
Human peripheral cd T cells possess regulatory potential

Introduction

There are two T-cell subsets characterized by their expres-

sion of a T-cell receptor (TCR) a chain and a b chain

(ab T cells) or a c chain and a d chain (cd T cells). These

T-cell subsets do not work in parallel but they act

together. For instance, cd T cells regulate ab T-cell activa-

tion via cytokine secretion1,2 and assist their local inflam-

matory function.3 Although cd T cells have only a limited

repertoire of TCR rearrangements they are capable of

responding to various environmental insults, such as

exposure to toxin (e.g. ozone),4 infections,3,4 inflamma-

tion,5–11 tumours,2,12,13 or epithelial injury.14–18 There-

fore, they have a broad functional armamentarium

including secretion of cytokines [e.g. interferon-c (IFN-c)

or interleukin-10 (IL-10)], cytotoxicity, or secretion of

growth factors [keratinocyte growth factor, transforming

growth factor-b (TGF-b)] and chemokines. To exert these

functions cd T cells are mainly situated in the intestinal

epithelium, although in humans not quite as frequently as

in rodents.

In recent years our understanding of the interaction

of cd T cells with the epithelium has increased.18 We

now know that cd T cells not only support regeneration

of epithelium but also attract neutrophils just after tissue

injury so as to remove necrotic epithelial cells. In line
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Summary

Deficiency in cd T cells aggravates colitis in animal models suggesting that

cd T cells have regulatory properties. Therefore, proliferation, suppression

and cytokine secretion of human cd T cells were determined in vitro.

Human peripheral cd T cells were isolated from the whole blood of

healthy donors by magnetic antibody cell sorting technology. The prolifer-

ation after CD3/CD28 stimulation was measured by 3[H]thymidine incor-

poration. Interferon-c (IFN-c), interleukin-2 (IL-2), transforming growth

factor-b (TGF-b) and IL-10 concentrations were measured by enzyme-

linked immunosorbent assay; TGF-b messenger RNA was also measured

by reverse transcription–polymerase chain reaction. The expression of

latency associated peptide (LAP), a TGF-b complex component, intra-

cellular cytokine content and T helper cell proliferation were measured by

flow cytometry. Human cd T cells showed poor proliferation upon CD3/

CD28 stimulation and suppressed T helper cell growth stronger than

CD4+ CD25+ T cells, although cd T cells were FOXP3 negative. They

secreted little IL-2 but high concentrations of IFN-c, IL-10 and TGF-b.

When looking at LAP expression the Vd1 subset was found to be the

main TGF-b producer compared to Vd2 T cells. Taken together, peri-

pheral cd T cells have in vitro a more potent regulatory potential than

CD4+ CD25+ cells regarding T helper cell suppression. This is most likely

the result of strong TGF-b secretion, particularly by the Vd1 subset.

Keywords: anergy; cytokines; regulatory T cells; suppression; transforming

growth factor-b

Abbreviations: FSC, forward scatter; IBD, inflammatory bowel disease; LAP, latency associated peptide; PBMC, peripheral blood
mononuclear cells; SSC, side scatter.
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with these findings, depletion of or deficiency in cd
T cells aggravate inflammation in colitis models that

exhibit injury of the epithelial barrier, i.e. 2,4,6-trinitro-

benzene sulphonic acid-induced and dextran sulphate

sodium-induced colitis.19 However, depletion of cd
T cells also increases inflammation in intestinal inflam-

mation in a model without epithelial injury, i.e.

TNFDARE mice.7 Similarly, reconstitution of thymectom-

ized non-obese diabetic (NOD) mice with cd T cells

prevented diabetes in a similar manner to CD4+ CD25+

regulatory T cells (Treg).11 Using oral insulin in euthy-

mic mice require cd T cells to induce Treg.10 Therefore,

cd T cells seem to interact with ab T cells supporting

regulatory mechanisms in addition to homeostatic effects

on the epithelial barrier.

The following study was conducted to elucidate the

properties of peripheral human cd T cells in vitro. There-

fore, peripheral human cd T cells were obtained from

healthy donors and examined with respect to their proli-

ferative and suppressive behaviour as well as their cyto-

kine profile. Finally, peripheral cd T-cell functions were

compared with those of other regulatory T cells

(CD4+ CD25+). In this study, we will show that cd T cells

have regulatory functions themselves, such as anergy and

suppression of T helper cell proliferation. Importantly, cd
T cells, particularly the Vd1 subset, were found to be

strong TGF-b producers.

Materials and methods

Monoclonal antibodies

The following monoclonal antibodies (mAb) were used

in vitro: OKT3 (anti-human CD3; American Type Culture

Collection, Manassas, VA); BW828 (anti-human CD28; a

gift of Dr Kurrle, Behringwerke AG, Marburg, Germany);

B1-phycoerythrin- (PE), fluorescein isothiocyanate-

(FITC), biotin-conjugated (anti-human TCR-cd; BD Bio-

sciences, Heidelberg, Germany); B3.1-PE (anti-human

Vc9; BD Biosciences); B6-PE, -FITC (anti-human Vd2;

BD Biosciences); TS-1-FITC (anti-human Vd1; Endogen,

Woburn, MA); 4E3-PE (anti-human CD25-PE; Miltenyi

Biotec, Bergisch Gladbach, Germany); RPA-T4-PE, -FITC

(anti-human CD4-PE (BD Biosciences); BW135/80-PE

(anti-human CD8; Miltenyi Biotec); MQ1-17H12-

allophycocyanin (APC; anti-human IL-2; BD Biosciences);

MP4-25D2-APC (anti-human IL-4; BD Biosciences);

JES3-19F1-APC (anti-human IL-10; BD Biosciences); B27-

APC, -FITC (anti-human IFN-c; BD Biosciences); 27232-

PE [anti-human LAP (TGF-b1); R&D Systems, Wiesbaden,

Germany]; 3G3-APC (anti-human FOXP3; Miltenyi

Biotec). OKT3 was purified from supernatants using spin-

ner flasks followed by affinity chromatography employing

Protein G–Sepharose (Amersham Biosciences, Freiburg,

Germany).

Isolation of peripheral cd T cells and subsets

The cd T cells were separated from peripheral blood

mononuclear cells (PBMC) by magnetic antibody cell

sorting (MACS) technology using the TCR-cd+ T Cell

Isolation kit according to the manufacturer’s instruction

(Miltenyi Biotec). Mononuclear cells were enriched from

50–100 ml (experiments with cd T cells) or 500 ml

(experiments with Vd1 and Vd2 T cells) heparinized

whole blood from female and male middle-aged healthy

donors by Ficoll density centrifugation (Biocoll separating

solution; Biochrom AG, Berlin, Germany). Informed con-

sent was obtained from each blood donor. The PBMC

were incubated (15 min, 4�) in optimal concentration

with PE-labelled anti-cd TCR mAb (clone GL3; BD Bio-

sciences). After washing twice with MACS buffer [0�5%

bovine serum albumin, 2 mM ethylenediaminetetraacetic

acid in phosphate-buffered saline (PBS)] anti-PE

MicroBeads (Miltenyi Biotec) were added (1 : 5 dilution)

and cd T cells were enriched following the manufacturer’s

instructions. Purity of cd T cells was determined by flow

cytometry and only cells with > 98% purity were used.

Unlabelled cd T cells were further separated into Vd1 and

Vd2 subsets by MACS technology. Vd2 T cells were

labelled with anti-human Vd2-PE mAb (BD Biosciences)

and subsequently with anti-PE beads (Miltenyi Biotec).

The Vd1 and Vd2 subsets were separated using a mass

spectrometry column (Miltenyi Biotec), which is passed

by unlabelled Vd1 T cells while the labelled Vd2 T cells

are retained. Vd2 T cells were released after removing the

column from the magnet.

These cd T-cell subsets were stimulated for 3 days in 48-

well plates with 5 lg/ml concanavalin A (Con A; Sigma,

Deisenhofen, Germany). Thereafter, cells were washed

three times in PBS, resuspended in RNeasy lysis buffer

buffer, shock-frozen in liquid nitrogen, and stored at )80�
until quantification of TGF-b messenger RNA (mRNA).

Isolation of human CD4+ CD25+ T cells

To compare regulatory properties of cd T cells with those

of other human regulatory cells, human CD4+ CD25+

T cells were isolated from PBMC of whole blood from

healthy donors by MACS technology using a CD4+

CD25+ Regulatory T Cell Isolation kit (Miltenyi Biotec)

following the manufacturer’s instructions. Purity of

CD4+ CD25+ T cells was determined by flow cytometry

and only cells with > 98% purity were used.

Isolation and labelling of human CD4+ T cells

For allogeneic coculture experiments, CD4+ T cells were

isolated from the initial MACS step of the CD4+ CD25+

T-cell isolation, where CD4+ T cells pass the separation

column unlabelled. An aliquot was taken and washed,
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and purity was determined by flow cytometry. Only cells

with > 98% purity were used. An aliquot of 107 CD4+

T cells was resuspended in 1 ml PBS with 1 lM carboxy-

fluorescein succinimidyl ester (CFSE; Fluka, Seelze,

Germany). After incubation (10 min, room temperature

in the dark), cells were washed twice in complete medium

(RPMI-1640 medium containing 10% fetal calf serum,

100 U/ml penicillin/streptomycin, and 3 mM glutamine;

PAA, Cölbe, Germany).

For proliferation studies, human CD4+ and CD8+

T cells were isolated from PBMC of healthy donors by

MACS technology using CD4 or CD8 beads according to

the manufacturer’s instructions (Miltenyi Biotec).

Proliferation assay

The proliferation index (stimulated/unstimulated) of

CD4+, CD8+, CD4+ CD25+ and cd T cells was deter-

mined via incorporation of [6-3H]thymidine. Cells were

incubated in triplicate for 96 hr at 5 · 104 cells/well in

96-well round-bottom plates (NUNC, Wiesbaden,

Germany) at 37� in 5% CO2 humidified air. Each well

received 0�5 lCi of [6-3H]thymidine (Amersham Pharmacia,

Little Chalfont, UK) during the last 18 hr of the 96 hr of

culture. Incorporated [6-3H]thymidine was harvested on

a glass fibre membrane and detected by liquid scintillation

counting (LKB Wallac, Turku, Finland). For standard

TCR stimulation, cells were stimulated via plate-bound

anti-human CD3 mAb OKT3 (10 lg/ml) in the presence

of 1 lg/ml soluble anti-human CD28 mAb BW828 with

or without 100 U/ml recombinant human IL-2 (Sigma).

Additionally, proliferation of CD4+, CD8+, CD4+ CD25+

and cd T cells was measured after stimulation with 5 lg/

ml isopentenyl pyrophosphate (Sigma) and 100 U/ml

recombinant human (rhu) IL-2.

For determining the suppressive capacity of regulatory

T cells, proliferation of CFSE-labelled CD4+ T cells was

measured in monoculture and coculture with allogeneic

cd T cells and CD4+ CD25+ T cells by flow cytometry.

Therefore, CD4+ T cells were incubated in triplicates for

6 days at 2 · 105 cells/well in 96-well round-bottom plates

(NUNC) coated with anti-CD3 mAb OKT3 (10 lg/ml) in

the presence of 1 lg/ml anti-CD28 mAb BW828 with or

without 100 U/ml rhuIL-2 (Sigma) at 37� in 5% CO2

humidified air. In coculture experiments 1 · 105 CD4+ T

cells/well were incubated under the same conditions as

mentioned above with 1 · 105 regulatory T cells/well.

Cytokine assay

CD4+, CD4+ CD25+ and cd T cells were incubated at 106

cells/ml in 24-well plates (NUNC) coated with OKT3

(10 lg/ml) and BW828 (1 lg/ml) added at 37� in a

humidified atmosphere with 5% CO2. Supernatants were

taken after 48 hr and examined for cytokine secretion

(IL-2, IL-10, TGF-b and IFN-c) by sandwich enzyme-

linked immunsorbent assay using antibodies as well as

recombinant protein standards for IL-2, IL-10 and IFN-c
(BD Biosciences), and TGF-b (Promega, Mannheim,

Germany) according to the manufacturer’s instructions.

Intracellular cytokines of Con A (Sigma) stimulated

CD4+ CD25+ and cd T cells were measured by flow

cytometry. Therefore, cells were stimulated for 5 days

(5 lg/ml Con A) and restimulated with 10 ng/ml phorbol

12-myristate 13-acetate (Sigma) and 1 lg/ml ionomycin

(Calbiochem, Schwalbach, Germany) for 6 hr and 5 lg/

ml brefeldin A (Sigma) for 3 hr. Subsequently, cells were

fixed in 2% formalin (Roth, Karlsruhe, Germany) for

20 min at room temperature.

RNA isolation and complementary DNA synthesis

Total RNA was isolated according the manufacturer’s

protocol (innuPrep RNA minikit; analyticJena, Jena, Ger-

many). To increase the RNA concentration, the final vol-

ume of the extracted RNA was reduced (Speed-Vac) and

treated with DNase I (Sigma-Aldrich, Munich, Germany).

Complementary DNA (cDNA) synthesis was performed

with 200 ng of random primer (Promega), 0�1 M dith-

iothreitol 5 · reaction buffer, 0�5 mM dNTP (each

obtained from Promega), and 100 U reverse transcriptase

Superscript II RNase H (Invitrogen Life Technologies,

Karlsruhe, Germany) in a total volume of 20 ll. Samples

were incubated at 42� for 50 min.

TGF-b mRNA quantification

To analyse the expression of TGF-b genes in human periph-

eral blood lymphocytes, the RNA was extracted from cells

snap frozen in Lysis solution and reverse transcribed as

described above. The cDNA was added to the 2 · Taqman-

Mastermix (Eurogentec, Köln, Germany) and amplified.

For signal detection, the ABI Prism 7000 sequence detector

(Applied Biosystems, Darmstadt, Germany) was pro-

grammed to an initial step of 6 min at 95�, followed by 50

thermal cycles of 15 seconds at 95� and 1 min at 60�. The

following housekeeping gene and TGF-b forward (for) and

reverse (rev) primers and probes were designed by using

the computer software PRIMER EXPRESS (Primer Express�

software v2�0; Applied Biosystems): MLN51 for 50-CTT

CAT CTG CGG CGG GTG-30, rev 50-ACC TTC AAT GCC

ATC TTC ACT CT-30 and probe Fam 50-ACT CCG ACT

CCT CAG CAC TCT TGG CG -30 Tamra; TGF-b for

50-TCA GCT CCA CGG AGA AGA ACT-30, TGF-b rev

50-GTT GGC ATG GTA GCC CCT GG-30 and probe Fam

50-TCC ACT TCC AGC CGA GGT CCT TGC G-30 Tamra.

The optimal primer concentrations used are 500 nM

each for the forward and reverse primers and 250 nM for

the TaqMan probes (IBA BioTAGnologies, Göttingen,

Germany). The same batch of cDNA (20 ll) was used to
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determine the cycle of threshold of the TGF-b gene and

MLN51 as housekeeping gene in triplicate reactions.

Because the amplification efficiencies are close to 1 (as

assessed by template dilution), it is possible to apply the

following equation to relate the amount of the cytokine

genes to MLN51: 2(ct cytokine – ct MLN51).20

Flow cytometry

For surface immunostaining PE-, APC-, and FITC-

labelled mAb against human CD3, CD4, CD8, TCR-cd,

Vc9, Vd1, Vd2, CD25 and LAP, and respectively mouse

and rat isotype controls as well as human serum were

employed. Inactivated normal human serum was used for

blocking unspecific binding. Cells were washed with

fluorescence-activated cell sorting (FACS) buffer (0�5%

bovine serum albumin in PBS) and stained on ice for

10 min with optimal dilution. After washing, cells were

analysed by flow cytometry (FACS Calibur and CELLQUEST

software; Becton/Dickinson, Heidelberg, Germany) using

a live gate set around viable lymphocytes based on their

forward scatter/side scatter (FSC/SSC) characteristics.

50 000 cells per FSC/SCC gate were measured.

FoxP3 expression of purified CD4+ T cells and cd T cells

was analysed by flow cytometry using APC-labelled anti-

human FoxP3 antibody and the FoxP3 staining buffer set

according to the manufacturer’s instruction (Miltenyi Biotec).

Before FoxP3 staining, the unlabelled CD4+ T-cell fraction

was stained with anti-human CD4-FITC mAb (BD Biosci-

ence) and anti-human CD25-PE mAb (BD Bioscience). The

cd T-cell fraction was already labelled and was counter-

stained with FITC-labelled Streptavidin (BD Bioscience).

For intracellular staining cells were stained with APC-

labelled mAb against human IL-2, IL-10 and IFN-c as

well as surface markers as described above in 0�5% sapo-

nin buffer (Sigma) for 30 min in the dark at room tem-

perature. Cells were washed in 0�5% saponin and

resuspended in FACS buffer and analysed by flow cyto-

metry using a gate set around the lymphocyte population

based on their FSC/SSC characteristics. 50 000 cells per

FSC/SCC gate were measured.

To determine the proliferation of CFSE-labelled CD4+

T cells in mono- and coculture by flow cytometry the basic

setting of the FACS was adjusted after 1 day of culture. A

live gate was set around viable lymphocytes based on their

FSC/SSC characteristics. Additionally, directly before mea-

suring 1 ll propidium iodide (Sigma) was added to exclude

necrotic cells (exclusion of PI+ cells). 50 000 cells per FSC/

SCC gate were measured. The proliferation (reduction of

CFSE intensity, CFSEdim) was determined on day 6. Data

analysis was carried out using FLOWJO (version 8.5.2; Tree

Star Inc., Olten, Switzerland). To exclude cocultured cells,

cd T cells or CD4+ CD25+ T cells, a gate was set on CFSE-

positive (labelled) cells before the evaluation of proliferat-

ing (CFSEdim) CD4+ T cells.

Immunofluorescence

CD4+ T cells and cd T cells were isolated by MACS tech-

nology and thereafter cytospins were prepared from

4 · 105 cells per slide. These cytospins were air-dried

overnight at room temperature and formalin-fixed before

staining. Fixed cytospins were subjected to a heat-induced

epitope retrieval step (2 min in sodium citrate buffer

solution, pH 6�0) before incubation with antibodies.21

Cytospins were washed in Tris-buffered saline (TBS) with

0�5% human serum after each antibody incubation. Cyto-

spins were incubated with the primary antibody against

human FOXP3 (PCH101; eBiosciences, San Diego, CA,

1 : 200). Then, cytospins were incubated with secondary

Alexa 488-labelled anti-rat antibody (Invitrogen, Carlsbad,

CA, 1 : 100). Nuclei were counterstained with DAPI

(Sigma, 1 : 1500) and slides were mounted in Fluoro-

mount (DAKO, Hamburg, Germany). Images were

acquired using a fluorescence microscope (AxioImager

Z1) equipped with a CCD camera (AxioCam MRm) and

processed with AXIOVISION software (Carl Zeiss Micro-

Imaging, Inc., Göttingen, Germany).

Statistics

For statistical analysis Mann–Whitney U-test was used and

calculations were made using SPSS for Windows SPSS, Chi-

cago, IL. Values were expressed as mean (95% confidence

intervals) and standard error of the mean (SEM). Differ-

ences were considered statistically significant for P < 0�05.

Results

Human cd T cells are unresponsive to standard TCR
stimulation

Human cd T cells were isolated from PBMC of whole

blood of healthy donors by MACS technology. The purity

of these cells was determined by flow cytometry and only

cd T cells with > 98% purity were used in in vitro assays

(Fig. 1). Human cd T cells showed in vitro significantly

less proliferation upon T-cell stimulation with anti-CD3/

CD28 mAb than CD4+ T cells (Fig. 2a). However, prolif-

eration indices of anti-CD3/CD28 ± rhuIL-2-stimulated

cd T cells were comparable to those of CD8+ T cells and

CD4+ CD25+ T cells (Fig. 2a). Furthermore, proliferation

of cd T cells was induced by stimulation with the myco-

bacterial phosphoantigen isopentenyl pyrophosphate

(IPP), which did not stimulate other T-cell populations

(Fig. 2b).

Human cd T cells suppress CD4 T-cell proliferation

To investigate the suppressive potential of cd T cells, the

proliferation of cocultured CD4+ T cells was measured by
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CFSE labelling and flow cytometry. Figure 3 shows repre-

sentative histograms of proliferating CD4+ T cells

(CFSEdim) in monoculture and allogeneic coculture either

with cd T cells or CD4+ CD25+ T cells. To estimate the

suppression of CD4+ T-cell growth the percentage of pro-

liferating cells in monocultures, e.g. 70�6% in Fig. 3(a),

was set to 100%. cd T cells suppressed the growth of

CD4+ T cells at cell ratios as low as 1 : 4 (Fig. 4a).

Importantly, the suppressive capacity of cd T cells

remained after the addition of rhuIL-2 while

CD4+ CD25+ T cells lost their suppressive capacity in the

presence of rhuIL-2 (Fig. 4b). In contrast to CD4+ CD25+

Treg cells, unstimulated cd T cells do not express CD25

(Fig. 5). Additionally, when looking at FOXP3 expression

by immunofluorescence, cd T cells did not show nuclear

staining while 8% CD4+ T cells did (Fig. 6). In addition,

FOXP3 expression analysed by flow cytometry was found

to be negative in cd T cells but positive in 5% of purified

CD4+ T cells (data not shown).

cd T cells secret both proinflammatory and anti-
inflammatory cytokines

Anti-CD3/CD28 stimulated cd T cells produced negligible

amounts of IL-2 but high concentrations of both pro-

and anti-inflammatory cytokines (Fig. 7). Similarly, FACS

analysis of intracellular cytokines revealed high percent-

ages of cd T cells producing IFN-c (48�5 ± 14�7%), IL-10

(13�3 ± 11�4%) and IL-4 (13�0 ± 5�3%), but only a few

cd T cells produced IL-2 (1�9 ± 1�8%). No coexpression

of IFN-c and IL-4 or IL-10 or IL-2 was found (data not

shown). The cytokine profile of cd T cells was comparable

with that of CD4+ CD25+ T cells because there were no

statistically significant differences regarding the secretion

of IL-2, IL-10 and IFN-c (Fig. 7). However, cd T cells

secreted more TGF-b than CD4+ CD25+ T cells (Fig. 7).

Next, we investigated whether increased TGF-b produc-

tion originates from one cd T-cell subset (Vd1 or Vd2).

Therefore, we quantified the relative TGF-b mRNA con-

tent in the different cd T-cell subsets isolated from periph-

eral blood (Vd1 and Vd2). Also, on the RNA level, TGF-b
content was higher in cd T cells than in ab T cells (Fig. 8).

The Vd1 subset showed increased TGF-b mRNA con-

tent compared with Vd2 T cells in six out of seven
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donors (Fig. 8). Furthermore, we compared the expres-

sion of the latency associated peptide (LAP), an indirect

marker of TGF-b protein expression, by flow cytometry.

As LAP expression is increased in the Vd1 subset com-

pared to Vd2 T cells (45�0 ± 11�7% versus 8�8 ± 6�1%,

P < 0�05) the Vd1 subset seems to be the main TGF-b
producer.

Discussion

To the best of our knowledge, the present study provides

the first evidence that human peripheral cd T cells are a

potent type of regulatory T cells. Although they are

FOXP3 negative, they strongly suppress T helper cell pro-

liferation in an IL-2-independent way and produce high
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Figure 4. cd T suppress the growth of CD4+ T cells. Bar chart of mean (+ SEM) CD4+ T-cell growth (%) after stimulation via anti-CD3/CD28
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amounts of TGF-b. Just as for CD4+ CD25+ T cells,

human cd T cells seem to be unresponsive to anti-CD3/

CD28 stimulation in an IL-2-dependent manner, although

CD8+ T cells were also unresponsive in the experiments

presented here. Human cd T cells did proliferate upon

stimulation with the mycobacterial phosphoantigen IPP

showing the proliferative potential of human cd T cells.

Regulatory T cells are characterized by being anergic to

anti-CD3/CD28 stimulation and acting suppressively. The

most thoroughly investigated regulatory T cells are

CD4+ CD25+ T cells, which lack IL-2 production.22 Anergy

of CD4+ CD25+ T cells can be reversed by IL-2 stimulation.

Like CD4+ CD25+ T cells, cd T cells show negligible IL-2

production and the addition of IL-2 to anti-CD3/CD28

stimulation increases cd T-cell proliferation though this

increase is only small and the proliferation is still less than

that of CD4+ T cells. Furthermore, IL-2 can not only

reverse anergy but also suppressive behaviour of
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CD4+ CD25+ T cells.22,23 Surprisingly, we found suppres-

sion by cd T cells to be IL-2 independent. In the context of

inflammation, this IL-2 independency might be advanta-

geous compared with CD4+ CD25+ T cells because other T

cells might escape suppression by IL-2 secretion. The cd T

cells are quite unresponsive so the suppressive function of

this regulatory cell population is probably restricted to epi-

thelial surfaces where they are enriched.

As far as one can tell from in vitro experiments the

suppressive power of cd T cells is probably at least as

strong as that of CD4+ CD25+ T cells. Like cd T cells,

CD4+ CD25+ T cells are also a small cell population in

health and disease,24 but mediate potent suppression of

CD4+ CD25) T cells.25,26 Additionally, intraepithelial cd
T cells from patients with coeliac disease were reported to

suppress intraepithelial ab T cells27 and tumour-infiltrat-

ing cd1 T cells were shown to suppress proliferation of

naı̈ve T cells via CD3.28 However, in both studies neither

healthy controls nor peripheral cd T cells were investi-

gated, raising the question whether these findings are a

feature of all cd T cells rather than the result of coeliac

disease or tumour immunology.

In the present study we could show that human

peripheral cd T cells are FOXP3 negative, a well-known

marker for regulatory T cells.29 However, FOXP3-negative

regulatory T cells have also been described by others.30,31

Although the exact mechanism of suppression is neither

fully understood for CD4+ CD25+ T cells nor for cd
T cells, the cytokines IL-10 and TGF-b have been pro-

posed to play an important role. Increased TGF-b pro-

duction by cd T cells was previously reported in nephritic

mice and patients with coeliac disease.27,32 Our data show

that human cd T cells are even stronger TGF-b producers

than regulatory CD4+ CD25+ T cells. As the growth factor

TGF-b is involved in the maintenance of epithelial integ-

rity and intestinal immunological balance as well as in

epithelial cell restitution,33–38 cd T cells might exert their

regulatory and protective functions via TGF-b secretion.

In addition, cd T cells can increase TGF-b production

indirectly via IL-10 secretion, which in turn can stimulate

other T cells to produce more TGF-b.39

The Vd1 T cells are mainly located in the epithelium, e.g.

the intestinal epithelium, where they represent 70–90% of

cd T cells.21 The Vd1 T-cell subset seems to be the major

source of TGF-b production because the number of Vd1 T

cells which express LAP, a TGF-b complex component and

thereby indirect marker of TGF-b expression, was found to

be higher than among Vd2 T cells. Besides LAP expression,

the TGF-b mRNA content in Vd1 and Vd2 T cells was

determined. However, the mean increase in TGF-b mRNA

in Vd1 T cells was not statistically significant because of

high standard deviations. Still, six out of seven donors had

increased TGF-b mRNA in Vd1 T cells compared with Vd2

T cells when looking at the Vd1 : Vd2 ratio. The Vd1 T-cell

subset was previously reported to have regulatory potential

when looking at tumour-infiltrating lymphocyte clones.

However, these so-called cd1 Treg cells did not produce

TGF-b or IL-10.28

The high production of IFN-c by cd T cells is proba-

bly important for defence against infectious and

malignant diseases12,40,41 without necessarily triggering

inflammation.6–9,19 Recently, cd T cells have also been

reported to be able to suppress tumour cytotoxicity in

spite of being potent IFN-c producers.28

In conclusion, human peripheral cd T cells are un-

responisve to standard TCR stimulation and showed

in vitro suppressive behaviour as well as production of

both pro- and anti-inflammatory cytokines. Their sup-

pressive behaviour is IL-2 independent and is at least as

powerful as that of CD4+ CD25+ T cells, making them

key players in the regulation of other T cells as well as of

epithelial homeostasis within mucosal surfaces. Still, their

strong proliferation upon mycobacterial antigen stimula-

tion as well as their marked secretion of IFN-c shows

their potential to counteract intestinal infections as well

as to suppress inflammatory reactions using their regula-

tory repertoire. Importantly, they are not only strong

IFN-c and IL-10 producers but also very strong TGF-b
producers. The strongest TGF-b production was found

among the Vd1 subset of cd T cells.
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