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Abstract
Analyzing problem-behavior trajectories can be difficult. The data are generally categorical and often
quite skewed, violating distributional assumptions of standard normal-theory statistical models. In
this paper, we present several currently-available modeling options, all of which make appropriate
distributional assumptions for the observed categorical data. Three are based on the generalized linear
model: a hierarchical generalized linear model (HGLM), a growth mixture model (GMM), and a
latent class growth analysis (LCGA). We also describe a longitudinal latent class analysis (LLCA),
which requires fewer assumptions than the first three. Finally, we illustrate all of the models using
actual longitudinal adolescent alcohol-use data. We guide the reader through the model-selection
process, comparing the results in terms of convergence properties, fit and residuals, parsimony, and
interpretability. Advances in computing and statistical software have made the tools for these types
of analyses readily accessible to most researchers. Using appropriate models for categorical data will
lead to more accurate and reliable results, and their application in real data settings could contribute
to substantive advancements in the field of development and the science of prevention.

Preventing mental health disorders and problem behaviors, such as delinquency, risky sexual
behaviors, and substance use, in childhood and adolescence is critically important to the well-
being of young people and, ultimately, to our society. Problem behaviors often occur in tandem
with one another (Donovan & Jessor, 1985) and are associated with concurrent difficulties,
such as family dysfunction, academic failure, and poor peer relationships during childhood and
adolescence (e.g., Hawkins, Catalano, & Miller, 1992; Wiesner & Windle, 2004). Later, as
these behaviors continue into emerging adulthood, avenues toward a successful life course may
be shut off. This can lead to adulthood failures in areas such as work and education, as well as
to physical and emotional disorders, all of which are costly to the individual and society as a
whole (Hill, White, Chung, Hawkins, & Catalano, 2000; Marmorstein & Iacono, 2005; Wiesner
& Silbereisen, 2003). Understanding the etiology of childhood and adolescent problem
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behaviors, in part through optimal statistical modeling of developmental trajectories, may help
point the way toward more successful approaches to, and timing of, interventions (Shaw,
Gilliom, Ingoldsby, & Nagin, 2003).

Problem behaviors are problematic to study for a number of reasons. Because psychopathology
is a developmental process, proper understanding requires longitudinal data and analyses
(Cicchetti & Toth, 1998; Sameroff, 2000). In addition, if researchers want to generalize their
results to the population at large, they need to study population-based samples.1 But problem
behaviors are, by definition, rare in the general population, and the data generally, often
egregiously, violate assumptions of standard normal-theory linear models. They are frequently
measured on a categorical scale, and the categories are generally unevenly spaced (e.g., During
the past year, how often did you drink alcohol? 1 = never, 2 = a couple of times, 3 = 1 – 3 times
a month, 4 = 1 or more times a week, 5 = daily). The data tend to have large masses in the
lowest category, which signifies an absence of the behavior; and, to the extent that people do
display the behavior, the distributions tend to be quite skewed. Ordinal data like these are most
often treated as though continuous and normally distributed. Although some researchers have
suggested that categorical variables with 4 or more categories could reasonably be analyzed
using models that assume normal distributions (e.g., Bentler & Chou, 1987), other research
suggests that this is not the case. Rather, Dolan (1994) found that this business-as-usual
approach can lead to biased estimates, incorrect standard errors, and incorrect fit statistics even
when the data are symmetric; and these problems get worse to the extent that the distribution
departs from symmetry (also see, e.g., DiStefano, 2002; Feldman & Masyn, 2008; West, Finch,
& Curran, 1995). Treating the data as censored normal (censored at zero) is a popular way of
accounting for the asymmetry caused by the pileup of zeros, but it still assumes that the data
above zero are continuous, so is subject to many of the same problems that occur when the
data are treated as normally distributed.

When these ordinal variables are modeled as inherently categorical, a lack of symmetry is not
a problem because the proportions in each category are explicitly modeled. Additionally, the
mass at the bottom of the scale is only a problem to the extent that it may, with a limited sample
size, be responsible for empty cells at the high end of the scale; and too many empty cells can
cause estimation difficulties. Although longitudinal or clustered categorical-data models have
been available for a number of years and used in fields such as medicine (Harville & Mee,
1984; Hedeker & Gibbons, 1994), economics (Butler & Moffitt, 1982), and education (Bock
& Lieberman, 1970); until recently, software that estimated these models was relatively
difficult to use and the estimation process was computationally arduous. Because of advances
in computers and statistical software, appropriate analysis of longitudinal categorical data has
become much more straightforward for applied researchers.

In this paper, we demonstrate some of the methods appropriate for modeling trajectories with
longitudinal categorical observed data. Our goal is to place these techniques into a coherent
framework. Such a framework will, we believe, help developmental researchers feel more
confident in selecting and using the methods. A second important contribution this paper makes
is to offer a systematic approach to choosing from among competing models for longitudinal
categorical data. Because there is no generally available test of overall fit for most of these
models, nor any single widely-accepted criterion for model selection, we present several
techniques for assessing the models. We utilize adolescent-alcohol-use data to illustrate the
process of model specification, selection, and interpretation; and we guide the reader through
the process of choosing an optimal model for the data, from among those investigated, by

1Results from analyses of clinical samples can only be generalized to that population and may not apply to the general public, and use
of other types of non-representative samples may also have problems with respect to inference (Hernán, Hernández-Diaz, & Robins,
2004).
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comparing results with respect to fit (using comparative fit statistics and residual analysis),
parsimony, and substantive considerations.

Models for Longitudinal Categorical Data
The Generalized Linear Model

In the sections that follow, we describe several models for characterizing individual differences
in change or growth over time, given categorical data. Appendix A lists the models we discuss
here, along with their distributional assumptions and alternative names and acronyms
sometimes seen in the literature.

To introduce models for categorical data, we begin with the most basic and general form of a
generalized linear model,2 in which the expected value (or mean), μi, of individual i's response,
yi (given covariate values x0i, x1i, … , xmi), is related to the covariates through a linear
predictor, ηi. ηi has a linear relationship with the covariates which is quantified by regression
coefficients β0, β1, … ,βm (Agresti, Booth, Hobert, & Caffo, 2000;Skrondal & Rabe-Hesketh,
2004):

(1)

where, usually, xi0 = 1 (making β0 the intercept of the equation), and there are m covariates.
ηi is related to μi (given individual i's values on covariates) through some link function, g:

(2)

The type of link function used depends on the conditional distribution of the data.3 For instance,
when the distribution is normal (Gaussian), g is typically an identity function and the equation
is a standard linear regression (with an identity link, the estimate,μ̂i, can be thought of as ŷi):

(3)

But if yi has a different distribution, an identity link may not be appropriate. For example, if
yi is binary, then its distribution is Bernoulli and the expected value, μi, is the conditional
probability of giving a positive (or correct) response:pr(yi = 1 | x1,…,xm) = μi. Using an identity
link in this case is improper because it would allow the model-predicted response, η̂i, to go
below zero or above one—outside of the range of probabilities. Because of this, either a logit
(or logistic) link or a probit link is usually used with dichotomous data. In the logit-link model
for binary data, the natural log of the odds of giving a positive response (often referred to as
the log-odds or logit) is modeled as a linear function of the covariates:

(4)

2For extended discussions of generalized linear models, including methods for various types of non-Gaussian distributions, see, e.g.,
Agresti (2002), McCullagh and Nelder (1999), and Skrondal and Rabe-Hesketh (2004).
3All of these models assume that the distribution of the observed response variable is a member of the exponential family of distributions;
most commonly seen among discrete distributions: multinomial (ordered or unordered categorical data), Poisson (count data), or Bernoulli
(dichotomous data); and continuous distributions: gamma and Gaussian (or normal).
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Therefore:

(5)

or, equivalently,

(6)

In this paper, the logit-link model is used for ordinal data—an extension of the binary model
referred to as the ordered logit, or cumulative logit model. For an ordinal variable with j = 1,
2, … J categories, the ordered logit model represents the probability of scoring in category j
or above, versus any category below j (see, e.g., Agresti, 2002). In discussing ordered logit
models, it is helpful to think of the ordinal observed outcome as a coarse categorization of an
underlying (latent) continuous variable, yi

* (see Figure 1), for which the residual errors are
assumed to have a logistic distribution (Agresti, 2002; Gurland, Lee, & Dahm, 1960; Hedeker
& Gibbons, 1994; Skrondal & Rabe-Hesketh, 2004).4 In this characterization, referred to by
Skrondal and Rabe-Hesketh (2004) as a latent response formulation, the cutpoints that separate
the underlying continuous distribution into categories are referred to as thresholds, or τ’s, and,
the thresholds define the relationship between the categorical observed yi (in Figure 1, yi = 1,
2, 3, or 4), and the continuous latent yi

*, such that yi≥j if yi
*≥τj, and yi = j if both yi

*≥τj and
yi

*<τj+1;j = 0, 1, 2, …, J − 1, τ0 = –∞ and τJ = ∞.

Imagine, for example, that Figure 1 is showing an ordinal measure used to assess frequency of
suicidal ideation in the past year in which 0 = no ideation, 1 = thought of suicide once, 2 =
thought of suicide more than once, but not frequently, 3 = contemplated suicide many times.
If individual i's latent suicidal ideation score, yi

* (latent, because only a category is observed),
is greater than or equal to τ1 (Figure 1), then the observed value for individual i (yi) is 1, 2, or
3 (this individual has experienced suicidal ideation). However, if yi

* is greater than or equal to
τ1 and less than τ2, then yi = 1 (this individual thought of suicide once). Likewise, if yi

* is less
than τ1, then yi = 0 (not suicidal) and if it is equal to or greater than τ3, then individual i’s
response is 3 (chronically suicidal).

The expected value of yi
*, μi

*, is modeled directly with an identity link, as in Equation 3:

(7)

and,

(8)

4In the probit model, the errors are assumed to be normally distributed (Agresti, 2002; Skrondal & Rabe-Hesketh, 2004). For an early
references to similarly formulated probit models, see, e.g., Ashford (1959), Goldberger (1964).
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where εi ~ Logistic  with fixed mean and variance.

It is important to note that the ordered logit model assumes that the multiplicative effect of a
covariate (observed or latent) on the odds of being in a category j, is the same for all j = 0, 1,
2, … J − 1. This proportional odds assumption is necessary to permit the relationship between
the ordinal variable and each covariate to be quantified by a single coefficient.5

Longitudinal Categorical Data
When researchers gather multiple cross-sectional or longitudinal measures on the same
individuals (for example, repeatedly measuring individuals’ levels of suicidality over several
years), the repeated measures on an individual are correlated with one another. This violates
an important assumption of statistical models—that of conditionally independent observations
—resulting in standard errors that are too low. Generalized estimating equations (GEE) were
developed to solve this problem with categorical data. GEE use a “working” correlation matrix
(specified by the data analyst) to represent the correlations between observations, and it uses
a special estimator (known as a “sandwich” estimator), to correct the standard errors. However,
the GEE approach has a few limitations that hamper its usefulness in modeling psychological
data. The estimates that result from GEE are population averaged estimates. That is, the
estimates are mean effects for the population as a whole, rather than for any given individual
(one coefficient applies equally to all members of the population). GEE does not allow the
researcher to explicitly model the population heterogeneity, or individual differences. For
instance, in the suicidality example, GEE would give only an estimate of the average intercept
and slope of suicidality in the population. GEE can estimate mean differences based observed
covariates (e.g., the difference between male and female averages), but not, for instance, a
specific individual’s estimated suicidality level or trajectory (or how it might change based on
a covariate value). Nor would it permit individual prediction from the intercept and slopes to
a distal outcome.

Hierarchical Generalized Linear Model
A longitudinal model for categorical data that does model the individual differences is the
hierarchical generalized linear model (HGLM; Raudenbush & Bryk, 2002), also known as a
generalized linear mixed model (GLMM; Skrondal & Rabe-Hesketh, 2004).6 This approach
combines the generalized linear model (GLM) with a hierarchical linear model (HLM; also
known as a random-effects, random-coefficients, mixed, or latent growth-curve model), in
which repeated measurements on individuals are expressed as a function of time (see Figure
2). Individual differences in the outcome variable when time equals zero and change in the
outcome over time are modeled by permitting the intercept and slope coefficients to vary across
individuals. The intercept and slope(s) are, therefore, referred to as random coefficients,
random effects, or (latent) growth factors. Both time-varying (not discussed in this paper) and
time-invariant covariates may be used to explain within- and between-person variability,
respectively.

In modeling the categorical drinking data, we use the logit link described in Equation 4 to
Equation 6. A categorical random-effects model has been described by Hedeker and colleagues
(Hedeker & Gibbons, 1994; Hedeker, Gibbons, & Flay, 1994; Hedeker & Mermelstein,
1998, 2000), and others (Agresti, 2002; Agresti et al., 2000; B. Muthén & Asparouhov,

5Other modeling options are possible if the proportional-odds assumption does not hold (see, e.g., Agresti, 2002; Hedeker & Mermelstein,
1998).
6For extended discussions of hierarchical generalized linear models, see, e.g., Agresti et al. (2000), Raudenbush, Bryk, & Congdon
(2005), Singer & Willett (2003), Skrondal & Rabe-Hesketh, (2004).
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2002; Raudenbush & Bryk, 2002; Skrondal & Rabe-Hesketh, 2004; Vermunt, 2006). In the
models that follow, μti

* (individual i's expected latent response value at time t; see Equation 7
& Equation 8), is modeled as a linear function of the random coefficients (growth factors),
which comprise the intercept coefficient, β0i, (the expected latent response value for individual
i when time = 0) and, usually, one or more slope coefficients, βsi (s = 1, 2, …, S) which are
multiplied by powers of time (e.g., β1iati, β2iati

2, β3iati
3, …, βSiati

S). The slope coefficients
describe systematic linear or curvilinear change over time in individual i's latent responses.7
The times of measurement, ati, are usually centered by subtracting a relevant age or timepoint;
often this is the time of, or age at, the first measurement occasion, as is shown in Figure 2. This
makes the intercept, β0i, individual i’s expected latent response at the first measurement
occasion. The times of measurement may be the same for all individuals, as shown in Figure
2, or may be specified in the model to be unique for each individual (e.g., actual age).

The model that follows has linear slope (higher order polynomials are also common), and is
expressed as having two levels. Level 1 characterizes the individual latent responses at each
timepoint, and Level 2 characterizes the individual trajectories over time. The generalized
linear model (Equation 4 – Equation 8) is at Level 1, embodied in yti

*:

(9)

where: εti ~ Logistic  with fixed mean and variance, and are assumed independent
between individuals (i.e., cov[εti, εtj] = 0), and conditionally independent between times (i.e.,
cov[εti, εvi] = 0; referred to as local independence).

At Level 2, individual differences in the random coefficients from Level 1 (β0i, β1i) are
represented by variability (u0i, u1i) around the mean intercept (γ00) and mean slope (γ10). The
individual differences are modeled as a function of an individual-level, time-invariant
covariate, xi (multiple covariates are possible), quantified by regression coefficients γ01 and
γ11 for intercept and slope, respectively. The conditional joint distribution of the intercept and
slope is assumed to be multivariate normal:

(10)

where: u ~ N(0, Ψ), cov(εt, us) = 0 for all t = 1, …, T and s = 0, 1, and γ00 = 0 for identification.
This identification restriction is necessary because the scale and location of the intercept are
arbitrary when this latent response parameterization is used.8 The thresholds (τ’s) are assumed
to be constant across time.

Utilizing the earlier example of suicidality, this hierarchical generalized linear model (HGLM)
characterizes individuals’ systematic change over time in the continuous latent response. The
τ's that relate the latent suicidality score to the observed categorical suicidality measures are
estimated as part of the model (Equation 5 – Equation 8) and, because they are constant across
time, we know that the latent suicidality score, despite changing over time, relates to the
observed categories of the ordinal variables in the same way at each measurement occasion.
The intercept mean is be defined to equal zero (γ00 = 0) on the arbitrary scale of the latent

7For models in which change over time is permitted to be non-linear, see, e.g., Blozis (2004, 2007), and Ferrer and McArdle (2003).
8For examples of alternative parameterizations, in which different restrictions on the thresholds permit γ00 be estimated, see Mehta,
Neale, and Flay (2004), Millsap and Yun-Tein (2004), and Skrondal and Rabe-Hesketh (2004).
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suicidal-ideation response (necessary in this parameterization); however, the estimated
individual intercepts vary around zero. The individual slopes vary about the estimated average
slope, as well, and these individual intercepts and slopes are often correlated.

Growth Mixture Model
Several assumptions have been discussed that are very important for the hierarchical
generalized linear model (HGLM): (1) the random coefficients (intercept and slopes) are
assumed to have a multivariate normal distribution; (2) change is a smooth function of time
(most often linear or curvilinear); (3) proportional odds; and (4) measures are independent,
conditional on the random effects (local independence). Any of these assumptions might not
hold, especially when modeling problem-behavior data. In the models that follow, we discuss
methods that relax the first three assumptions.

To begin, when the data are categorical and highly skewed, it is possible that the individual
intercepts and slopes are not normally distributed, potentially resulting in biased parameter
estimates (B. Muthén & Asparouhov, 2006; Vermunt, 2006). However this assumption is
difficult to test (Agresti, 2002, p. 496; Carlin, Wolfe, Brown, & Gelman, 2001; Vermunt,
2006). The Level 2 normality assumption can be relaxed by using a mixture of normal
distributions, known as mixing components or classes, to characterize the joint distribution of
the random effects. This is pictured in Figure 3a. This model is a type of finite mixture model
(see McLachlan & Peel, 2000), which we refer to here as a (generalized linear) growth mixture
model (GMM), and it assumes only within-class normality.9 The classes have different mean
structures at Level 2, and can comprise different proportions of the population. The within-
class Level-2 variance-covariance matrix can also differ across classes, however, under some
circumstances, this may lead to estimation problems, resulting from an unbounded likelihood
(McLachlan & Peel, 2000). The multinomial latent class variable, ci, which identifies
individual i’s class membership, takes on values k = 1, 2, … K, where K is the number of
classes. Here, the τ’s are assumed to be constant across both time and classes.

Figure 3a shows how the individual differences are, in this model, characterized in part as
discrete classes, and in part as continuous distributions within those classes. Because of this
within-class variability, covariates can be used to predict individual differences within class,
as well as to predict the probability of class membership. The hierarchical generalized linear
model (HGLM) can be seen as a special case of the growth mixture model (GMM), with just
a single class (K = 1). When GMM has two or more classes, Level 1 equations are indexed by
class:

(11)

for individual i at time t in class k; εkti distributed as before.

The Level 2 equations are also indexed by class, and a multinomial logistic equation is added,
which expresses the conditional probability of membership in class k as a function of a class-
specific intercept, αk and the covariate, xi, multiplied by coefficient, λk:

(12)

9Muthén and Asparouhov (2006) also refer to this model as a growth mixture analysis (GMA; for more on GMM with continuous
outcomes, see, e.g., Muthén, 2004; Muthén et al., 2002).
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(13)

where γK00 = 0 and αK = γK = 0 for identification; uki distributed as before.

This model has a more complicated interpretation than the hierarchical generalized linear
model (HGLM). In the suicidality example, if there are, for instance, three classes, it implies
three unique sets of intercept and slope means; one for each class. Within each class, individual
intercepts and slopes vary about those means and can be predicted by covariates, as can class
membership. The grouping of individuals into classes, however, is seldom perfect. Instead,
person i has some estimated probability of membership in each suicidality class. These are
referred to as posterior probabilities. For each individual, the posterior probabilities sum to 1
and are based on that individual’s observed outcome responses and covariate values. Thus,
person i's estimated trajectory of suicidality is a function of the probability of membership in
each of the classes, the class-specific means and covariance structures, and possibly covariates.

Latent Class Growth Analysis
There are several reasons that the within-class normality assumption of the growth mixture
model (GMM) may not be sustained by the data. The primary one is that there may be
insufficient variability to estimate the within-class variances and covariances in one or more
classes. Two or more classes can be collapsed together, but if the classes are well separated
(i.e., the mean trajectories are very different), then collapsing them might not be optimal. In
this case, it is possible to constrain one or more elements in the within-class covariance matrix
(Ψk) to zero. When all variances and covariances in a class are fixed at zero, it means,
effectively, replacing a continuous, normally-distributed class with a mass point, as shown in
Figure 3b. We refer to this model as a (generalized linear) latent class growth analysis (LCGA)
and, like the hierarchical generalized linear model (HGLM) this model is a special case of
GMM.10 The Level 1 equation is the same as that in GMM, but the Level 2 equations change
to reflect the elimination of within-class variances (and with no variation to explain, within-
class predictors are also dropped):

Level 2:

(14)

When all within-class variances and covariances equal zero, individual differences at Level 2
are being modeled solely by class membership, so it is likely that more classes will be needed
to adequately characterize the variability in the random effects distribution (B. Muthén &
Muthén, 2000b). The probability of membership in each of the K classes may be regressed
upon the covariates as in Equation 13, with the same identification constraints. Figure 4a shows
a path diagram of a growth mixture model (GMM) and a latent class growth analysis (LCGA).
The solid lines belong to both models and dashed lines show the optional parameters that, if
any are present, define the model as GMM (for more on the comparisons between these models,
see, e.g., Kreuter & Muthén, 2007; Nagin, 2005; Raudenbush, 2005; Reinecke, 2006).

10This approach is sometimes referred to as “semiparametric group-based modeling” (Nagin, 1999; see Appendix A).
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This model has a slightly simpler interpretation than the GMM because all individual
differences in estimated suicidality trajectories are characterized by class membership, and
those differences can be modeled as a function of predictors of class membership. Within each
class, all individuals are assumed to share the same suicidality trajectory. One way to think
about the shared within-class trajectory is that it is an approximation of the true within-class
individual latent trajectories, similar to the way mass points approximate the true distribution
of the random effect shown in Figure 3b. Person i's predicted trajectory of suicidality is a
straightforward function of his or her posterior class membership probabilities and the class
intercept and slope means.

Longitudinal Latent Class Analysis
Finally, it is possible that development cannot be characterized as a simple function of time,
as is assumed in the models we have been discussing, or that the proportional odds assumption
does not hold. All of the models thus far are bound by these two assumptions because they
model scaled growth (change across time is along a single continuous scale). Longitudinal
latent class analysis (LLCA; latent class analysis applied to longitudinal data) is a type of
mixture model but it does not belong to the family of growth models we have been discussing.
This is because, rather than modeling scaled change, LLCA models patterns of states across
time.11 If the outcome data are multinomial, LLCA is the only appropriate analytic approach
because any changes are necessarily state changes.

Longitudinal latent class analysis (LLCA) models the joint distribution of the repeated outcome
measures directly with a latent class variable, which characterizes both the within-person
variation that had been handled at Level 1 of the previous growth models, and the between-
person differences that had been handled at Level 2 (see, also, Appendix A). Its only assumption
is local independence. In LLCA, the time- and class-specific probability of scoring in or above
category j is modeled directly, so the thresholds are indexed by time (t) and class (k), in addition
to category:

(15)

and

(16)

Class membership is based on groupings of similar patterns of responses over time, and
covariates can be used to predict class membership probabilities, as shown in Equation 13.
Note that, because it is the category thresholds that define the differences both across time and
across classes in longitudinal latent class analysis (LLCA), they are all estimated. Thus, while
LLCA makes no assumptions about the distribution of the observed variables, or the form of
change, it trades fewer assumptions for many more estimated parameters (Vermunt, 2006), in
a manner similar to spline or piecewise models (e.g., McArdle, 2004). Additionally, the model,

11LLCA differs from latent transition analysis (LTA) because LTA models state changes across consecutive timepoints, rather than
patterns that span several timepoints (see, e.g., Collins, Graham, Rousculp, & Hansen, 1997; Graham, Collins, Wugalter, Chung, &
Hansen, 1991). As such, it answers different types of questions than LLCA and the other models discussed here, just as autoregressive
models answer different types of questions than latent growth curves.
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as parameterized here, does not permit unique, individually varying times of measurement. For
an application of LLCA to drinking patterns across time, see Lanza and Collins (2006).

In a longitudinal latent class analysis (LLCA) of the suicidality example, patterns of change
are defined by the variable categories, rather than estimated intercepts and slopes. Like the
latent class growth analysis (LCGA), everybody in a class shares the same parameters, however
now it is the category thresholds that are shared within class and different between classes.
Because thresholds can also change across time, change can be much more irregular or complex
in LLCA. For instance, the course of suicidality for individual i might fluctuate or be
intermittent. Differences in suicidality could, perhaps, be associated with influences such as
puberty, high-school graduation, or other shared events; and the covariates can be used to
predict the individual’s probability of membership in each class.

Adding Covariates
The selection and modeling of covariates in mixture models is a complex issue currently under
investigation, and an extended discussion of the issues is beyond the scope of this article.
However, early work (Nylund & Masyn, 2008) suggests that the number of classes should be
determined using an unconditional model, and that substantial changes in parameter values
after covariates are included indicate misspecification of their effects (e.g., omitting direct
effects of covariates on observed variables). As is the case when estimating any statistical
model, it is also important to let substantive theory, along with consideration of parsimony and
interpretability, inform the inclusion and specification of covariates. The added complexity of
mixture models makes this a particularly critical issue. For example, in a growth mixture model,
it is theoretically feasible to allow a covariate to affect class membership as well as one or more
growth factor variances in one or more classes. Additionally, all of the standard rules for typical
regression and HLM models still pertain (e.g., concern with multicollinearity among
covariates, the need to dummy-code nominal predictors).

Applying the Models
Longitudinal mixture models (GMM, LCGA, and LLCA) are often used to find unobserved
but distinct groups of individuals (e.g., Lanza & Collins, 2006; B. Muthén & Muthén, 2000a;
Shaw, Lacourse, & Nagin, 2005). However, any non-normal distribution can be approximated
by a finite mixture of normal distributions (Bauer & Curran, 2003; McLachlan & Peel,
2000), so the extraction of two or more classes does not necessarily indicate that distinct groups
exist in the population. It is possible that finding multiple classes is an indication of a non-
normal distribution of the random effects or, potentially, some other violation or model
misspecification (Bauer, 2005). In addition, class membership is seldom unequivocal. Rather,
as mentioned earlier, the individual has an estimated probability of belonging to each class.

In this paper, we use actual alcohol-use data, collected from a sample of adolescents when they
were in seventh through twelfth grades, to illustrate the similarities and differences between
these analytic approaches and to motivate the process of model selection (see Appendix B for
annotated Mplus syntax). The value these models is enhanced to the extent that childhood
events and circumstances may be used to help to predict later pathological processes, as this
can potentially allow targeted interventions to take place before such processes begin. In
addition, under some circumstances, covariates can aid in model selection. Thus we include a
covariate that has been found to predict adolescent alcohol use—association with alcohol-using
peers (e.g., Curran, Stice, & Chassin, 1997; Hawkins et al., 1992)—to demonstrate how a
covariate may be specified and interpreted in the models.
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Method
Participants and Procedure

Data come from a longitudinal, community epidemiological study of 451 (52% female) target
youths and their families from two-parent households in the Midwest. Participants in the study
were recruited from eight rural counties and the original sample of families was primarily lower
middle- or middle-class. Due to a very small minority population in this area, all participants
are of European heritage. Annually from 1989 (seventh grade) through 1992 (tenth grade) and
again in 1994 (twelfth grade) the adolescents and participating family members individually
completed questionnaires pertaining to subjects such as the demographic characteristics of the
family, their own personal characteristics and behavior, and characteristics and behavior of
other family members and friends. The retention rate in 1994 (the last wave used in the current
study) was 94%. Additional details about the study, which is still ongoing, can be found in
Conger and Conger (2002).

The primary outcome for these analyses is the alcohol use measure from the questionnaire data.
Target adolescents were asked each year how often they had consumed beer, wine, or hard
liquor during the previous year. The drinking items were coded into a single, ordinal alcohol-
use variable with four possible responses: 0 = never, 1 = less than weekly, 2 = once or twice a
week, and 3 = three or more times a week. Each year, the target adolescents were also asked
how many of their close friends used alcohol during the previous year. Answers ranged from
0 = “none of them,” to 4 = “all of them.” The adolescent’s answer to this question in seventh
grade was used as a covariate, predicting the intercept and change in the target adolescent’s
own drinking.12

Statistical Models
We began the unconditional analyses with hierarchical generalized linear model (HGLM;
Figure 2), using both linear and quadratic slopes, and utilizing the logit link and model shown
in Equation 9 and Equation 10. This model has the simplest interpretation and it gives an
overview of the form of change. Following HGLM, we tested the three mixture models,
beginning with growth mixture model (GMM; Equation 11 – Equation 13). GMM comprises
a very large set of potential models. For example, a quadratic model with three classes has 14
possible ways of specifying the random effects if they are constrained to be equal across classes,
and dozens more if they are permitted to vary across classes. To limit the number of models
we were testing, we decided to constrain variances equal across classes, as discussed earlier,
and to use a systematic approach to relaxing the constraints on the variance/covariance matrix.
For each model, we tested the following: (a) intercept variance only, (b) intercept and linear
slope variances, and (c) intercept, linear, and quadratic slope variances. We tested each model
both with all possible covariances estimated, and with all covariances constrained to zero.

All intercept and slope variances were fixed to zero for latent class growth analysis (LCGA;
Equation14), and, finally, we modeled the joint distribution of the repeated drinking outcomes
directly with longitudinal latent class analysis (LLCA; Equation15 & Equation16). Intercepts
for HGLM, GMM, and LCGA are placed at ninth grade—the first year of high school. Entry
to high school begins a time of increased risk for developing problem drinking. Incoming
students are exposed to older adolescents, many of whom have already begun to drink, and
alcohol is much more available in high school (Johnston, O’Malley, Bachman, & Schulenberg,
2006).

12Allowing covariates to affect the slope means that the effect of the covariates on the outcome changes across time; however, the
covariate is assumed to affect all individuals in the same fashion and is known as a “fixed effect.” Alternatively, we could constrain the
covariate effect to be time-invariant but allow that effect to vary across individuals (as a random effect).

Feldman et al. Page 11

Dev Psychol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For all analyses, we used a full-information maximum likelihood (FIML) estimator with robust
standard errors (MLR), as implemented in Mplus 4.21 (B. Muthén & Muthén, 1998 – 2006),
to estimate the parameters (the robust standard errors offer protection against inflated alpha
values in case of certain types of model or distributional misspecifications). With any
longitudinal study, some individuals will miss some assessments or drop out altogether. These
models utilize all of the available data under a missing-at-random (MAR) assumption (as would
multiple imputation), which allows that the missingness may be related to variables included
in the analysis (Little & Rubin, 2002). Unless missing data are missing completely at random
(MCAR; i.e., missingness is unrelated to any data being modeled, present or missing), which
is a much stronger assumption, FIML yields less biased estimates than other methods of
missing-data methods, such as listwise deletion (which also reduces the power of the analysis
by reducing sample size) or mean imputation (Schafer & Graham, 2002). FIML does not,
however, guarantee unbiased estimates if missingness is related to the missing values,
themselves, and this risk of bias increases with the proportion of missingness (the maximum
for a single wave in this study is 10.5%). However, we feel that, given the broad range of topics
under study, MAR is a reasonable assumption (for more on mechanisms of missingness and
techniques for dealing with missing data, see, e.g., Foster, Fang, & Conduct Problems
Prevention Research Group, 2004; Little, 1995; Little & Rubin, 2002; Schafer & Graham,
2002). FIML can be computationally demanding with categorical data, however, it offers
advantages over methods such as penalized quasi-likelihood (PQL) and marginal quasi-
likelihood (MQL), which, while computationally less demanding, may result in biased
estimates.

Model Assessment and Selection
Any given data set can potentially be analyzed using a multitude of statistical models, however,
there are generally theoretical and statistical reasons that many possible models can be ruled
out. For example, we are not considering any models that require an assumption of continuous
observed data (e.g., two-part models; see Olsen & Schafer, 2001; Tooze, Grunwald, & Jones,
2002). Furthermore, because we are interested in modeling change across multiple timepoints,
rather than pairs of timepoints, are we not considering any autoregressive-type models, such
as latent transition analysis (LTA).

For most longitudinal categorical analyses, there are no readily available statistics that assess
overall fit of the model to the data. The two categorical goodness-of-fit statistics, the Pearson
chi-square and likelihood chi-square (also called deviance, or G2) may not perform well when
there are many low expected cell frequencies (Agresti, 2002), and this is often the case when
longitudinal categorical data are used (e.g., five waves of a 4-category variable results in 45 or
1024 cells, most of which are likely to be empty). Nor is there a method for comparing models
that is widely accepted as best (B. Muthén & Asparouhov, 2006; Nylund, Asparouhov, &
Muthén, 2007). Thus, when assessing models, researchers generally consider both statistical
and substantive criteria (e.g., Jackson, Sher, & Schulenberg, 2005; Tucker, Orlando, &
Ellickson, 2003). In this section, we will discuss four complementary approaches to model
assessment: (1) quality of convergence; (2) comparative fit; (3) residual analysis; and (4)
visualization. In addition, issues such as parsimony and, in mixture models, class size should
be taken into consideration. When a class comprises a small number of individuals, the
parameter estimates may not be very stable or reliable. Often, no single criterion is, alone,
sufficient to select a model and two or more of the criteria we discuss must be considered
simultaneously.

Convergence—The estimation algorithm searches for the global maximum of the likelihood
function, but in complex categorical data models and mixture models, algorithms are more
likely to converge on local maxima than with continuous data or in less complicated models,
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so the use of multiple starts from random locations in the parameter space is recommended
(Hagenaars & McCutcheon, 2002; Hipp & Bauer, 2006; McLachlan & Peel, 2000; B. Muthén
& Asparouhov, 2006; Vermunt, 2006; see Appendix B). In some cases, there may not be a
global maximum (McLachlan & Peel, 2000). This can result in non-convergence, or failure of
the algorithm to replicate a maximum loglikelihood value over many starting values. That is,
each start may end up at a different local maximum, suggesting that the model parameter
estimates are untrustworthy. A second indication that adequate convergence was not reached
is a failure of the algorithm to generate standard errors. This can be brought about by a singular
information matrix, which implies that the model is not identified (L. K. Muthén & Muthén,
1998–2006). A model that has not converged, has resulted in a singular information matrix, or
has failed to yield a consistent maximum loglikelihood value is considered a failed model, in
this paper, and eliminated from further consideration.

Comparative fit—The standard chi-square difference test (likelihood ratio test; LRT) is not
helpful in determining which model is best, because the different models are not necessarily
nested. It also cannot help choose the optimal number of classes in a mixture model, because
regularity conditions of the test are violated when comparing a k-class model to a (k − 1)-class
model (McLachlan & Peel, 2000). Often, an information index, such as the Bayesian
Information Criterion (BIC; sometimes called Schwartz Information Index) is used in model
selection. This index and similar ones (e.g., Akaike Information Criterion) take into account
the model loglikelihood (higher is better), and penalize for model complexity (i.e., the number
of parameters estimated relative to the sample size). Thus, using them reduces the risk of
overfitting the model to a single sample, thereby improving the possibility of replicating the
model findings with future samples. In general, a lower value on an information criterion
indicates a better model. Mplus reports three information indices, but the most widely used is
the BIC (see Hagenaars & McCutcheon, 2002; Nylund et al., 2007; Vermunt, 2006).

Two more statistics, available in Mplus 4.21 (B. Muthén & Muthén, 1998 – 2006), may be
useful for determining the optimal number of classes in a mixture model. The Lo-Mendell-
Rubin test (LMR; B. Muthén, 2004) analytically approximates the LRT distribution and the
bootstrapped LRT (BLRT), suggested by McLachlan and Peel (2000), uses bootstrap samples
to empirically derive the sampling distribution of the LRT statistic (Nylund et al., 2007). Both
tests compare a k-class model with a (k − 1)-class model and, in both cases, a statistically
significant p-value suggests the current model offers improvement over the model with one
class fewer.

Also discussed in the literature on mixture models is entropy (B. Muthén, 2004), which, similar
to the average posterior probabilities for most likely class membership, serves as a measure of
the precision of individual classification. It ranges from 0 (everybody has an equal posterior
probability of membership in all classes) to 1 (each individual has posterior probability 1 of
membership in a single class, and probability 0 of membership in the remaining classes).
Equivalently, high entropy indicates clear class separation. Entropy is not a measure of fit, nor
was it originally intended for model selection (Ramaswamy, Desarbo, Reibstein, & Robinson,
1993); however, if it is extremely low, that suggests the model may not be useful for some
purposes. For instance, if the model is intended to find homogenous clusters of individuals
with distinctive patterns of change (e.g., Nagin, 1999), low entropy indicates that it may be
doing a poor job. However, the reverse is not necessarily true; that is, high entropy does not
necessarily show the existence of homogeneous clusters of individual trajectories (Feldman &
Masyn, 2008).

Residual analysis—The observed and model-predicted cell and marginal proportions can
be compared to help assess fit of the model to the data (Carlin et al., 2001; Skrondal & Rabe-
Hesketh, 2004). As mentioned earlier, when a model is large and complex, such as a growth
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process with multiple timepoints, most cells have expected frequencies that are very small or
approach zero. However, often, a few patterns of responses recur relatively frequently. In this
case, it may be helpful to inspect standardized Pearson residuals (Haberman, 1973) in the cells
with these more common response patterns (B. Muthén & Asparouhov, 2006). In addition,
standardized residuals from the univariate margins (i.e., category proportions at each
timepoint) and bivariate margins (i.e., proportions in cells of all two-timepoint cross-
tabulations) may be inspected (Skrondal & Rabe-Hesketh, 2004). Standardized residuals can
be compared with a standard normal distribution (Haberman, 1973); thus, too many
standardized residuals greater than 2 suggests poor fit of the model to the data. All of these
observed and expected cell proportions, along with standardized residuals, can be generated
in Mplus with the TECH10 output command (see Appendix B). Instructions on how to calculate
the expected frequencies when other software is used are available from the first author.

Plots—Graphical methods can give a clearer picture than numeric output alone of model-
predicted trajectories and patterns of change, but using them effectively for model selection
depends upon researcher judgment and substantive knowledge. For instance, plots may make
it easier to judge whether results of an analysis make interpretive sense or map reasonably onto
theory and previous findings. Mixture models, in particular, must be considered in the context
of theory, interpretability, and usefulness, because they tend to be used in an exploratory
fashion and are innately data-driven.

Linear (and curvilinear) trajectories based on the (within-class) means of the random effects
can be plotted, and these give an easy-to-describe picture of the overall mean change; but
because the scale of these parameters is arbitrary, the plots can potentially be difficult to
interpret. To facilitate interpretation in our line plots, we include the estimated thresholds (τj)
that divide the categories of the observed data. In addition, we show plots of the time- and
class-specific estimated category probabilities, which give a more nuanced picture of how
alcohol use changes over time. The predicted-probabilities plots were created in Excel using
the TECH7 output from Mplus, and line plots were generated in Excel by using Mplus
estimated intercept and slope means multiplied by time (and the model-estimated thresholds,
which are fixed across time).

Results
The sample size for these analyses is 451 (236 females). The observed category proportions at
each grade are shown in Figure 5, broken out by gender. Nearly 30% of the target adolescents
of both genders reported drinking in seventh grade, and this grew to approximately 65% by
twelfth grade (Figure 5). Going along with this increase in the likelihood of drinking is an
increase in the proportion of youths drinking heavily. By the time the adolescents graduated
from high school, approximately 20% of them (17% of females, 21% of males) reported
drinking weekly or more often (Figure 5). In addition, out of 451 seventh graders,
approximately 1/3 (27% of females and 34% of males) reported having at least one close friend
who drank alcohol and 5% of females and 7% of males reported that half or more of their
friends drank. Because drinking did not differ by very much between males and females (Figure
5), we did not use gender as a covariate in the model.

Model Estimates and Fit Statistics
Fit indices are shown in Table 1 for the all models. Underlined values identify the best fitting
number of classes within model type, as selected by the statistic in the row.

HGLM—Two unconditional hierarchical generalized linear models were tested. The first
characterized in drinking-frequency trajectories over adolescence with an intercept (in ninth

Feldman et al. Page 14

Dev Psychol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



grade) and linear slope, and the second added a quadratic slope. The quadratic slope
significantly improved the model fit (Δχ2 = 49.83, Δdf = 4, p < .001) and was retained. Based
on this result, the mixture models that follow were also specified with quadratic slopes. The
intercept mean was fixed to zero for identification (Equation 9 &Equation 10) and the average
linear trend was positive and statistically significant (β10 = 0.84, p < .001; see Table 2). The
mean quadratic slope was not significant, however, there was considerable individual
variability around the intercept and both slopes. In addition, the statistically significant
covariances suggest that the frequency with which adolescents were drinking in ninth grade
was related to changes in their drinking over the 6-year timespan (Table 2). On average, more
drinking or more rapidly increasing drinking in ninth grade was associated with trajectories
that were flattening out by the end of high school; while less frequent drinking in ninth grade
was associated with drinking trajectories that were accelerating in twelfth grade. The BIC for
this model was the lowest of all models tested. The other three statistics in Table 1 do not apply
unless there are two or more classes.

GMM—In general, when more within-class variances and covariances were estimated in the
growth mixture models, fewer classes were successfully extracted. For example, when all three
variances and their covariances were estimated even the 2-class model failed to converge, but
with the covariances fixed to zero, the same 2-class model did converge (see Table 1) Increasing
the number of classes to three resulted in a singular information matrix.

In the next model, the quadratic variance was constrained to zero and only intercept and linear
slope variances were estimated. The 2-class models converged, both with and without the
covariance, but there was no significant difference in fit between the two (Δχ2 = 0.59, df = 1,
p = .44), so we constrained the covariance to zero. Here, again, the model did not converge
with three classes.

In the last set of GMM models only the intercept variance was estimated, and the remaining
variances (and, necessarily, all covariances) were constrained to zero. In this case, we were
able to estimate up to four classes. The 5-class model did not converge (the information matrix
was singular; Table 1) and we ruled out the 4-class model because one class was too small to
estimate reliably (4%, representing approximately 18 individuals). This left plausible models
with two and three classes. In comparing the 2- and 3-class models, the fit statistics did not
agree on which was optimal: the LMR preferred two classes, the BIC three classes, and the
BLRT no fewer than four classes (Table 1). It is worth noting that entropy for all of the GMM
models was much lower than for it was for any other mixture models (Table 1). We retained
all of the models the converged except the 4-class GMM.

LCGA—As mentioned earlier, in latent class growth analysis, because all within-class
variances are constrained to zero, more classes may be needed to characterize the same joint
distribution of growth factors. Equivalently, as the number of classes increases, the latent class
variable is likely to account for more and more between-individual variability. Although a
maximum of only four classes could be estimated with GMM, seven classes were successfully
extracted with LCGA. The 7-class LCGA had a class that was too small to estimate well (3%,
representing approximately 12 individuals). Nonetheless, the BLRT was still significant at
seven classes, suggesting that no fewer than seven classes would be needed to model these data
(Table 1). The BIC and LMR both selected the 4-class LCGA, but the 3-class model had a BIC
value that was nearly equivalent to that of the 4-class model. We retained the 3- and 4-class
models.

LLCA—The longitudinal latent class analysis failed to replicate the best loglikelihood when
seven classes were specified, and none of the fit statistics selected more than four classes (Table
1). The BLRT suggested that four classes were adequate, and the BIC and LMR both selected
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the 2-class model. Because the LLCA models require so many parameters, it is not surprising
that no fit index selected a model with more than four classes, nor that its BIC values were
consistently higher than for any other models (as was entropy, suggesting cleaner class
separation when more parameters were estimated). We retained the models with two, three,
and four classes.

Residuals
We inspected the univariate and bivariate residuals for the HGLM and the best 10 out of the
17 mixture models that had converged properly. Table 3 shows the frequencies of univariate
and bivariate residuals greater than 2.13 All models were able to replicate the univariate
observed values adequately, but there was more variability among the bivariate residuals (Table
3). The 3- and 4- class LLCA models fit the bivariate cell counts the most accurately and the
worst-fitting were the 2-class models: LLCA and the three GMMs (Table 3).

Table 4 shows comparisons of observed and predicted cell frequencies for the most commonly
observed patterns of responses over the five occasions. Note that, although each of the four
categories of the outcome were endorsed by at least a few individuals at every timepoint, the
most commonly observed patterns comprised only zeros and ones (representing non-drinkers
[0] and infrequent drinkers [1]). Here, again, the 3- and 4-class LLCA modeled offer the best
fit to the observed data. Only the 2-class LLCA model did a noticeably worse job than the other
models under consideration at reproducing the cell counts. It is also worth noting that the
frequency of one response pattern (01111) was not reproduced well by any model except the
most highly parameterized LLCAs.

In summary, the bivariate residuals suggested that all of the 2-class models fit the data relatively
poorly, and the 2-class LLCA also failed to adequately match the common response patterns.
We dropped the 2-class models from further consideration. In contrast, 3- and 4-class LLCAs
both fit the observed frequencies particularly well, but the 4-class model required 16 more
parameters, had a higher BIC (Table 1). Thus, we rejected the 4-class LLCA in favor of the
more parsimonious 3-class model. We continued to consider the HGLM, the 3-class GMM
with intercept variance, the 3-class LLCA, and 3- and 4-class LCGAs.

Plots
Plots of model-predicted trajectories and patterns of change can also help a researcher choose
the most appropriate or reasonable model from several competing ones, and plots are often
used this way in model selection (e.g., Greenbaum, Del Boca, Darkes, Wang, & Goldman,
2005; B. Muthén & Muthén, 2000b). Figure 6 shows a comparison of the estimated mean
curves, based on the y* metric, generated by the 3-class growth mixture model (GMM; top)
and 3-class latent class growth analysis (LCGA; bottom). Because the log-odds trajectories are
on arbitrary scales, the plots show category thresholds as dashed lines to facilitate comparison
across analyses. In addition, the GMM plot includes SD bars above and below the class means
at each timepoint (based on the intercept variance). These SD bars illustrate the overlap of
classes that accompanies the extremely low entropy. The GMM finds one unexpected class,
comprising slightly over 1/3 of the sample, in which average drinking probabilities are constant
across adolescence. This class shows approximately 50% of the individuals reporting alcohol
use at each time (the first threshold separates non-drinkers from drinkers). Its other two classes
are increasing, one early and one later, which is consistent with the covariances found in the
hierarchical generalized linear model (HGLM; Table 2). The LCGA plot shows one class with
consistent low drinking probabilities, one with rapidly increasing probabilities, and one with

13Absolute size of standardized residuals can also be taken into consideration, if they are very large (e.g., > 10), which did not occur in
these analyses.

Feldman et al. Page 16

Dev Psychol. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



relatively high drinking probabilities across all timepoints. These last two classes are also
consistent with the HGLM covariances in Table 2. That is, one class has lower drinking
probabilities in ninth grade, but those probabilities are increasing rapidly, and the other, more
likely to be drinking (or drinking more) in ninth grade, is increasing more slowly (and shows
more quadratic slope; Figure 6).

The second way to plot the trajectories and patterns of change is to show the predicted category
probabilities from each time (see Figure 7). This gives a somewhat richer picture of the change
because it illustrates the shifts in proportions at each level of a categorical variable. It
complements the plots of y*, shown in Figure 6, and when the categories are not evenly spaced,
or have different substantive meanings, this approach can be more informative than a line plot.
Figure 7 shows a comparison of the 3-class GMM, LCGA, and longitudinal latent class analysis
(LLCA, which only yields category probabilities). The LLCA and LCGA classes are very
similar to one another, both in class-specific patterns of change and size, suggesting that the
extra parameters in LLCA are not yielding much more information. Both are consistent with
prior literature (e.g., Hix-Small, Duncan, Duncan, & Okut, 2004;White, Johnson, & Buyske,
2000), in which researchers have found classes with low, high, and increasing alcohol-use
probabilities across adolescence.

Only GMM found the class with constant moderate drinking probabilities, and Figure 7 shows
that this class groups together individuals who responded in all four drinking categories.
Because this class fails to differentiate high versus low drinking probabilities (all categories
are represented in the class), it may not be very informative. It is also not consistent with prior
literature. In addition to these problems, the overlap of classes in GMM makes it difficult to
interpret, and a mixture model with such indistinct classes may offer little if any advantage
over the more standard hierarchical generalized linear model (HGLM) without classes. For all
of these reasons, we eliminated it from further consideration.

The 4-class LCGA was selected by both LMR and BIC as the best LCGA model, however,
the BICs for the 3- and 4-class models were very close (Table 1) and, overall, the two models
did approximately equally well with respect to the standardized residuals (Table 3 & Table 4).
Figure 8 shows the small added class (12%; labeled “High at A”) which is largely a subset of
the low class from the 3-class model, but with higher drinking probabilities in the seventh and
eighth grades (such class splitting can be investigated with a cross-tabulation of modal class
assignments). By tenth grade, it does not differ substantially from the low class. This type of
pattern, in which adolescents drink more in the early and later years, but not in between, is not
predicted by theory or prior literature (e.g., Colder, Campbell, Ruel, Richardson, & Flay,
2002;Hill et al., 2000;Orlando, Tucker, Ellickson, & Klein, 2005). It is our feeling that this
added class arises as an artifact of a testing effect that is well-established among self-report
measures in longitudinal studies; higher levels of negative feelings and behaviors are often
reported at the first wave of data collection (see, e.g., Knowles, Coker, Scott, Cook, & Neville,
1996;Twenge & Nolen-Hoeksema, 2002). An inflated first-year report could explain the added
class, so we decided to eliminate the 4-class LCGA.

At this point, based on combinations of fit statistics, residuals, considerations of parsimony,
and plots, we felt that all 2- and 4-class models, as well as all GMMs could be reasonably ruled
out for this data set, leaving the 3-class LCGA and LLCA models and the HGLM still under
consideration.

Adding Covariates
After selecting the best unconditional models, we used the adolescent’s seventh-grade report
of alcohol consumption by close friend to explain individual differences and to help guide
model selection. The covariate was allowed to predict class membership in the mixture models
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and the growth-factor variability in the hierarchical generalized linear model (HGLM). If a
growth mixture model (GMM) were still under consideration, it would be possible to use the
covariate to explain within-class variation, as well as the probability of class membership. In
the case of GMM, as in the other cases, covariates are used to explain individual differences.
When a covariate is permitted to affect both within-class and between-class variability, it is
predicting a complex combination of an individual’s probability of class membership and that
individual’s trajectory, relative to the mean trajectory in each class in which the individual has
some non-zero probability of membership. This can make the covariate’s effects potentially
difficult to interpret.

In the HGLM, targets with more close seventh-grade friends drinking alcohol were,
themselves, predicted to be drinking more in ninth grade (β01 = 1.36, SE = 0.24, p < .001), but
it was also predicted that their drinking would be increasing more slowly in ninth grade (β11
= −.19, SE = 0.07, p = .011). Despite this effect, however, a target who reported that even a
few of his or her friends were drinking in seventh grade (i.e., 1 on the 0 to 4 scale) would still
end up, on average, drinking more in 12th grade than an adolescent who reported having no
drinking friends in seventh grade (see Figure 9).

The regression coefficient for a single class represents the change in the log-odds of
membership in that class, versus a reference class, for a one-unit change in the covariate (for
members of those two classes). The reference class can be any class, and Mplus 4.21(B. Muthén
& Muthén, 1998 – 2006) gives results with each class, in turn, treated as the reference. Viewing
results this way permits comparison of all pairs of classes with respect to the covariate, which
may be more useful than simply using a single reference class. Note, however, that, as the
number of classes increases, testing all possible pairs may not be necessary or useful, and could
introduce the possibility of an inflated Type-1 error rate. Additionally, global tests of
association between the latent class variable (with a given number of classes) and one or more
covariates can be conducted using the standard likelihood ratio test for nested models.

Table 5 shows all paired class comparisons in 3-class LCGA and LLCA models. The results
across the two models are very similar. Members of the high class reported more alcohol-using
friends in seventh grade than either of the remaining two classes, which did not differ
significantly from one another. In deciding between LLCA and LCGA 3-class models, we
weighed the better fit of the LLCA against its lack of parsimony; as compared with the LCGA
(the LLCA requires 34 more parameters; Table 1). If the LLCA patterns of change had shown
noticeable signs of non-linearity, then it would have made sense to choose that model over
LCGA. However, it did not (Figure 7), and the substantive stories told by the trajectory plots
and the relationships between classes and the covariate are the same for the two models. Based
on all of these factors, we retained the LCGA and dropped the LLCA. Parameter estimates for
the conditional 3-class LCGA are shown in Table 6.

Summary
A single set of categorical adolescent-drinking data was analyzed using a hierarchical
generalized linear model (HGLM) with linear and quadratic slopes, and 21 specifications of
mixture models. The HGLM showed a statistically significant mean linear increase in drinking
(with a non-significant mean quadratic slope), and reflected significant variability around the
intercept, in ninth grade, and both linear and quadratic slopes. All of the mixture models also
revealed an overall increase in drinking across time. In general, freeing more variances and
covariances in the growth mixture models (GMMs) led to fewer classes being estimable,
resulting in a range of one class (equivalent to HGLM), when all variances and covariances
were estimated, to seven classes, when all variances were constrained to zero (in the latent
class growth analysis; LCGA). Based on the convergence properties, fit indices (BIC and LMR
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proved most useful), and, in two cases, the extraction of unacceptably small classes, we were
able to pare our list down to 10 potential models, including the HGLM.

We next considered the fit in terms of model-predicted versus observed category frequencies
by looking at standardized residuals for the univariate and bivariate marginal frequencies
(Table 3), and the most commonly occurring patterns of responses (Table 4). Too many
standardized residuals larger than 2 is a sign of poor fit of the model to the data. All models fit
the univariate marginal frequencies fairly well, and all but one—the 2-class longitudinal latent
class analysis (LLCA) model—fit the common-pattern frequencies adequately. We eliminated
the 2-class LLCA and also dropped the remaining 2-class models, all of which had 15 or more
large bivariate residuals (this cutoff was chosen somewhat arbitrarily). The 3- and 4-class
LLCA models both predicted cell frequencies extremely well, so we eliminated the 4-class
model, which required 16 more parameters and had a higher BIC.

For the remaining selection decisions, we used plots to help us consider substantive issues:
interpretability, usefulness, relationships with covariates, and consistency with theory and
previous literature. Based on the plots, we rejected the sole remaining GMM. One of its classes
was of little use in terms of explaining outcomes and it lacked a class with consistently low
drinking probabilities that is predicted by theory and previous literature (e.g., Colder et al.,
2002).14 Finally, the plots showed how poor the class separation was when the intercept
variances were estimated. Given the overlap between classes and the difficulty in estimating
and interpreting this model, even with all other things being equal, we would see little reason
to select this GMM over the more straightforward and parsimonious HGLM.

We also compared the plots for the 3- and 4-class LCGAs, which had very similar BICs (Table
1). The added class showed a pattern that was neither predicted by theory nor found in previous
studies of adolescent alcohol use. Rather, this new class appeared to be an artifact resulting
from test-retest effects often found in longitudinal studies comprising self-reported data. We
rejected the 4-class model in favor of the 3-class.

The 3-class LCGA and LLCA models were very similar to one another (Figure 7). Both had
one large class with low drinking probabilities across adolescence and a small increase toward
the end of high school (labeled “low”), a small class with relatively high drinking probabilities
(including more frequent drinking) across adolescence (“high”), and a class that started with
low drinking probabilities in seventh grade and then increased fairly rapidly, until its drinking
probabilities were similar to the “high” class in 12th grade (“increasing”).

Finally, we added a covariate. The three remaining models (LCGA and LLCA 3-class models,
and HGLM) all showed that adolescents who reported having close friends who used alcohol
in seventh grade were likely to be drinking more frequently themselves across all of the junior
high and high school years. Such similar findings across the three models suggest that all offer
reasonable representations of drinking across middle and late adolescence, and given the large
difference in parsimony between LCGA and LLCA (13 vs. 47 parameters, respectively), it
made sense to reject the LLCA in favor of the LCGA. In situations where plots show that
change over time is less continuous and linear or curvilinear (e.g., episodic problems like
suicidality), or when the proportional odds assumption is not tenable, LLCA may offer
considerable advantage over the other models.

The two remaining models, HGLM and the 3-class LCGA, were equivalent in terms of fit to
the data and to theory, and they told essentially the same substantive story, so we did not choose

14It is possible, in GMM and other mixture models, to specify a class with zero probability of drinking at all timepoints if such a class
is believed to exist. For details on how this is done, see Kreuter and Muthén (2007).
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between them. It is possible that, based on further analyses, one of the two would stand out as
a clearly better model. For example, differences might emerge when other covariates are used,
or one of the two models could prove a better predictor of individual values on a distal outcome.

Discussion
In any data-analysis situation, there is a multitude of decisions that must be made, from
determining a statistical model for the distribution of the data to choosing the structural models
that best answer the research questions. The study of problem behaviors can be a particular
challenge; the behaviors represent developmental processes, requiring longitudinal analyses,
and because the behaviors are rare, their distributions are highly skewed. In addition, most data
measuring these behaviors are discrete (binary, ordinal, or count). We have presented a
selection of alternative models for analyzing longitudinal categorical data. These approaches
assume more appropriate distributions for problem-behavior data than the traditional
continuous-data models, permitting researchers to have more faith in the results.

Starting with the concepts involved in the generalized linear model (GLM) for categorical data,
we discussed longitudinal extensions, including the hierarchical (or longitudinal) version of
the generalized linear model (HGLM), and several specifications of mixture models. While
there has been a great deal of excitement recently over using mixture models to find
homogeneous unobserved subgroups in the population, we showed how such approaches can
also be viewed as extensions of the random-effects model (Bauer & Curran, 2003; B. Muthén
& Asparouhov, 2006), which relax some of its strong assumptions. Because of this, they might
be the most appropriate choices for certain types of data distributions, irrespective of any
question of subpopulations.

Our goal in this paper was to present a group of related models for longitudinal categorical
data and to offer substantive researchers a useful guide to testing and selecting between the
alternative models. This is a particularly difficult issue with categorical data and complicated
longitudinal models, such as mixture models, because, as we find here, there are no completely
reliable fit statistics for these types of models, and no readily available measures of absolute
fit. We suggested several considerations to use in model selection. The first have to do with
convergence properties, measures of comparative fit, and residual analysis. We dismissed
models that did not converge well (including both improper solutions and failure to repeat the
best loglikelihood value). From the remaining models, we chose the most plausible ones based
on the fit statistics, and then ruled out several more because they failed to adequately reproduce
the observed cell frequencies or were equivalent to more parsimonious models with respect to
fit. Next, we included substantive considerations in model selection. For instance, we rejected
a model because its substantive meaning was both obscure, rendering the model less useful,
and not a reasonable fit to theory or to prior research. We also selected one of two similar
models, despite poorer fit, because it was more parsimonious. Of course, we tested a limited
number of models and only a single covariate. Choice and specification of covariates are an
important factor in model selection and differences in these could potentially lead to different
model choices

Through this process of elimination, we selected the two models that offered the most
reasonable combination of parsimony, fit to the data, and fit to theory—the hierarchical
generalized linear model (HGLM) and the 3-class latent class growth analysis (LCGA). The
two models also use roughly the same number of parameters: 11 and 13, respectively and the
substantive findings were similar. Both showed that, while adolescents are increasingly likely
to drink as they approach the end of high school, those who, in seventh grade, reported having
more friends who were drinking, were more likely to be drinking, themselves, throughout the
rest of the secondary school years. The choice between these two models, based on the data
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we have presented, is, in our opinion, largely a matter of ease of interpretation, although further
investigation could turn up substantive or statistical reasons to choose one over the other, or
even select a different model over these two.

This study has the strengths and the weaknesses that inevitably result from using actual data
as an example. On the one hand, it shows how the models might look in an actual research
situation. On the other hand, with simulated data, we could compare the model results with a
known population to discover whether there are any systematic biases in the analyses. It is also
possible that different approaches to measuring alcohol you could yield different results
(Feldman & Masyn, 2008). Finally, there is one more critical piece which warrants further
study. Often the purpose of longitudinal studies is to predict what will happen to the young
people later in life. The models may not be of much use if they fail in that respect, no matter
how well they appear to characterize the data at hand. Future research needs to take distal
outcomes into account in assessing the adequacy of the models.

In this paper we present and compare a fairly large set of models, but it is not an exhaustive
list of potential models. There is an infinite set of possible models and, with empirical data,
we cannot know what the true model is. For instance, there are models outside of the GLM
framework that could be considered when growth is not linear or curvilinear, as well as two-
part models, in which behavior is modeled as two related processes: (1) exhibiting the behavior
versus not doing so, and (2) intensity or extent of the behavior (Olsen & Schafer, 2001; Tooze
et al., 2002). However, although there remains some uncertainty with respect to model choice,
we feel that all of the methods shown here may offer improvement over approaches that treat
all data, irrespective of their actual distributions, as continuous and normally distributed.

In addition, because comparing longitudinal categorical models is not always straightforward,
we have offered a systematic approach to assessing and selecting models from among several
competing, equally appropriate statistical options. It is our belief that adopting this new
business-as-usual approach will improve our ability to understand trajectories of problem
behaviors over childhood and adolescence. With improved models, we can better determine
risks and protective factors, and this information could potentially be used for early
identification of those most at-risk, helping to select the best candidates for targeted preventive
interventions.
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Appendix A

Types of Generalized Linear Growth Models

Name Acronym Alternative Name Link Distributional Assumptions

(acronym) Level 1 Level 2 +

Hierarchical Linear Model HLM Random Effects Model
Random Coefficients Model
Mixed Model
Multilevel Model (MLM)

Identity Normal Normal

Hierarchical Generalized Linear
Model

HGLM Generalized Linear Mixed
Model (GLMM)

May be identity,
log, logistic or
logit, probit,
complementary log-
log, etc.a

Member of
Exponential

Familyb

Normal

Growth Mixture Model GMM Growth Mixture Analysis
Finite Mixture Model

May be identity,
log, logistic or
logit, probit,
complementary log-
log, etc.

Exponential
Family

Multinomialc
& Normal

Latent Class Growth LCGA Semi-parametric Group-
Based Model (SGBM)

Exponential
Family

Multinomial

Latent Profile Analysis Identity Normal Multinomial
Longitudinal Latent LLCA Latent Class Analysis

(LCA)
May be identity,
logistic or logit,
probit,
complementary log-
log, etc.

Multinomial

a
Depends on the distribution of the observed data.

b
Exponential family of distributions includes normal, exponential, gamma, multinomial, binary or Bernoulli, Poisson, zero-inflated Poisson, negative

binomial, etc.
c
Multinomial includes both ordered and unordered categorical

e
Model lacks latent growth factors
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Appendix B

Syntax Example 1: Unconditional (i.e., no covariates) Hierarchical
Generalized Linear Model (HGLM)
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Syntax Example 2: Conditional (i.e., with covariates) GMM or LCGA
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Syntax Example 3: LLCA Without Covariates
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Figure 1.
Pictorial representation of how thresholds (τ's) in an underlying, continuous latent response
variable correspond to the categories in an ordinal variable.
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Figure 2.
Path diagram of a hierarchical generalized linear model (HGLM) with a covariate, X. Model
is shown with fixed times of measurement, but individual times of measurement may be
specified in the model.
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Figures 3a and 3b.
A skewed univariate distribution characterized by a mixture of normal distributions on top
(generalized linear growth mixture model; GMM), or mass points on the bottom (generalized
linear latent class growth analysis; LCGA).
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Figure 4a and 4b.
Path diagrams for growth mixture model (GMM) and latent class growth analysis (LCGA) on
the top. Solid lines are parameters present in both models and dashed lines represent parameters
that, if present, define the model as GMM. Bottom shows the path diagram of longitudinal
latent class analysis (LLCA). Both models are shown with covariate, X.
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Figure 5.
Observed drinking category probabilities by gender and grade.
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Figure 6.
Estimated mean trajectories for 3-class generalized linear growth mixture model (GMM) and
generalized linear latent class growth analysis (LCGA). GMM plot includes standard deviation
bars at each time and, in both plots, thresholds are shown by dashed lines.
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Figure 7.
Plots of predicted category proportions for 3-class models: generalized linear growth mixture
model (GMM; top), generalized linear latent class growth analysis (LCGA; middle), and
longitudinal latent class analysis (LLCA; bottom).
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Figure 8.
Plots of predicted category proportions for 4-class generalized linear latent class growth
analysis (LCGA).
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Figure 9.
Plot of predicted hierarchical generalized linear model (HGLM) trajectories by levels of the
covariate, target's report of the number of alcohol-using friends in 7th grade (range of scale: 0
= none to 4 = all of them).
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Table 2

Hierarchical Generalized Linear Model Results

Estimate SE p

Means
  β00 Intercept 0.00a — —
  β10 Linear Slope 0.84 0.10 < .001
  β20 Quadratic Slope −0.06 0.04 .098
Variances and Covariances
  ψ11 Intercept 10.28 1.58 < .001
  ψ22 Linear Slope 0.79 0.17 < .001
  ψ33 Quadratic Slope 0.14 0.03 < .001
  ψ12 Intercept with Linear (r) 0.58 (.21) 0.30 .055
  ψ13 Intercept with Quadratic (r) −0.52 (−.44) 0.17 .003
  ψ23 Linear with Quadratic (r) −0.18 (−.55) 0.05 < .001
Thresholds
  τ1 0.53 0.19 .006
  τ2 5.34 0.35 < .001
  τ3 7.35 0.46 < .001

a
Intercept mean is fixed to zero for identification
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Table 3

Univariate and Bivariate Standardized Residuals

Model Value of Standardized Residual

Univariate (16 Cells) 2 – 3 3 – 4 4 – 5 Total

HGLM 1 0 0 1
GMM
  Intercepta
   2 Classes 0 0 0 0
   3 Classes 1 0 0 1
  Int, Linear Slopea
   2 Classes 2 0 0 2
  Int, Lin, Quadratic Slopesa
   2 Classes 2 0 0 2
LCGA
   3 Classes 0 0 0 0
   4 Classes 0 0 0 0
LLCA
   2 Classes 0 0 0 0
   3 Classes 0 0 0 0
   4 Classes 0 0 0 0

Model Value of Standardized Residual

Bivariate (160 Cells) 2 – 3 3 – 4 4 – 5 Total

HGLM 6 0 1 7
GMM
  Intercepta
   2 Classes 13 3 0 16
   3 Classes 6 4 0 10
  Intercept, Lineara
   2 Classes 14 4 0 18
  Intercept, Linear, Quadratica
   2 Classes 12 3 0 16
LCGA
   3 Classes 11 0 1 12
   4 Classes 8 0 1 9
LLCA
   2 Classes 12 3 0 15
   3 Classes 3 0 0 3
   4 Classes 2 0 0 2

Note. All models estimated with intercept, and linear and quadratic slopes. GMM = generalized linear growth mixture model, LCGA = generalized linear
latent class growth analysis (all variances and covariances estimated), LLCA = longitudinal latent class analysis,

a
Variances that were estimated; all covariances constrained to zero
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Table 6

Conditional three-class generalized linear latent class growth analysis (LCGA) parameter estimates.

Parameters Estimate SE P

High
  β00 Intercept 5.29 0.43 < .001
  β10 Linear Slope 0.45 0.19 .017
  β20 Quadratic Slope −0.08 0.06 .199
Increasing
  β00 Intercept 3.07 0.43 < .001
  β10 Linear Slope 0.86 0.18 < .001
  β20 Quadratic Slope −0.08 0.06 .166
Low
  β00 Intercept 0.00a — —
  β10 Linear Slope 0.10 0.15 .492
  β20 Quadratic Slope 0.16 0.06 .001
Covariate Effects (class comparisons)
  High vs. Low 1.33 0.48 .005
  Increasing vs. Low 0.45 0.41 .266
  High vs. Increasing 0.88 0.31 .005
Thresholds
  τ1 2.51 0.36 < .001
  τ2 5.99 0.37 < .001
  τ3 7.30 0.38 < .001

a
Intercept mean for one class is fixed to zero for identification
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