exclusive choice of
the favored response, with RTs that are comparable to signal detection RTs. The particular

values of ggyand IT that are predicted to produce this non-integrative responding (i.e., solutions
for z of Eq. 5 that equal the xq values predicted by Eq. 6) depend on fitted values of drift A and
residual latency Tg, which may differ from participant to participant.

If correlations among parameter-estimates or wide confidence intervals around them make it
difficult to assess whether thresholds and starting points are near their optimal values, then
comparing such qualitative features of observed behavior to the same features of behavior
predicted by an optimally tuned DDM can help answer this question. Recall also that the
conditions for optimality discussed in Bogacz et al. (2006) depend on the pure DDM. Since
the extended DDM was far easier to fit to the data, and since variability parameters in these
fits tended to be far from 0, our predictions regarding optimal threshold and starting point
values are only approximations to optimal tuning for the extended DDM (though our extended
DDM simulations suggest that these approximations may be reasonably accurate). Thus an
examination of qualitative features of behavior may be particularly helpful.

Fig. 16 illustrates the comparison of observed average RT, accuracy and response proportions
in all conditions of Experiments 1 and 2 to predictions based on fitted A and Ty values. The
top row of plots shows a close match between the response proportions predicted by the pure
DDM (heavy dashed line) and the proportions observed (solid line). For comparison, a thin
dashed line depicts the predictions of a simple probability-matching hypothesis, which
specifies that response proportions should equal stimulus proportions — this alternative
hypothesis is not well supported by the data. Good matches also occurred between the predicted
and observed RT averages (middle row of plots). Quantitatively, the match between the
predicted and observed error percentages (bottom row of plots) is not as close in the 60:40 and
75:25 stimulus-ratio columns, but the overall shape of the error percentage curves is reflected
in the observations, and there was a decrease in the average magnitude of these observed

percentages as ggy increased, as predicted. The proportion asymmetry IT defining the critical
probability surface (the point at which a transition to non-integrative responding is predicted
to occur) is plotted as a thick vertical line in all conditions where it falls within the
corresponding plot's x-axis limits. As predicted, the average participant approached non-
integrative responding in the 90:10-ratio conditions, but appeared to achieve this type of

behavior fully only when both the ratios were 90:10 and g g1 was either 0.5 seconds or 1 second.
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Evidence from Experiment 2 provides support for a nearly optimally tuned DDM as a model
of decision making in this task. Empirical response proportions closely matched the proportions
predicted by an optimally tuned DDM in the case of pooled data from all participants (Fig. 16).
RT and accuracy data also qualitatively matched the shape of the predicted RT and accuracy
curves plotted in each RSI condition in Fig. 16 (similar results for an individual participant are
given in Appendix E). Parameter fits showed clear threshold and starting point shifts in the
expected directions across conditions (Figs. 13-14), although these parameters often deviated
from their optimal values (especially in those conditions with a large proportion of non-
integrative responses, which may make parameter estimation more imprecise for the remaining
proportion of integrative responses).

Examining the response time densities as task conditions changed in Figs. 12 and 15 provided
a clear picture of the way in which RT distributions were transformed as the stimulus-ratio
asymmetry increased and the mean RSI decreased: unimodal integrative response time
densities took on a transitional bimodal shape, followed by a unimodal, non-integrative density
shape that was very similar to the density for signal detection responses.

Experiment 3

The theory of optimal decision making applies also to the case in which the two responses are
not equally rewarded (i.e., a proportion r of some unit of reward is assigned to one response
when correct, and 1 — r is assigned to the other). The assumption of optimality when r # 0.5
leads to specific predicted values for the starting point xg and the threshold z, and corresponding
predictions regarding speed, accuracy, response bias, and a shift to non-integrative responding:

3a. Estimates of the starting point should be greater than 0 (i.e., closer to the threshold
corresponding to the more rewarded response); starting point should be shifted from 0 into
the range defined by Egs. 9-10, which are approximations analogous to Eq. 6 for unequal
stimulus proportions.

3b. As a consequence, the decision maker should choose the more rewarded response more
frequently than the alternative, and the average RT should be shorter and the accuracy
lower for that response. (Qualitatively similar predictions were borne out in a study by
Voss et al., 2004.)

3c. With other task factors held constant, numerical results in Bogacz et al. (2006) show
that thresholds should decrease more dramatically than in Experiment 2 for equal values
of ITand r as r increases.

3d. As in the case of unequal stimulus proportions, sufficiently large reward asymmetries
and sufficiently short RSIs should shift the starting point beyond the threshold for the more
rewarded response, implying the existence of a critical reward-ratio surface. Numerical
results (Bogacz et al., 2006) show that this surface is similar in shape to the critical
probability surface in Fig. 3, but that it predicts non-integrative responding at smaller
values of r than of I, all other parameters being equal. (In contrast to the relative reward
ratio, the absolute magnitude of the reward scale is predicted to have no effect on behavior.)

To test these predictions, we attempted to leverage the results of Experiment 2 to develop a
task involving a single RSI, a single motion coherence, and a single reward asymmetry that
would define a point near the critical reward-ratio surface for most participants. Ideally, some
participants would lie on one side of the surface, and the remainder would lie on the other, due
to individual differences in the acuity of motion perception (modeled as A/c).
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Participants—TFifteen participants, ranging in age from 18 to 27 (mean 22), were recruited
through the paid experiments website of the Department of Psychology, Princeton University.
None of these individuals participated in Experiment 1 or 2.

Stimulus and apparatus—Apparatus and stimuli were identical to those used in
Experiments 1 and 2.

Procedure—~Participants engaged in a single fifty-minute session in which leftward and
rightward motion stimuli were presented with equal probabilities. Coherence was set to 10%.
The session consisted of one 4-minute practice block followed by twelve 3-minute blocks with

self-paced rest periods in between. ggp was constant across blocks and equal to 1 second.
Participants received 3 cents for every correct response on one key (Z or M, counterbalanced
across participants) and 1 cent for a correct response on the other key (i.e., the reward ratio
was set to 3:1). They earned nothing for incorrect responses. Participants were informed of the
score that they earned (3, 1 or 0 cents) after each trial. They were not explicitly informed that
one response would be rewarded more than the other when correct. Participants were paid the
total amount accrued during the experimental session or $10, whichever was higher (all the
participants earned more than $10).

In this experiment, the mean RSI for each trial was the sum of a fixed 300 msec interval plus
an exponentially distributed delay with mean 700 msec (truncated at 1.91 sec) in order to
discourage anticipatory responding. As in Experiments 1 and 2, a penalty delay was enforced
whenever a response was made less than 100 msec after stimulus onset, to discourage
anticipations. Participants were also informed that the block durations were fixed, so that faster
responding would lead to more trials. They were once again encouraged to earn as much as
possible.

Response proportions, RT and accuracy—Consistent with prediction 3b, 12 out of 15
participants chose the favored response more frequently than the unfavored response (a one-
tailed binomial test yields p = 0.018). Consistent with prediction 3d, four out of the 15
participants chose the favored response almost exclusively, in proportions greater than 0.90.
The remaining 11 participants had proportions in the range between 0.46 and 0.63. This pattern
suggests that 4 of the participants performed the task mostly in non-integrative mode, while
the rest performed mainly in integrative mode.

Consistent with prediction 3b, median RTs were significantly smaller for the favored than the
unfavored response (t(14) =2.79, p = 0.014) — see Maddox and Bohil (1998) for similar results
with fixed viewing times. The difference remained significant even after removing the four
non-integrative participants and the first block of trials (see above) of the remaining participants
(t(10) = 2.43, p = 0.035). For those participants who performed the task in integrative mode,
the error percentages for the favored response were, on average, higher than for the unfavored
response, although the difference did not reach statistical significance, possibly due to the small
sample size (t(10) = 1.74, p = 0.11).

Model fits—After removing the 4 non-integrative participants and the first block of trials of
the remaining participants, the pooled data was amenable to fitting by the extended DDM
(although fit errors were higher than for the participants in Experiment 1, who had much more
practice). Parameter values for the fits are presented in Table 3. The fits to the pooled data from
Experiment 3 were computed in MATLAB using the Diffusion Model Analysis Toolbox
(DMAT) software (Vandekerckhove & Tuerlinckx, 2007b,2007a). We explored the use of
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DMAT to corroborate the model-fitting performance of our own software and got similar
results; however, with a smaller data set and less practiced participants, we got substantially
larger fit errors for a single condition, which our constrained approach would make even worse.
We therefore report the results obtained with DMAT.

The fitted value of the starting point Xy was 0.0063. Consistent with prediction 3a, the starting
point is shifted toward the more rewarded response threshold. To test whether the shift was
statistically significant, we computed a 95% confidence interval for the starting point by
generating 1000 bootstrap samples using the parametric bootstrap method implemented in
DMAT. The confidence interval — (0.0055, 0.0071) — does not contain 0, indicating a
significant shift of xy away from the point of zero response bias. The optimal range of xg values
— (0.0148, 0.0295) — was obtained by substituting the fitted value of A into Eqgs. 9-10
(prediction 3a). The fitted value of xg is too small to be optimal, at about half the value of the
lower limit of the interval. Thresholds were suboptimally large, violating prediction 3c, since
they would be large even for the comparable 1 sec-RSI condition of Experiment 1 (i.e., with
r = 0.5), given that fitted drift values are similar in both experiments.

Decision vs signal detection—Similar to the results of Experiment 2, the fact that some
participants exhibited non-integrative behavior during most of the experimental session while
others integrated led to a bimodal shape for the empirical density of pooled RTs.10 This density
had an early mode matching the peak of the RT density for the signal detection task in
Experiments 1 and 2. Fig. 17 presents the empirical RT densities for the pooled data of all 15
participants, with separate densities for favored correct, favored error, unfavored correct and
unfavored error responses. These were superimposed on the signal detection RT density
obtained in Experiments 1 and 2. The favored correct RT density shows two clearly discernible
modes, with the earlier mode almost aligned to the peak of the detection task density. This
indicates that, while in non-integrative mode, participants pressed the more rewarded key
almost exclusively, consistent with prediction 3d. While in integrative mode, however, they
made favored and unfavored responses in similar proportions (both density curves are rescaled
so that the area below them is proportional to the number of responses of each type). The plots
resemble those in Fig. 15, illustrating the predicted similarity between the unequal probability
conditions of Experiment 2 and the unequal reward condition of Experiment 3.

Experiment 3 demonstrates that when reward inequality is introduced in two-alternative
decision-making tasks, participants are able to adjust their decision behavior within a single
session in a way that qualitatively matches the predictions of the theory of optimal decision-
making. The magnitude of the observed adjustment, however, was smaller than predicted,
perhaps because more practice was required before optimal control strategies could develop.
As predicted by the theory, participants were more likely to make the more rewarded response
than the alternative, and were faster and made more mistakes when making favored rather than
unfavored responses.

The theory also predicts that for sufficiently large values of the reward ratio, participants will
select the more rewarded response exclusively irrespective of the identity of the stimulus. In
Experiment 3, we chose a reward ratio (3:1) that was likely to be large enough to trigger non-
integrative behavior for some of the participants, based on what we had observed with similar
motion coherences and RSIs in Experiment 2, and based on the similarity of the effects
predicted by Eq. 6 for stimulus proportion manipulations and the effects of reward asymmetry
predicted by Egs. 9-10. The results of the experiment matched this qualitative prediction for

101 Experiment 2, in contrast, bimodality appeared even within the RT distributions for individual participants.
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most participants (excluding the three who displayed no response bias): some participants
exhibited non-integrative behavior (they chose the favored response for almost the whole
session) whereas the majority showed integrative behavior (they chose both responses with
frequencies that were similar, but with a bias toward the favored response).

General Discussion

We evaluated quantitative predictions of an optimal model of 2AFC decision making. These
predictions (Bogacz et al., 2006) focused specifically on the behavioral effects produced by
manipulations of mean RS, stimulus probability and relative reward magnitude — factors that
enter into a wide range of decision making tasks.

In a motion discrimination task with equally likely stimuli and equally rewarded responses, a
reduction of the mean RSI was predicted to cause participants to place a greater emphasis on
speed and less on accuracy. More specifically, this shift in SAT was predicted to occur as a
result of specific threshold reductions, which could be identified by fits of the DDM to the
observed RT distributions. Evidence from Experiment 1 supported these predictions, although
the degree of threshold adaptation was less than predicted, and thresholds appeared
suboptimally large in two of three conditions.

When one stimulus was more frequent than the other, a response bias was predicted to develop
as a result of specific starting point shifts, producing more errors when the less likely stimulus
appeared, but faster RTs when the more likely stimulus appeared. When the stimulus
probabilities were sufficiently asymmetric and RSIs were sufficiently short, an extreme
response bias was predicted that would involve non-integrative responding — that is, exclusive
responding in favor of the more likely stimulus, with RT distributions comparable to those in
asignal detection task involving the same, easily detectable stimuli. Evidence from Experiment
2 showed that such biases developed. Furthermore, RT, accuracy and response proportions
manifesting these optimal biases could be accurately predicted in Experiment 2, based only on
fits to data collected in Experiment 1, as well as on simultaneous fits to data from Experiments
1 and 2. Finally, when correct responses to one stimulus were more rewarded than correct
responses to the other, similar biases were predicted to develop. Evidence from Experiment 3
suggested that these biases (including non-integrative responding) developed as predicted,
although model-fits suggested suboptimally small starting-point shifts and threshold reductions
for those participants who did not switch to non-integrative responding.

These findings raise an important theoretical question involving adaptation to changing task
conditions: since task parameters such as mean RSI that determine optimal thresholds must be
repeatedly sampled in order to optimize the DDM or any other model, how quickly can
adaptation be accomplished? And how accurate (i.e., how close to optimal) can learned
thresholds and starting points become? Human participants, of course, cannot plausibly adapt
thresholds instantaneously: new RSI values must be experienced before adaptation can occur.
There is empirical evidence that human participants, performing well-practiced tasks, are
capable of adapting performance over relatively short intervals (e.g., in as few as 5-10 trials)
following a change in task conditions (R. Bogacz, personal communication; R. Ratcliff,
personal communication; Ratcliff et al., 1999; but see, e.g., Myung & Busemeyer, 1989, where
evidence was found only for slow adaptation). The well-known phenomena of post-error
slowing (Rabbitt, 1969) and of recovery of speed after multiple correct responses (Rabbitt &
Vyas, 1970) are also consistent with rapid adjustments of decision thresholds. Simen, Cohen,
and Holmes (2006) proposed a rapid threshold adaptation algorithm that can achieve nearly
optimal thresholds within this 5-10 trial time frame. This algorithm adjusts thresholds +z
continuously, setting them equal at every moment to a decreasing, linear function of a running
estimate of recent reward rate (RR) that is estimated by an exponentially weighted average of
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recent rewards: z(t) = zmax — W - RR. Future work will investigate whether this or some other
process is at work in adapting thresholds and starting points (or perhaps other DDM
parameters).

Recent empirical work (Bogacz et al., in review) may also help to determine whether parameter
correlation is an appropriate explanation for the observed pattern of suboptimally large
thresholds in many conditions, or whether the use of objective functions other than reward rate
(e.g., ones that include an emphasis on accuracy) can better explain such findings. This
empirical work aims specifically to apply another prediction of the theory in Bogacz et al.
(2006) — the prediction of optimal performance curves relating RT to accuracy — to data
involving a wide variation in error percentages, in order to distinguish between the possible
objective functions governing behavior. Since error percentages never exceeded 20% in our
experiments, we could not test this prediction.

An alternative explanation for suboptimally high thresholds is that estimates of reward rate
may be subject to temporal uncertainty. The asymmetric functional relationship of reward rate
to threshold noted earlier (Fig. 2A), as well as recent theoretical work (Zacksenhouse, Holmes,
& Bogacz, in review), suggests that efforts to maximize reward rate in the presence of timing
uncertainty should lead to overestimation of the optimal threshold. This suggests that
individuals with less accurate ability to estimate interval duration should overestimate optimal
thresholds to a greater extent. We are currently investigating this prediction.

Residual latency

We now address the final theoretical issue raised by our findings. This involves the frequently
observed phenomenon in which fitted values of residual latency appear to be unreasonably
large under the simple additivity and pure insertion assumptions of Donders' subtraction
method. Under these assumptions, the residual latency should be equal to the average signal
detection RT in our task, since the signal detection task was identical to the decision making
tasks, except insofar as it required no discrimination between leftward and rightward motion.

In many different fits to our data with a variety of constraints among parameters and upper
bounds on variability parameters, as well as with different subsets of the data itself, the fitted
residual latencies for individual participants and for the group as a whole were usually 50 msec
or more longer than the average signal detection RT observed in the last two blocks of all
sessions of Experiments 1 and 2. Differences of more than 25 msec were produced even in fits
of the pure DDM to the pooled data, so correlations of Ty with overly inflated variability
parameters (cf. Ratcliff & Tuerlinckx, 2002) cannot entirely explain the phenomenon (although
such correlations seem to explain why the discrepancies between Tg and the average signal
detection RT were about 70 msec larger in completely unconstrained fits of the extended DDM
to data from Experiments 1 and 2). There have been many criticisms of Donders's subtraction
method and the related assumption of pure insertion in models involving stages of processing.
Nevertheless, these stages-of-processing approaches continue to exert a strong conceptual
influence on response time research (Sternberg, 2001); in particular, such an approach is
embodied in the typical interpretation of the DDM's residual latency parameter.

Keeping these caveats regarding additivity in mind, what our data seem to suggest is that there
may be an irreducible increment of roughly 50 msec that is incurred when participants integrate,
relative to non-integrative responding. This may reflect the overhead of an additional stage of
processing that can be eliminated when integration is not needed. In this conception, integrating
information leads to an automatic increment A to the residual latency component of response
time, plus whatever additional time is taken for the drift-diffusion process to cross threshold
(RT = DT+Tg +A). Evidence for this comes from the transitional shapes of response time
densities in Experiments 2 and 3: rather than simply shifting leftward and diminishing in width,
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the RT densities from integrative response conditions go through a bimodal stage prior to
converging to the shape of the signal detection RT density (Fig. 15 and Fig. 17).

Bimodality of this type is consistent with a mixture model of integrative and non-integrative
responses, and the gap between modes in almost all of the correct/favored distributions in
Experiment 2 is furthermore consistent with an irreducible Tp-increment: after all, a mixture
model need not produce bimodality, but a large enough Tg-increment would tend to keep the
two mixture components sufficiently separated so that bimodality would result. Furthermore,
in the 90:10 stimulus-ratio conditions in which non-integrative responding is evident, average
RT is not equal to the fitted T value: instead, average non-integrative 2AFC RT is statistically
indistinguishable from the average signal detection RT. The data suggest that participants make
an all-or-none decision either to integrate or not to integrate, and thereby to reduce RT
substantially (by A+ DT; Fig. E2 in Appendix E shows an individual participant's performance
from trial to trial which illustrates what appears to be precisely this switching from integrative
to primarily non-integrative behavior in fast, asymmetric blocks of Experiment 2).

In terms of neural processing, a time overhead A might be incurred by requiring processing by
an additional, intermediate signal discrimination layer between a sensory input layer and a
motor output layer (see the network models in Bogacz et al., 2006, Shadlen, Britten, Newsome,
& Movshon, 1996, Simen et al., 2006 and Usher & McClelland, 2001, which all model the
decision process as occurring in a specific network layer). This layer might require some
nonzero ‘startup time’ before carrying out its signal discrimination function, perhaps as a result
of conduction times between distant brain areas, or as a result of the smearing of sudden
stimulus onsets into relatively gradual rises in the decision layer's inputs due to the effects of
sluggish processing in earlier network layers. Time might therefore be saved if stimulus
information could skip over this intermediate layer, whose function would be unnecessary if
the participant was pre-committed to a particular response before the stimulus appeared. More
behavioral and physiological work would be needed to evaluate this hypothesis. Fortunately
though, very little machinery would be required to achieve such a pre-commitment in the
previously mentioned network models: if their discrimination layers incurred a one-time startup
cost but then remained committed to a single response (equivalently, if the DDM starting point
remained beyond one of the thresholds), then the models would perform signal detection as
quickly as models lacking a discrimination layer. These linear systems models would need to
be augmented, however, to include propagation delays or nonlinear activation dynamics in
order to account for the hypothetical startup delay during integrative responding.

The theory of optimal decision making makes quantitative predictions that can be tested by
model-fitting, and qualitative predictions that can be directly observed. Both types of prediction
were supported by the data in our experiments. This theory also appears to provide leverage
even with models that only approximate the optimal decision process. The extended DDM, for
example, involves variability in starting point, drift and residual latency that deviate from the
optimal SPRT. Nevertheless, we were able to predict response times, accuracy, and response
proportions based on extended DDM fits of A and Ty, by computing thresholds and starting
points from expressions developed for the pure DDM. In principle, the same approach is
applicable to models like the Ornstein-Uhlenbeck process incorporated into Decision Field
Theory (Busemeyer & Townsend, 1993) and the leaky-competing accumulator (LCA) model
of Usher and McClelland (2001) (these models, like the extended DDM, contain the pure DDM
as a special case). At the very least, when the parameters of these models are not too far from
those that implement the pure DDM, the same phenomena (threshold and starting point shifting,
and transitions to non-integrative responding) should occur in similar task conditions. Thus
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the normative theory of 2AFC decision making may be applicable even to models for which
it was not expressly developed.

For this reason, future experiments designed to discriminate between competing models of
decision making may benefit from the type of manipulations involved in our experiments —
that is, the type of manipulations affecting reward rate that are typically undertaken in studies
of instrumental conditioning (e.g., Herrnstein, 1997). Different models may make dramatically
different predictions when coupled with the assumption that reward-rate (or some other
objective function, e.g., a linear combination of response time and accuracy, or of reward rate
and accuracy) is being maximized: for example, they may make different predictions about
when a transition to non-integrative responding should occur, and this transition should be
clearly identifiable in the data, as we saw in Experiments 2 and 3. Therefore, a detailed,
quantitative analysis of these predictions may help to tease apart what often appear to be subtle
differences between alternative models of decision making.
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Appendix A Conversion between terminology of Bogacz et al. (2006) and
Ratcliff & Tuerlinckx (2002)

Table Al provides a parameter conversion table to assist readers more familiar with the
parameter symbols used by Ratcliff and colleagues.

Table A1

Parameters of the pure and extended drift-diffusion models. In the left two columns are the parameter symbols
used by Bogacz et al; in the right column is the terminology typically used by Ratcliff and colleagues et al.

DDM Parameters

Parameter Pure Extended Ratcliff et al
terminology

Drift: A A E(=A)

Threshold: z z a(=2* Zgogacy)

Starting point: %o %o Z (= Zgogacr * Xo)

Residual latency: Ty To T (= 1%)

Noise: c c s(=c¢)

Start variability: — Sx s, (559

Drift variability: — Sa 1 (=sa)

T, variability: — S st (=sy)

Appendix B Accuracy and decision time for nonzero starting points

When starting point xg is not 0 (i.e., not equidistant from both thresholds), the expressions for

ER and pr are as follows (Egs. A43 and A44 in Bogacz et al., 2006), where IT denotes the
probability of the more likely stimulus:
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Appendix C Reward-maximizing SAT for models with concave SATF

Speed-accuracy tradeoffs are often conceptualized as points along a speed-accuracy tradeoff
function (SATF). An SATF defines the proportion of correct responses as a function of mean
response time (Luce, 1986). According to the theory of optimal DDM parameterization, points
along an SATF are selected in response to changing stimulus probabilities, rewards, and RSI.
Changes in the signal-to-noise ratio, in contrast, are predicted to change the SATF itself; we

did not investigate changes in signal-to-noise ratio in this paper.

For any model producing a smooth, concave SATF (i.e., in which accuracy increases smoothly
and monotonically with mean RT but has a strictly negative second derivative with respect to
RT), the definition of reward rate in Eqn. 4 implies the existence of a unique SAT that
maximizes reward rate. This is the case for the DDM, but also for other models of decision
making.

Eq. 4 defines reward rate as follows, where g, is error proportion, T is average decision time,
To is residual latency, and ggj is the average response-stimulus interval:
- 1- ER
RR =—r.
DT +Ty+ RSI (11)

Let Acc represent accuracy: pcc—1— ER. Then an SATF is given by Acc (DT), which we

assume is strictly increasing and concave as py (and therefore RT) increases. From Eq. 11,
we therefore have:

Acc (DT)

DT +7To+ RSI (12)

Since Acc (DT) is clearly bounded above by 1 (representing perfect accuracy), whereas

_ _ _ o RR (DT :
DT +T,+ RSIgrows without bound as pT increases, ( ) approaches 0 as p approaches
infinity.
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We can also assume that at Acc(0) is near 0.5 (representing chance performance). Therefore,
RR (DT . : _ : _
either decreases monotonically toward 0 as pT increases (meaning that it has a

_ _ RR (DT . -
maximum at p —q), or has one or more local maxima for DTe (0, ).

In order to analyze how many possible local maxima exist, we take the derivative of gg with
respect to pr:

L, Acc’ (D_T) Acc (D_T)
RR (DT): - - .
DT +7(+RSI (D_T +To+ R_SI)

(13)

Setting RR (DT) :0, we get:

Acc'(lfT) Acc(lfT)
DT+To+RSI DT+To+RSI|
_ Acc(l)_T)
Acc’ (DT) =
(DT+T0+RSI) "

Eqn. 14 states that the local maxima or minima of gg must occur at values of T where the
derivative of the SATF equals the reward rate (up to a constant scaling factor involving the
size of rewards — for the present discussion, we assume that rewards have a unit magnitude).

The second derivative of g determines whether the zeros of Eq. 13 are local minima or
maxima. The second derivative is given by the following, where we set RT = DT +To+ RSIL:

RR (]51‘): Acc” _ AfC,: _ Afc'z+ 2/}&;

= 3 3

RT RT RT

(by substitution of Eq. 14)
RT (15)

Since RT = DT +Ty+ RSI >0and Ace (DT) Voo by concavity of the SATF, RR (DT) must

be strictly negative, and therefore any value of  for which 1{R’:0 is a local maximum.
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By the assumed continuity of the SATF, any two neighboring local maxima must be separated

. . . RT (DT . .
by a local minimum, or else a piecewise constant segment of is maximal. However,

’

the existence of such a segment would imply that gr =  Over that segment, contradicting

”

the assumption that Rr <0

For models that produce monotonically increasing SATFs that are not concave, multiple local
maxima are possible.

Appendix D Data Fitting

Data in Experiments 1 and 2 was fit using the chi-square fitting method of Ratcliff and
Tuerlinckx (2002), implemented in MATLAB software custom-written by the authors. We
extended this method to incorporate upper bounds on certain parameters during fitting, as well
as to allow fitting of a mixture model consisting of an RT distribution generated by the DDM
and a normal RT distribution with smaller mean and variance. Data in Experiment 3 was fit in
MATLAB using the Diffusion Model Analysis Toolbox (DMAT) (Vandekerckhove &
Tuerlinckx, 2007a, 2007b). Here we focus on the details of the fitting methods used in
Experiments 1 and 2.

Fit error function

In the chi-square fitting method of Ratcliff and Tuerlinckx (2002), the 0.1, 0.3, 0.5, 0.7 and
0.9 quantiles are used to define six bins of RTs, with the fastest RT bin and the slowest RT bin
each containing 10% of the total number of trials, and the other bins containing 20%. A given
set of DDM parameters was then used at each iteration of the fitting process (discussed below)
to generate a cumulative distribution function (CDF) for each of the two types of responses.
11 The CDF (computed for the extended DDM with the freely available MATLAB function
CDFDif.m described in Tuerlinckx (2004)) is used to generate a prediction of the number of
trials expected within each bin. The x2 error function is given by the following equation:

. . 2
S g (trlals observedyy, — trials expectedbmi)
X conditionsi=1 trials expectedy;,. ' (16)

This fit-error function was evaluated by Ratcliff and Tuerlinckx (2002) in a study comparing
the maximum likelihood method, the chi-square method we use here, and a weighted least-
squares method applied to quantiles. Simulated data was constructed for a set of parameter
values, and the methods were evaluated for computational speed, bias and robustness to
contaminants. Contaminants are responses not generated by the diffusion process (perhaps
because of failures to attend to the task). Lacking any more informed model of what the RT
distribution should be for real contaminants, Ratcliff and Tuerlinckx (2002) simulated them as
RTs generated by the extended DDM, with an additional increment drawn from a uniform
distribution; in fitting this simulated data, they made the simplifying assumption that the
contaminants were drawn from a uniform distribution spanning most of the observed RT range.
The chi-square method applied to the extended DDM — with an additional parameter intended

11Ratcliff and Tuerlinckx (2002) refer to this function and its corresponding density as defective, indicating that the CDF (the integral

of the density) does not approach 1 as RT approaches infinity. The sum of CDFs for the two responses, evaluated at infinity, does equal
1 however. The two defective distributions can then be fit to correct and error distributions separately (and these two distributions can

be further subdivided into favored and unfavored stimulus RTs in Experiments 2 and 3).
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to capture contaminant RT proportions — was the method they recommended: it was faster
and more robust than the maximum likelihood method, and less biased than the weighted least-
squares method that they investigated.

We added four additional parameters to this extended DDM and modified its first-passage time
CDF prior to computing the fit error: three parameters were needed to make data from
Experiment 2 fittable, and one was used to test the hypothesis that drift is strategically adapted
from condition to condition (thereby contradicting the prediction of constant drift for an
optimized DDM). The first three parameters were the mean, variance, and mixture weight of
anormal distribution, intended to model a non-integrative RT distribution; the fourth parameter
defined an increment that could be added to the single drift term that was fit across all
conditions.

Optimization algorithm

To minimize the fit error over the space of parameter values, Ratcliff and colleagues (Ratcliff
& McKoon, 2008, e.g.) typically use the Simplex algorithm (Nelder & Mead, 1965). Tuerlinckx
has used a constrained optimization algorithm, NPSOL (Gill, Murray, Saunders, & Wright,
1998) instead of Simplex (Ratcliff & Tuerlinckx, 2002), which allows the user to constrain
search over the parameter space to a particular region, and to supply information about the
function being minimized that speeds the search process. However, Ratcliff and Tuerlinckx
(2002) reported that this method suffered from numerical instability problems and failures to
converge to minima.

Despite its demonstrated practical utility in a wide range of problems, theoretical understanding
of the convergence properties of Simplex is limited (Lagarias, Reeds, Wright, & Wright,
1998). It can fail to converge to a minimum even for convex functions in two dimensions
(McKinnon, 1998). In purely practical terms, though, it was our experience that fitting with
Simplex took much longer than with the constrained optimization method implemented in
MATLAB's fmincon.m function. The latter is the method we used for the analysis in this paper.
Furthermore, as we noted in the paper's introduction, it turned out to be quite useful to constrain
the variability parameters of the extended DDM to provide some amount of control over
parameter inflation. Constrained optimization approaches are designed for this type of
restriction, whereas methods for effectively constraining an unconstrained algorithm by
assigning high fit errors to undesirable parameter regions is an art.

For our problem, MATLAB's fmincon.m automatically selected its medium-scale settings.
Under these settings, the fitting process alternates between two phases. In the first phase, it
estimates the curvature of the error surface around the current search point in parameter space
using sequential quadratic programming. In the second phase, it uses line search (related to
Newton's method) to minimize the function along a line in parameter space selected on the
basis of the curvature estimate. Then the process repeats.

This algorithm has proven convergence properties for smooth error functions. As a sum of
(normalized) squares, the 2 error function is smooth as long as the expected number of trials
in the denominator of each term in Eq. 16 does not approach 0 for any term in the sum.12 For
fits of the extended DDM without contaminants to RT distributions in individual conditions,
fitting a condition typically took less than 30 seconds on a 2.53GHz Intel Pentium IV with 512
KB cache, 533 MHz bus, and 512 MB of RAM, as opposed to a typical fit time of several
minutes for a Simplex approach.

12\ followed the practice of Tuerlinckx (2004) and made sure that the denominator was never below 0.00001, although to do so, we
took the max of this small number and the expected bin count rather than adding 0.00001 to all expected bin counts as done by Tuerlincx.
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As noted by Ratcliff and Tuerlinckx (2002), convergence problems can indeed pose a difficulty
for this approach; however, judicious use of initial conditions and parameter bounds made
these problems manageable. For example, since it was clear that the first mode in the bimodal,
empirical RT densities of Experiments 2 and 3 occurred well before 300 msec, an upper bound
of 290 msec could be applied to the non-integrative mean parameter during fitting. The result
was fast convergence to a value of 267 msec. In contrast, when this bound constraint was not
imposed, the fitting algorithm was prone to wandering into a region of parameter space that
assigned high mean and variance to the normal component of our mixture model; once this
happened, it was extremely difficult for the algorithm to recover, and searches usually
terminated with extremely high fit errors and nonsensical parameter estimates.

However, numerical instability may still affect the algorithm as it is implemented in
fmincon.m, since the error surface defined by the x2 function, although smooth in theory,
appears to be quite jagged in practice: tiny changes in parameter values can create extremely
large jumps in the error, especially when data from multiple participants is pooled together
(presumably because the larger number of total trials resulting from pooling produces larger
expected bin counts for the fastest and longest RT bins, and deviations from this expectation
drive up the error dramatically). In fitting the extended DDM, the default parameter settings

for fmincon.m were extremely effective; as noted, good fits were achieved remarkably quickly.
13

Application of the Freedman-Diaconis histogram bin size rule

For the histograms in Fig. 7 and Fig. 12, we used a fixed-width bin size governed by the
Freedman-Diaconis rule (Freedman & Diaconis, 1981) for minimizing the error between the
histogram and the actual density. This bin size rule adapts the bin width to data from a given
experimental condition according to the following equation:

2 x Interquartile range

bin size= — 3
Number of observations "/~ (17)

Interquartile range is the difference between the first and third quartiles. Since correct and error
RTs were fit separately, making the histograms for errors and correct responses comparable
required choosing which distribution to plot with this bin size rule, and then applying the same
bin size to the other distribution as well. Since there were far fewer error RTs in general,
applying the bin size derived from the correct RTs to the error RTs tended to oversmooth the
error RT data. We therefore applied the Freedman-Diaconis rule to the error RTs, and used the
derived bin size for both correct and error RTs.

Appendix E Participant 305

Here we examine performance by an individual participant to demonstrate that the behavioral
phenomena observed in pooled performance data from all participants (e.g., bimodal response
time densities in Experiment 2) were not simply artifacts of pooling.

In Experiment 1, Participant 305 shifted from a relative emphasis on speed to a relative

emphasis on accuracy in the 2 sec-RSI condition compared to the 500 msec-RSI and 1 sec-RSI
conditions. Fig. E1 plots response time densities for this participant from Experiments 1 and
2 that are consistent with non-integrative responding (i.e., fast responding with one response

13The DMAT MATLAB Toolbox (Vandekerckhove & Tuerlinckx, 2007b, 2007a) for fitting the DDM appears to operate faster still for
typical data sets, even relying on Simplex as its optimization algorithm, due to efficient, low-level code optimization.
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exclusively) for large stimulus-ratio asymmetries I1. In this figure, only data from the 500
msec-RSI conditions are plotted. As IT grows, the RT densities clearly undergo a transition
toward the signal detection density. Ultimately, in the 90:10-ratio/500 msec-RSI condition, the
RT density is essentially identical to the signal detection RT density.

Further evidence for non-integrative responding comes from examining response totals and
response times on a trial-by-trial basis. Fig. E2 plots data from the first session of Experiment
2. Panel A plots cumulative favored responses as a function of trial number. Dashed lines plot
the maximum possible cumulative total of favored responses within each block of trials. Purely
non-integrative responding causes the observed cumulative response plot to lie on top of the

dashed line (most clearly observed in block 9, with g1 —1 gec @and 90% rightward stimuli);
deviations from non-integration cause the cumulative plot to err toward the horizontal. Panel
B plots RT as a function of trial number. Dashed lines indicate the observed, average signal
detection RT; superimposed solid, horizontal lines indicate the average RT for the block. Panel
C plots the proportion of errors within each block as a function of trial number; text indicates
RSI and IT conditions in each block. Block 7 (90:10 stimulus ratio/500 msec-RSI/rightward
motion favored) and Block 8 (90:10 stimulus ratio/1 sec-RSl/rightward motion favored) both
show almost exclusive rightward responding, and responses are almost all near or below the
average signal detection RT.

In later sessions, this participant showed evidence of non-integrative responding in other
conditions as well. This can be seen in Fig. E3. In this comparison of response proportions,
RTs and accuracy to the predictions of an optimally tuned DDM, Participant 305 also appears
to have achieved non-integrative responding in the 2 sec-RSI condition with a 90:10 stimulus
ratio. However, given the fitted drift and residual latency terms, non-integrative responding
was also predicted (but not exclusively produced) in the 75:25-ratio/500 msec-RSI condition.

18 T T T T T T T
16 Signal detection 7
141 90:10 ratio, RSI = 500 msec 7
12 7
z
2
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z
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S 8r 75:25 ratio, RSI = 500 msec B
o
6 60:40 ratio, RSI = 500 msec
41 i
50:50 ratio, RSI = 500 msec
ol
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Response time (seconds)
Figure E1.

Comparison of signal detection RT density to RT densities in each 2AFC condition of
Experiment 2 for an individual participant, with an average RSI of 500 msec. As the stimulus
proportion asymmetry increases, the RT density for two-alternative decisions approaches that
for the signal detection condition.
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Figure E2.

Trial-by-trial performance data from Participant 305 in the first session of Experiment 2
(following participation in the five sessions of Experiment 1). A: Cumulative favored responses
as a function of trial number. Dashed lines plot the maximum possible cumulative total of
favored responses. B: RT as a function of trial number. Dashed lines indicate observed signal
detection RT; superimposed solid, horizontal lines plot mean RT for the block. C: The
proportion of errors within each block as a function of trial number; text indicates RSI and IT
conditions in each block.
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Figure E3.

Comparison of predicted and observed response proportions, response times and error
percentages in all conditions of Experiment 2, based on unconstrained, extended-DDM fits of
drift and residual latency to performance of Participant 305 in Experiment 1. The horizontal
axis in each plot denotes the stimulus proportions (0.6 indicates a 60:40 ratio; 0.75 indicates
75:25; 0.9 indicates 90:10). The left column of plots corresponds to a mean RSI of 500 msec;
the middle column corresponds to a mean RSI of 1 sec; the right column corresponds to a mean
RSI of 2 sec.

Appendix F Comparison of unconstrained and constrained fits

Constraining the additional parameters of the extended DDM during fitting as we have done
forces the model to approximate the pure DDM. This approach to fitting our data resulted in
starting point and threshold values that were close to the optimal values, as defined by analytical
functions of the fitted drift and residual latency values (respectively, Eq. 6 and Eq. 7).
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However, if unconstrained fitting of the extended DDM in fact achieves unbiased estimates of
parameter values along with a reduced fit error relative to constrained fits — notwithstanding
the parameter-correlation problem that we have noted — then it is imperative to look for
evidence of optimal SAT and response bias in these unconstrained-fit values as well. Fig. F1
shows the results of an unconstrained model-fit in blue, a constrained model-fit in red, and a
pure DDM-fit (with variability parameters set to 0) in black. In the top panel, the horizontal
coordinate represents the reward maximizing threshold values (X's) and fitted threshold values
(O's) in each RSI condition; the vertical coordinate represents the average reward rate actually
earned by participants in each condition. In the bottom panel, the fitted thresholds are plotted
vs. their optimal values.

The figure shows that in all RSI conditions, unconstrained/extended fitting leads to parameter
sets whose threshold values (blue Os) are much larger than the reward-maximizing values for
the extended DDM (blue Xs), as indicated by simulations (noise and the flat maximum in the
2 sec-RSI condition make the position of the optimal value determined by simulations
somewhat imprecise). These simulations show that more reward can be earned with the pure
DDM than with the extended DDM, since the analytically derived black curves are greater than
the numerically computed blue and red curves for the extended DDM, except at threshold
values smaller than optimal.

1

Blue: unconstrained/extended DDM fit X: optimal value
0.9} Red: constrained/extended DDM fit O: fitted value
Black: pure DDM fit
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Figure F1.

Comparison of pure DDM fits, constrained/extended DDM fits, and unconstrained/extended

DDM fits in terms of harvesting efficiency. One set of reward rate curves corresponds to each
of the RSI values in Experiment 1. Unconstrained/extended fits are shown in blue; constrained/
extended fits in red; pure DDM fits in black.

The mismatch between fitted and optimal values for the constrained/extended DDM (red Os

and Xs, respectively) is less pronounced. The mismatch between fitted and optimal values for
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the pure DDM (black Os and Xs) is the smallest of all. Thus, the choice of fitting procedure
appears to determine whether the data favor the hypothesis of nearly optimal strategic control
of decision making (at least when RSIs are greater than 500 msec), or, in contrast, an hypothesis
of suboptimal emphasis on accuracy over reward rate in all conditions.
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Figure 1.

Parameters, first-passage density and sample path for the extended drift-diffusion model
(DDM). Parameters of the DDM are labeled according to the terminology of Bogacz et al.
(2006); see Appendix A for a translation into the terminology of Ratcliff and colleagues (e.g.,
Ratcliff & Rouder, 1998).
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Figure 2.

A: Expected reward rate (RR) plotted as a function of threshold z for a range of gy values
(dashed curve connects the peaks of each g curve). B: Optimal threshold as a function of
RSI- C: RRr as a function of ggy, assuming optimal thresholds at each ggp. D: Expected RT as
a function of gy, assuming optimal thresholds. E: Expected proportion of errors (gR) as a
function of gy, assuming optimal thresholds.
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Critical probability surface, dividing parameter space into predicted integrative and non-

integrative conditions.
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Figure 4.

Top panel: Average extended DDM parameter values from fits to 150 subsets of half the data
(sampled with replacement) in each condition of Experiment 1, plotted as a function of the
upper bound applied to the s; and sp parameters during fitting (error bars represent the standard
error of the mean). Drift A and residual latency Ty inflate as upper bounds on sp, s; and s;
increase, indicating a possible source of bias in parameter estimation. Bottom panel: Chi-square
fit error as a function of upper bound values. Average fit-error for the bound value closest to
the bounds used in our analyses was approximately 200.
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Figure 5.

A: Boxplot of response times for pooled data from all participants. Boxes represent the
interquartile range (difference between first and third quartiles), and lines bisecting the boxes
represent medians. Notches represent non-parametric 95% confidence intervals around the
median RTs. Dashed lines and X markers indicate the expected RT predicted by Eq. 3 for a
DDM with optimal thresholds, given values of A and Ty obtained from the best fit of the model
to the data. Solid lines and circle markers indicate observed RT averages (these are higher than
the medians indicated in the boxplots because of the skew of the RT distributions). B: Accuracy
across conditions. Solid lines and circles indicate the observed proportions of correct responses.

Dashed lines and X's indicate the expected proportions, {_ gr, where ER in each condition is
obtained by substituting fitted A and T values along with the optimal z value into Eq. 2. C:
Predicted speed-accuracy tradeoff function (SATF) — i.e., _ gR as a function of DT +7, —
based on a fit of the DDM. Circles indicate the observed tradeoffs in each condition; X's indicate
the optimal tradeoffs.
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Figure 6.

Quantile probability plot for pooled data from all participants in Experiment 1. Solid lines
connect the nth quantile of the empirical data; X's and dashed lines represent the predicted
quantiles for the best fit (listed in Table 1).
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Figure 7.

Group RT histograms and predicted RT densities from a fit of the DDM, sessions 4-5,
Experiment 1. Columns correspond to distinct RSI conditions. The top row shows RT
distributions for correct responses, while the bottom row shows the distributions of error RTs.
Vertical lines indicate average RTs in each condition, computed separately for errors and
corrects. Histogram bin widths were the same in both the correct and error plots for each RSI,
and were determined by the Freedman-Diaconis rule (described in Appendix D).
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Figure 8.

Parametric bootstrap estimates of threshold z, showing significant differences in threshold
across conditions. Horizontal whisker lines denote 95% bootstrap confidence intervals around
the median threshold value.
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Plot of fitted thresholds vs. optimal thresholds. Vertical crossbars indicate 95% confidence
intervals around the fitted threshold values plotted as X's.
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Figure 10.

Reward harvesting efficiency of participants in three RSI conditions. One solid reward-rate
curve per RSI condition represents the analytical expected reward rate for the pure DDM with
the A and T values listed in Table 1, and with extended-DDM variability parameters set to O.
Dashed reward-rate curves show the numerical average reward rate for the extended DDM
with the nonzero variability parameters listed in Table 1, simulated 10,000 times at 16 different
threshold values. Green vertical lines bound intervals within which a threshold setting is
expected to produce 99.9% of the maximum reward; blue lines bound 99% intervals, and
magenta lines bound 97% intervals. Superimposed on these plots are blue X's denoting the
fitted threshold in each condition and the observed rate of reward in each condition (total of
rewards divided by total duration). Red X's correct for the penalty delays incurred by
anticipatory responding, illustrating the larger proportion of anticipations in conditions with a
shorter mean RSI.
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Quantile probability plots for all conditions of Experiment 2. Superimposed scatterplots of RT
data are plotted in green for correct responses and red for errors. Left column: 60:40 stimulus
ratio. Middle column: 75:25 stimulus ratio. Right column: 90:10 stimulus ratio. The top row
of panels shows quantile probability plots for responses to the more likely stimulus. The bottom
row plots responses to the less likely stimulus; note the exchange of correct and error

probabilities as stimulus-ratio asymmetry increases.
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Figure 12.

Fits to RT distributions in Experiment 2. Each RSI/stimulus probability condition is
represented by a panel consisting of a 2 x 2 set of four plots: RTs for correct responses to
favored stimuli (upper left of panel); correct responses to unfavored stimuli (upper right); errors
for favored stimuli (lower left); and errors for unfavored stimuli (lower right). Three columns
of these 2 x 2 plot-panels correspond to three stimulus probability conditions — 60:40, 75:25
and 90:10 stimulus odds — and three rows correspond to three RSI conditions — 500 msec,
1 sec and 2 sec.
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Figure 13.

Comparison of fitted thresholds to optimal thresholds; key identifies different stimulus-
probability conditions, and the black identity line indicates what would be a perfect match.
50:50 data is from Experiment 1.
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Comparison of fitted starting points to optimal starting points; key identifies different stimulus-
probability conditions. 50:50 data is from Experiment 1.
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Figure 15.

Comparison of signal detection RT density to RT densities in all two-alternative forced-choice
conditions of Experiment 2. Left panel: mean RSI = 500 msec. Middle panel: mean RSI =1
sec. Right panel: mean RSI = 2 sec. As the stimulus-ratio asymmetry increases, the RT density
for two-alternative decisions approaches that for the signal detection condition. This change
in the RT density becomes more pronounced as the mean RSI decreases. In addition, a bimodal
density appears for conditions with unequally likely stimuli, suggesting a mixture of integrative
and non-integrative responding. The non-integrative modes increase in amplitude (and the
integrative modes decrease) as the asymmetry in stimulus ratios increases and as the mean RSI
decreases.
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Comparison of predicted and observed response proportions (top row of plots), response times
(middle row) and error percentages (bottom row) in all conditions of Experiment 2, based on

fits of drift and residual latency. The horizontal axis in each plot denotes the stimulus

proportions (0.6 indicates a 60:40 ratio; 0.75 indicates 75:25; 0.9 indicates 90:10). The left

column of plots corresponds to a mean RSI of 500 msec; the middle column corresponds to a
mean RSI of 1 sec; the right column corresponds to a mean RSI of 2 sec. Standard error bars
are plotted, but are barely visible, in all plots.
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Figure 17.

Distribution of RTs for the favored and unfavored responses in Experiment 3, plotted against
the RT distribution for signal detection obtained in Experiment 2. The RT distribution for
correct favored responses is bimodal, with the earlier mode almost aligned to the maximum in
the signal detection curve. The distribution of incorrect favored responses is concentrated
around that early mode. Conversely, the distributions of unfavored responses show almost no
sign of an early mode, and their maximum is roughly aligned with the second mode of the
distribution for correct favored responses, which indicates that early responses were almost
exclusively favored ones.
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Fitted parameter values for group data from 0.5, 1 and 2 sec RSI conditions, with equally likely stimuli.
Comparisons to empirical histograms for this fit appear in Fig. 7, and comparisons to empirical quantile-

Table 1

probability plots appear in Fig. 6.

Page 59

Pooled participant data

Parameter Value
Drift A: 0.17348
Noise coefficient c: 0.1
Drift std dev s,: 0.068683 Bound: 0.08
Start range s,: 0.03 Bound: 0.03
T, range s;: 01 Bound: 0.10
Contaminant proportion py: 0.029182 Bound: 0.05
Residual latency T: 345.47 msec

(compare to avg. signal detection RT of 301 msec)
Total »? fit error: 194.5232
RSI condition 500 msec 1 second 2 sec
Threshold z 0.0558 0.0606 0.0734
Optimal threshold 0.0438 0.0566 0.0730
Starting point x 0.0029 0.0016 0.0016
Optimal start pt 0 0 0
2 fit error 84.58 46.44 62.47
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Fitted parameter values for the average participant (pooled data from all participants). Data from Experiment 1
and Experiment 2 were fit simultaneously, leading to parameter values identical to Table 1 for all parameters

other than threshold, starting point, mixture weight and drift increment.

Pooled participant data, unequal stimulus probabilities

Parameter Value
Drift A: 0.17348
Noise coefficient c: 0.1
Residual latency T 345.47 msec
(compare to avg. signal detection RT of 301 msec)
Drift std dev s,: 0.068683 Bound: 0.08
Start range s,: 0.03 Bound: 0.03
T, range s;: 0.1 Bound: 0.10
Contaminant proportion py: 0.029182 Bound: 0.05
Fast-guess RT mean: 266.77 msec Bound: 290
Fast-guess RT std dev: 49.099 msec Bound: 100
Total 2 fit error: 1020.104
Stim prob: 60:40 75:25 90:10
Threshold z
RSI: 500 msec 0.049545 0.055035 0.062455
1 second0.052885 0.05222 0.059620
2 second0.062745 0.06289 0.064055
Optimal thresh
RSI: 500 msec 0.043370 0.040829 0.033304
1 second0.056341 0.054623 0.049731
2 second0.072819 0.071804 0.069020
Starting point X,
RSI: 500 msec 0.000915 0.012183 0.021868
1 second0.004557 0.010700 0.011437
2 second0.003909 0.005578 0.011804
Optimal start pt
RSI: 500 msec 0.011686 0.03166 0.063330
1 second0.011686 0.03166 0.063330
2 second0.011686 0.03166 0.063330
Mixture weight
RSI: 500 msec 0.079295 0.48188 0.84125
1 second0.031668 0.22471 0.70061
2 second0.016402 0.13526 0.45467
Drift increment
RSI: 500 msec 0.01536 0.00377 0
1 second0.00304 0.0001 0.083964
2 second0 0.03522 0.057137
;(2 fit error
RSI1 500 msec 92.91 110.90 297.86
1 second54.31 30.06 112.14
2 second97.53 74.12 150.27
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Table 3

Fitted parameter values for the average integrative participant, with 3:1 asymmetric reward proportions (3 cents
vs 1 cent).

Threshold (z): 0.0741
Starting point (Xo): 0.0063
Drift (A): 0.1861
Residual latency (Tg): 356.4 msec

(compare to avg. signal detection RT of 301 msec
in Expts 1 and 2)

Drift variance (Sp): 0.1199
Starting point variance (s,): 0.0771
Tg variance (s,): 0.2123

fit error: 244.83
X
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