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A mouse model offers novel insights into the
myopathy and tendinopathy often associated with
pseudoachondroplasia and multiple epiphyseal
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Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal
dysplasias belonging to the same bone dysplasia family. PSACH is characterized by generalized epi-
metaphyseal dysplasia, short-limbed dwarfism, joint laxity and early onset osteoarthritis. MED is a milder dis-
ease with radiographic features often restricted to the epiphyses of the long bones. PSACH and some forms
of MED result from mutations in cartilage oligomeric matrix protein (COMP), a pentameric glycoprotein found
in cartilage, tendon, ligament and muscle. PSACH-MED patients often have a mild myopathy characterized by
mildly increased plasma creatine kinase levels, a variation in myofibre size and/or small atrophic fibres. In
some instances, patients are referred to neuromuscular clinics prior to the diagnosis of an underlying skel-
etal dysplasia; however, the myopathy associated with PSACH-MED has not previously been studied. In this
study, we present a detailed study of skeletal muscle, tendon and ligament from a mouse model of mild
PSACH harbouring a COMP mutation. Mutant mice exhibited a progressive muscle weakness associated
with an increased number of muscle fibres with central nuclei at the perimysium and at the myotendinous
junction. Furthermore, the distribution of collagen fibril diameters in the mutant tendons and ligaments
was altered towards thicker collagen fibrils, and the tendons became more lax in cyclic strain tests. We
hypothesize that the myopathy in PSACH-MED originates from an underlying tendon and ligament pathology
that is a direct result of structural abnormalities to the collagen fibril architecture. This is the first comprehen-
sive characterization of the musculoskeletal phenotype of PSACH-MED and is directly relevant to the clinical
management of these patients.

INTRODUCTION

Pseudoachondroplasia (PSACH: MIM 177170) is an autoso-
mal dominant skeletal dysplasia characterized by short-limbed
dwarfism, epi-metaphyseal dysplasia, joint laxity and early
onset osteoarthritis (OA) (1,2). Multiple epiphyseal dysplasia
(MED: MIM 132400) is predominantly an autosomal

dominant skeletal dysplasia belonging to the same bone
dysplasia family (3), but it is generally milder, and the radio-
graphic features are primarily restricted to the epiphyses.
MED patients can also suffer from joint laxity and early
onset OA.

PSACH and some forms of MED (EDMI1) result from
mutations in the gene encoding cartilage oligomeric matrix
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protein (COMP: MIM 600310) (4,5), which is a 550 kDa pen-
tameric extracellular matrix (ECM) glycoprotein (6) found in
cartilage, tendon (7), ligament (8) and skeletal muscle (9).
COMP is thought to act as a bridging molecule within the
ECM (10). Indeed, COMP interacts with numerous ECM pro-
teins including types I, II, IX, XI and XII collagen, decorin,
fibronectin and matrilin-3 (11-15), and a role for COMP as
a catalyst in collagen fibrillogenesis has been proposed (16).

Each COMP monomer consists of a coiled-coil oligomeri-
zation domain, four EGF-like domains, eight TSP type 3
(T3) repeats and a large C-terminal globular domain (CTD).
PSACH-MED mutations in COMP cluster in two distinct
regions: the type 3 repeats (~85% of the mutations identified
to date) and the CTD (~15% of the mutations identified to
date) (17). Extensive research over the last 10 years has
demonstrated that mutant COMP protein harbouring structural
changes in the type 3 repeats is retained within patient chon-
drocytes, eventually resulting in rER stress and increased
cell death both in vitro and in vivo (reviewed in 18). In con-
trast, some of the COMP-CTD mutations allow the secretion
of mutant protein but low levels of ER/cell-stress are still
observed, both in vitro and in vivo (19,20).

PSACH-MED patients have a well-characterized ligamen-
tous laxity (2), and the ligaments from patients with
COMP-T3 mutations can exhibit a disorganized collagen
fibril network, with both variable fibril diameters and lateral
fusion of neighbouring fibrils (unpublished data) (15). Con-
flicting data exist concerning the retention of mutant COMP
in tendon and ligament cells. For example, no apparent intra-
cellular retention of mutant COMP was noted in ligament cells
cultured in vitro (21), although the retention of mutant protein
was observed in vivo in ligament cells from a PSACH patient
with a COMP-T3 mutation (p.Gly465Ser; unpublished data).
In common with ligament cells, tenocytes from patients with
COMP mutations retain mutant COMP in the rER in vivo
and in cells cultured in monolayer (22,23), whereas in
another study, no protein retention was evident (24).

An overlooked clinical complication in some patients with
PSACH-MED, specifically those with mutations in the CTD
of COMP, is mild myopathy. This can be characterized clini-
cally by a difficulty in standing up and a tendency to tire
easily, and biochemically by mildly increased plasma creatine
kinase (PCK) levels, differences in fibre diameters and/or
atrophic fibres observed in muscle samples obtained through
biopsy (17,25,26). Furthermore, MED patients with mutations
in the a3(IX) (27) or a2(IX) (M.D.B., submitted for publi-
cation) chains of type IX collagen have also been reported
as having mild myopathy. However, the muscular, tendon
and ligament complications of the PSACH-MED phenotype
have not yet been studied in detail, primarily because of the
difficulty in obtaining suitable pathological samples.

Here we report a detailed study of the phenotypic and mor-
phological effect of a C-terminal COMP mutation on skeletal
muscle, Achilles tendon and spinal ligament in a mouse model
of mild PSACH-MED (20). We show that the mutant mice
exhibit a progressive mild myopathy, localized specifically
to the perimysium and myotendinous junction (MTJ) and
characterized by a dramatic increase in the number of fibres
with central nuclei (i.e. indicative of remodelling). We also
present evidence that this CTD mutation in COMP affects
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the morphology and biomechanical characteristics of murine
Achilles tendon and spinal ligament, which is consistent
with a proposed role for COMP in collagen fibrillogenesis.
Our results led us to the hypothesis that the PSACH-MED
associated myopathy is a secondary consequence of an under-
lying tendinopathy and that joint laxity seen in patients
is a direct consequence of structural abnormalities to the
tissue’s ECM.

This is the first comprehensive characterization of the mus-
culoskeletal phenotype of the PSACH-MED dysplasia family,
and it may directly influence the clinical management of
PSACH-MED patients in the future.

RESULTS

Comp T585M mutant mice exhibit a mild and progressive
muscle weakness

To assess muscle weakness in the Comp T585M mutant mouse
model, we performed forelimb grip-strength tests on male
mice at 3 and 9 weeks of age (Fig. 1A). At 3 weeks of age,
mutant mice and wild-type controls had a comparable
maximum forelimb strength (defined as the highest force
recorded during the experiment), but the force at which
mutant mice released their grip was significantly lower than
in wild-type mice, suggesting that the mutant mice tired
easier (Fig. 1B; 12.6% reduction, P < 0.05 by one-way
ANOVA, n = 3). By 9 weeks of age, the maximum strength
and the force at which the mutant mice released their grip
were both significantly lower than the values recorded for
the wild-type mice, indicating that the muscle weakness in
mutant mice progressed with age (Fig. 1B; a decrease of
26.7 and 23.3%, respectively; P < 0.001 by one-way
ANOVA, n = 3).

Muscle weakness in Comp T585M mice results from a mild
myopathy localized to the perimysium and the MTJ

To determine whether the muscle weakness was due to a gen-
eralized myopathy resulting from abnormal muscle mor-
phology and structure, we undertook a detailed microscopic
analysis of skeletal muscle from mutant mice and wild-type
controls. To examine skeletal muscle morphology by his-
tology, whole legs were dissected from 3 and 6 week-old
mice and sectioned in a transverse plane until the gastrocne-
mius and soleus muscles were clearly visible. Tissue sections
were stained with Gomori’s trichrome stain, which stained the
collagenous tissue blue, skeletal muscle red and the nuclei
black. The number of fibres with central nuclei (i.e. indicative
of fibre stress and remodelling (28,29)) was determined
throughout the muscle tissue and expressed as a percentage
of the total number of fibres (Fig. 2). In the mutant skeletal
muscle, there was a ~33% increase in the number of fibres
with central nuclei compared with the wild-type mice at 3
weeks of age [Fig. 2 (total tissue 3 weeks); P < 0.05 by inde-
pendent samples #-test, » = 3]. This initial observation was
indicative of a mild myopathy and we wished to establish
the precise localization of the abnormal fibres seen in the
mutant muscle. Following stratification, a larger proportion
of fibres with central nuclei were present specifically at the
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Figure 1. (A) Schematic of a grip strength test. (B) Grip measurements were performed on 3 and 9 week-old animals. At 3 weeks of age, there was no difference
between the maximum strength of the wild-type and mutant animals, but there was a 12.6% difference in the final recorded strength, indicating that the mutant
mice tired faster (P < 0.05, one-way ANOVA, n > 5). At 9 weeks of age, both the maximum recorded strength and the final recorded strength were lower for the
mutant mice (26.7 and 23.3%, respectively, P < 0.005, one-way ANOVA, n > 5). wt, wild-type; mut, homozygous for the mutation; standard error of the mean,

*P < 0.05, ***P < 0.005.

MT]J and around the perimysium in the mutant tissue com-
pared with the wild-type controls [Fig. 2 (MTJ 3 weeks);
~43%; P < 0.005 by independent samples z-test, n = 3]. No
significant differences in the numbers of fibres with central
nuclei were observed elsewhere in the muscle tissue of
mutant mice when compared with wild-type controls [Fig. 2
(rest 3 weeks)]. Furthermore, at 6 weeks of age, the number
of muscle fibres with central nuclei was >2.5-fold higher in
mutant mice compared with wild-type controls [Fig. 2 (total
tissue 6 weeks); P < 0.01 by independent samples r-test,
n = 3]. The muscle fibres with central nuclei were still specifi-
cally localized to the perimysium and MTJ in the mutant
muscle and there was no difference in the number of remodel-
ling muscle fibres in the rest of the tissue [Fig. 2 (MTJ 6
weeks); P < 0.01 by independent samples -test].

To identify an underlying reason for the increased stress and
remodelling by myocytes in the mutant muscle, we determined
the relative levels of the molecular chaperone BiP and the anti-
apoptotic protein Bcl-2 by performing densitometry measure-
ments on Western blots of total muscle proteins. BiP is a
general marker of ER stress that is applicable to skeletal
muscle cells (30,31), whereas Bcl-2 has a protective role in

skeletal muscle and has been shown to be decreased in
several myopathies (32,33). At 3 weeks of age, there was no
difference in the relative levels of BiP or Bcl-2 between wild-
type and mutant samples (Supplementary Material, Fig. S1A;
independent samples r-test, n =15). These data therefore
suggested that the expression of the Comp mutation per se
did not have a generalized effect on the myocytes of skeletal
muscle.

Comp is expressed in murine tendon, ligament and skeletal
muscle

Comp is known to be expressed in skeletal muscle in mice (9);
however, conflicting data exist concerning its expression in
tendon with reports of either its presence (9) or absence (34)
in adult murine Achilles tendon. Therefore, before studying
further the pathomolecular mechanisms of myopathy in the
mutant mice, we undertook a detailed analysis of Comp
expression in the relevant murine tissues (i.e. those of the mus-
culoskeletal system).

The expression levels of Collal (a positive marker for
tendon, ligament and skeletal muscle), Col2al (a negative
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Figure 2. Muscle fibres with central nuclei (inset) were counted in the skeletal muscle of 3 and 6 week old wild-type and mutant mice and expressed as a per-
centage of total muscle fibres in the tissue. There was a 33% increase in the number of fibres with central nuclei in the mutant tissue (total tissue; P < 0.05,
independent samples #-test, n = 3). When the localization of the central nuclei was taken into the account, a 43% increase in central nuclei was found at the
perimysial and MTJ (P < 0.005, independent samples #-test, n = 3) but not elsewhere in the tissue (rest). By 6 weeks of age, the proportion of muscle fibres
with central nuclei was increased to 150% in the total tissue and to 180% in the MTJ. wt, wild-type; mut, homozygous for the mutation; standard error of

the mean, *P < 0.05, **P < 0.01, ***P < 0.005.

marker for the same tissues), Myod! (a positive marker for skel-
etal muscle and a negative marker for tendon) and Comp were
determined at 3 weeks of age by quantitative real-time PCR
(Supplementary Material, Table S1). The expression levels of
these marker genes confirmed the accuracy of the dissection
protocol since the relative levels of Myod! expression in the
Achilles tendon and spinal ligament were negligible as was
the expression of Col2al in the skeletal muscle. The most abun-
dant gene transcript was Collal, which was unsurprising since
type I collagen is the most abundant protein of tendon and liga-
ment and an abundant component of the skeletal muscle ECM.

Not surprisingly, Comp expression was lower in tissue samples
from Achilles tendon, spinal ligament and skeletal muscle rela-
tive to the positive marker (Collal). Nevertheless, Comp was
still expressed in all of these tissues at levels >10-fold higher
than the negative controls (Supplementary Material, Table S1).
The relative levels of Comp expression were also determined in
Achilles tendon, spinal ligament, skeletal muscle and epiphyseal
cartilage at 3 weeks of age (Supplementary Material, Table S2).
The levels of Comp expression were comparable for tendon, liga-
ment and skeletal muscle, whereas Comp expression was signifi-
cantly higher in cartilage when compared with tendon, ligament
and muscle samples (P < 0.05 by independent samples #-test,
n = 3). There was no difference in Comp expression between
wild-type and mutant samples in all of the tissues studied (data
not shown).

The presence of COMP was also confirmed at the protein
level by Western blotting of total protein isolated from the
Achilles tendon and skeletal muscle of mice at 3 weeks of

age (Fig. 3C). There were no differences in the relative
levels of COMP between genotypes (i.e. WT versus M), but
we did note that there were slight differences in the levels
of COMP protein between tendon and muscle samples,
which was in contrast to the quantitative RT—PCR analysis
that showed comparative levels of Comp mRNA in these
two tissues.

The localization of key structural molecules is not affected
in the ECM of mutant skeletal muscle

We performed immunohistochemical (IHC) staining for
COMP in mouse skeletal muscle and Achilles tendon to
confirm that it was expressed in both tissues (Fig. 3). In
both wild-type and mutant tendon, COMP was present in the
ECM between individual collagen fibrils (Fig. 3A; data not
shown), confirming previous studies (35,36). Furthermore, in
both wild-type and mutant skeletal muscle, COMP was
present on the surface of the myofibres and there were no
apparent differences in the intensity and localization of the
staining between genotypes (Fig. 3B; data not shown).

To investigate further the skeletal muscle stress and remo-
delling, additional markers such as desmin, vimentin and col-
lagen types IV and VI were analysed at 3 weeks of age by IHC
of saggital and transverse sections of the soleus and gastrocne-
mius muscles. There were no apparent differences in the local-
ization of desmin, vimentin, type I, IV or VI collagen between
wild-type and mutant tissues at 3 weeks of age, confirming
that it was not a generalized myopathy (data not shown).
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Figure 3. (A) IHC localization of COMP in wild-type tendon at 3 weeks of age. Gomori’s trichrome staining (left panel) of tendon showing localization of the
collagenous component (blue) and COMP immunostaining (brown) (central panel), with negative control (no primary antibody, right panel). (B) IHC localization
of COMP in wild-type skeletal muscle at 3 weeks of age. Gomori’s trichrome staining (left panel) showing the endomysial collagen (blue) and COMP immu-
nostaining (central panel), with negative controls (no primary antibody, right panel). Scale bar: 100 um. (C) Western blot of tissue homogenates at 3 weeks of
age showing equal levels of COMP in wild-type and mutant tissues. Actin was used a loading control. WT, wild-type; M, mutant protein samples.

The distribution of collagen fibril diameters is altered in
mutant Achilles tendon

Although we demonstrated that COMP is expressed in skeletal
muscle tissue, a quantifiable pathology was only apparent at
the perimysial and MTJ of mutant muscle. Since the overall
skeletal muscle morphology was not affected in the mutant
mice, and because the perimysium and MTJ are important
for the transmission of force between the muscle and tendon
(37-39), we considered the possibility that the ‘mild myopa-
thy’ in the mutant mice may, in fact, arise from structurally
abnormal tendons. We therefore used transmission electron
microscopy (TEM) to measure the collagen fibril diameters
in Achilles tendons from wild-type and Comp T585M
mutant mice at 3 and 9 weeks of age (Fig. 4A and B). There
was a significant difference in the distribution of collagen
fibril diameters between wild-type and mutant Achilles
tendons with a relative increase in the numbers of thicker col-
lagen fibrils in the mutant samples at both 3 and 9 weeks of
age (Fig. 4A and B; P < 0.05 and P < 0.005, respectively,
by Mann—Whitney U test, n > 3). The total number of col-
lagen fibres per mm? was also reduced in mutant tendons com-
pared with wild-type tendons at 3 weeks of age (13%, P <
0.05; data not shown). A similar change in the distribution
of collagen fibrils was also seen for wild-type and mutant

spinal ligament at 9 weeks of age (Fig. 4C), further supporting
a role for COMP in collagen fibrillogenesis.

Mutant Achilles tendons contained more fused/bifurcating
collagen fibrils than wild-type tendon and were
significantly thinner overall

Fused collagen fibrils were observed previously in a ligament
sample from a PSACH patient who had undergone bilateral
hip replacement (Fig. 5B; unpublished data; (15)). Therefore,
the number of fused (or branching) collagen fibrils was deter-
mined in the wild-type and mutant tendon samples at 3 weeks
of age and expressed as a percentage of total fibrils per cross-
sectional area. There was a significant increase in the number
of fused fibrils in the mutant tendon when compared with the
wild-type tendon [Fig. 5A; ~398% (>3-fold), P < 0.05 by
independent samples #-test, » > 5]. A similar observation
was also made in mouse spinal ligament at 9 weeks of age
(data not shown). Furthermore, at 3 weeks of age, mutant
Achilles tendons were significantly thinner (by 65%) than
wild-type tendons (P < 0.01 by independent samples ¢-test,
n > 5; data not shown). The total area occupied by collagen
fibrils was also calculated from the TEM images of wild-type
and mutant Achilles tendons and was comparable for
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Figure 4. (A) Quantification of the collagen fibril diameters in the wild-type
and mutant Achilles tendon at 3 weeks of age showing an altered distribution
in the mutant tissue (P < 0.05, Mann—Whitney U test, n = 5). (B) Quantifi-
cation of collagen fibril diameters in wild-type and mutant Achilles tendon
at 9 weeks of age, showing a greater difference in the distribution of fibril
diameters in the mutant tissue (P < 0.005, Mann—Whitney U test, n = 5).
(C) Quantification of the collagen fibril diameters in the wild-type and
mutant spinal ligament at 9 weeks of age, showing a further difference in
the diameter distribution in the mutant tissue (P < 0.005, Mann—Whitney U
test, n = 5). wt, wild-type; mut, homozygous for the mutation.

wild-type and mutant tendons, demonstrating that the pro-
portion of interfibrillar matrix between the collagen fibrils
was similar (data not shown). We considered the possibility
that the ECM in the mutant tendons might contain under
sulphated proteoglycans (PGs) (similar to that observed in
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the cartilage growth plate of mutant mice). However,
DMMB (1,9,dimethyl-dimethylene blue) analysis revealed
that the amount of sulphated PGs in the ECM was comparable
with no significant differences between the wild-type and
mutant tendons (Fig. 5C; independent samples #-test, n > 10).

Achilles tendons from mutant mice were more lax in
biomechanical testing

The fibrillar organization and cross-sectional diameter of
mutant Achilles tendons were dramatically altered compared
with wild-type tendons. We therefore used tensile strength
measurements (Table 1 and Fig. 6A) and cyclic strain
testing (Fig. 6B) to analyse the biomechanical properties of
wild-type and mutant Achilles tendons from 3 week-old
animals. In the tensile strength test, the tendons were stretched
at a set strain rate of 0.08/s [with strain measured as (I—1,)//,,
where / is the length of the sample, and /, the original sample
length] until breaking point, and a stress/strain curve was
plotted [stress being the F/csa, where F' is the force (N), and
csa the cross-sectional area (mm?)] (Table 1 and Fig. 6A).
The data obtained were in agreement with the values pub-
lished for various mouse strains (40). Interestingly, mutant
tendons were capable of more ‘stretch to failure’ (27%, P <
0.05 by independent samples #-test, n > 5) and could sustain
more stress (64%, P < 0.01 by independent samples #-test,
n >5); however, the force applied to failure (failure load)
was comparable for wild-type and mutant tendons (Table 1).
In addition, the elastic modulus and stiffness of the mutant
tendons were comparable with wild-type tendons. Since
mutant Achilles tendons were significantly thinner than the
wild-type tendons, they were also capable of storing less
potential kinetic energy during the tensile stretch experiment
(Table 1; 34% for I mm stretch, P < 0.05 by independent
samples #-test, n > 5).

Cyclic strain testing was used to determine the performance
of 3 week-old wild-type and mutant Achilles tendon in more
relevant physiological conditions (Fig. 6B). The cyclic test
was performed in the toe region (reflecting the tendon
crimp) of the stress/strain curve for the wild-type and mutant
tendons (41). The tissues were cycled nine times to a strain
of 0.5 and the force applied was measured. The cycles for
wild-type and mutant Achilles tendons were normalized to
the first cycle force (100%), then plotted and compared. In
the cyclic testing, the initial forces recorded for the wild-type
and mutant Achilles tendon were comparable, but mutant
Achilles tendons became more lax with an increasing
number of cycles until, at cycle 8, significantly less stress
was needed to stretch them to the same length as the wild-type
tendons (Fig. 6B; 16.3%, P> 0<0.05 by independent
samples f-test, n=15). These data suggest that in vivo
mutant tendons are more lax and as such are likely to
convey less elastic energy to the muscle during walking.

ER stress and apoptosis are not increased in mutant
tenocytes

On the basis of our previous findings in the mutant cartilage
growth plate, where BiP was significantly upregulated and
Bcl-2 was downregulated (20) owing to the expression of
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cells. There was no difference in the PG content of wild-type and mutant Achilles tendons at 3 weeks of age (independent samples #-test, n > 10). wt, wild-type;

mut, homozygous for the mutation; *P < 0.05.

mutant Comp T585M, we considered the possibility that the
expression of mutant Comp T585M was eliciting an rER/cell
stress response in tenocytes that might eventually be causing
increased cell death. Densitometry measurements of Western
blots was performed for Bel-2 and BiP in protein samples
from 3 week-old mutant and wild-type tendons. However,
we found no differences in the relative levels of Bcl-2 and
BiP in mutant and wild-type tenocytes (Supplementary
Material, Fig. S1B; independent samples f-test, n =15).
These data suggest that either the expression levels of
mutant COMP may not be high enough in tenocytes to elicit
a classical rER stress response, or that tenocytes may
respond differently to the expression of mutant COMP,
which has been proposed previously (24). Alternatively,
adult tenocytes may also not be as metabolically active as
chondrocytes at 3 weeks of age (42,43).

DISCUSSION

PSACH is a skeletal dysplasia that in the most severe form is
debilitating for the patient’s well-being and lifestyle owing to
the dramatic skeletal phenotype, which includes short-limbed
dwarfism and early onset degenerative joint disease (44,45).
In contrast, the related, but milder MED is sometimes misdiag-
nosed or not reported until later in life (17). In this study, we
showed that mutations in Comp that cause PSACH-MED
result in altered collagen fibril diameters in force-loaded
tendons and ligaments and is associated with a mild muscle
myopathy in the absence of a detectable muscle pathology.
One of the clinical complications recently recognized as a
part of the PSACH-MED phenotype is a mild myopathy,
which in some cases may manifest earlier than the skeletal
phenotype (17,25-27). In these instances, the patients are



Table 1. Biomechanical parameters of the tensile test on wild-type and mutant
Achilles tendons at 3 weeks of age

wt (n=15) mut (n=5) Change P-value

Cross-sectional area 0.25+0.02 0.14 +£0.01 44% | 0.0012
(mm?’)

Failure load (N) 10.11 +1.16 934 +1.08 0.64
Failure stress (MPa) 40.59 +3.85 66.62+538 64% 1 0.0077
Failure strain 1.95+029 2.68+037 37% 1 0.05
Elastic modulus (MPa) 4543 +4.47 53.68+11.5 0.53
Stiffness (N/mm) 21.94 +£3.19  26.7 +5.27 0.47
Potential kinetic energy 5.76 + 0.92 3.8+096 34% | 0.05

for 1 mm strain (J)

Cross-sectional area and the potential kinetic energy were significantly
decreased, and failure stress and failure strain were increased in the mutant
tendons at 3 weeks (independent samples #-test, n = 5). wt, wild-type; mut,
homozygous for the mutation.

reported as having difficulties with standing up or tire easily
during exercise and are often referred to the clinic with an
unclassified ‘neuromuscular disorder’ prior to the diagnosis
of a underlying skeletal dysplasia. On the basis of these and
other reported cases, it has been suggested that if a child pre-
sents with a ‘difficult to explain’ myopathy (i.e. waddling gait,
increasing muscle weakness, but with none or only mild
changes in a muscle biopsy), the child should be referred for
a skeletal survey with a view to identifying an underlying skel-
etal dysplasia (46). Interestingly, in many PSACH-MED
patients with a reported myopathy, a causative mutation was
identified in the CTD of COMP. In these patients, the myopa-
thy was not comprehensively documented, but included fea-
tures such as mildly elevated PCK levels (25), basophilic
and/or atrophic muscle fibres (17). Furthermore, a mild myo-
pathy has also been reported in several MED families with
type IX collagen mutations, a protein which is not expressed
in skeletal muscle, but is present in tendons at the insertion
of the tendon into the bone (i.e. the enthesis) (47). In these
families, the proband was also referred to a neuromuscular
clinic for the evaluation of proximal muscle weakness
prior to the diagnosis of MED (27) (M.D.B., submitted for
publication).

The musculoskeletal complications of the PSACH-MED
phenotype have not been studied in detail, primarily due to
the difficulty in obtaining suitable pathological samples and
aged/site-matched controls. A detailed analysis of the myopa-
thy associated with COMP mutations would therefore enable
earlier diagnosis of mild PSACH-MED, improve our under-
standing of the disease mechanisms and ultimately improve
patient care (48). In this study, we have clinically demon-
strated muscle weakness in mutant mice and analysed the gas-
trocnemius and soleus muscles and Achilles tendon to gain
insights into the key pathological features and disease mechan-
isms of this mild myopathy.

Comp T585M mutant mice, which we have previously
characterized as a relevant model of mild PSACH (20), also
suffer from a progressive myopathy as demonstrated by grip
strength testing. Furthermore, when we analysed skeletal
muscle from the mutant mice, we found a progressive increase
in the number of myofibres with central nuclei, specifically
around the perimysium and the MTJ. This observation is
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indicative of skeletal muscle stress and the subsequent remo-
delling of the gastrocnemius and soleus muscles in these
specific areas (28,29). To test that the myopathy in mutant
mice was not a generalized muscle pathology, we analysed
the skeletal muscle tissue of wild-type and mutant mice in
detail. We used immunohistochemistry to determine the local-
ization of several important ECM proteins in murine skeletal
muscle and did not detect any differences in the distribution
of wild-type and mutant COMP, or in the distribution of
types I, IV and VI collagen, desmin or vimentin. We have
also confirmed that COMP was present in the ECM of skeletal
muscle, specifically in the endo- and perimysium, and that
there were no differences in its localization between wild-type
and mutant tissues. Interestingly, these observations are in
direct contrast to changes in the localization of mutant
COMP seen in the cartilage growth plates of Comp TS585M
mutant mice (20) and suggests that the ECM of muscle and
cartilage may assemble and respond differently to the presence
of mutant COMP. We have previously shown that mild ER
stress was detected in chondrocytes from mutant mice expres-
sing Comp T585M. However, the analysis of an ER stress
marker (BiP) and an apoptosis marker (Bcl-2) showed no
differences between the wild-type and mutant cells. Overall,
these data suggest that although secreted by myocytes and
present in the ECM, mutant COMP did not have an effect
on general skeletal muscle architecture and did not elicit an
ER stress response in the mutant cells.

It has been shown that the transmission of forces between
the skeletal muscle and tendon depends on the interaction of
the muscle fibres with the surrounding ECM and also on the
collagen fibrillar organization of the tendon (37). Perimysium
has been shown to form a connective tissue with a ‘lattice-
like” structure and is important for conveying forces between
the tendon and skeletal muscle (37-39,49). These obser-
vations led us to hypothesize that myopathy in the mutant
mice may, in fact, be the result of an underlying tendinopathy.
Therefore, to gain insight into the mechanisms underlying the
restricted localization of the myopathic changes, we studied
the ultrastructure of the Achilles tendon from wild-type and
mutant mice at 3 and 9 weeks of age. Tendons are an impor-
tant skeletal tissue since they act as buffers for muscle stretch
during locomotion (50). We have shown that Comp is
expressed in murine tendon and ligament by a variety of tech-
niques, and that the localization of mutant COMP was not
altered in mutant tissues. To determine the effect of mutant
COMP on collagen organization, we measured the diameters
of collagen fibrils in the Achilles tendon of wild-type and
Comp T585M mutant mice. Interestingly, we found that the
distribution of collagen fibril diameters in the mutant tendon
was dramatically altered, with a higher proportion of larger
diameter fibrils. There was a similar difference in the distri-
bution of collagen fibrils in wild-type and mutant spinal liga-
ment, further supporting a role for COMP in collagen
fibrillogenesis. The total area occupied by the collagen
fibrils was not altered between the wild-type and mutant
tendons, but the number of fibrils per unit area of tendon
was decreased in the mutant mice. Furthermore, the overall
‘interfibrillar area’ was not altered in the mutant tendons,
suggesting that the amount of inter-territorial matrix in the
wild-type and mutant tendons was similar. PGs comprise
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Figure 6. (A) Stress/strain curves of the stretch to failure experiment for wild-type and mutant Achilles tendon at 3 weeks of age. Note that the slopes of the
curves in the linear phase are similar, indicating a comparable stiffness. Mutant tissue was more resilient since it stretched more to failure and could withstand
higher tensile stress. (B) Cyclic strain experiment. Wild-type and mutant tendons were stretched and released nine times with a constant strain amplitude and the
applied stress was measured. Mutant tendons became significantly more lax in cycles 8 and 9 (16.3 and 17.5%, respectively, P < 0.05, independent samples
t-test, n = 5). wt, wild-type; mut, homozygous for the mutation; #approaching significance, *P < 0.05.

~0.5% of tendon dry weight and play a role in tendon fibril
spacing (37). We therefore analysed the PG content of wild-
type and mutant Achilles tendons from 3 week-old mice and
found that the PG content was similar for both genotypes.
The abnormal changes seen in collagen fibril diameters in
the mutant tendon might be due directly to the mutation in
the CTD of COMP. For example, this region of COMP con-
tains a potential collagen-binding site (15), and a role for
COMP as a catalyst in collagen fibrillogenesis has been pro-
posed (16). It is therefore possible that this C-terminal
COMP mutation (T585M), which is close to the potential
collagen-binding site (15,17), has a detrimental effect on the
‘catalyst’ function of COMP that could alter collagen fibril
diameter in the mutant tissue and ultimately its biomechanical
properties. The detrimental effect of COMP mutations on

collagen fibrillogenesis has been previously demonstrated
in vitro (51). In addition, we also observed an increase in
the number of fused/bifurcating collagen fibrils in mutant
tendon and ligament compared with the wild-type tissues.
Similar observations have previously been seen in a ligament
sample from a PSACH. In wild-type animals, fibril bifurcation
is abundant in mouse fetal tendon tissue, but decreases with
age (52). Furthermore, increased fibril bifurcations have also
been found in tendon scar tissue and at the scar to tissue junc-
tions (53), and it has been suggested that an increase in fibril
bifurcations may be indicative of wound healing and that they
may be required to connect neighbouring fibrils to transform
the force properly from the scar to the residual tissue (53). It
has been proposed that the tendon biomechanical function
depends on the precise collagen fibre alignment in the



tissue (54). It is therefore interesting to speculate that owing to
the altered biomechanical properties of the mutant tendons,
some microdamage could occur in the mutant tendon, and
the increased number of fused fibrils may be indicative of
repair mechanisms in the mutant tissue, which could in turn
affect the biomechanical properties of the tissue.

Finally, the cross-sectional area of whole mutant tendons
was also significantly less than that of the wild-type tendons.
This may be due to tendon remodelling and/or disuse (55).
It could also potentially be a compensatory mechanism for
the thicker collagen fibrils in the mutant tendons, which
would make the mutant tissue stiffer. The dimensions of
tendons directly influence their ability to stretch, store and
release kinetic energy (56). In physiological conditions, the
cross-sectional area of the tendon, relative to that of the fasci-
cles of the attached muscle, dictates the maximum tensile
stress to which a tendon can be subjected (57). The smaller
cross-sectional area of mutant tendons, and the abnormal
structural similarities between mutant tendons and ligaments,
may therefore explain the joint laxity seen in PSACH-MED
patients (2). In addition, the variability in the diameters of
individual collagen fibrils can have a dramatic impact on the
tissue’s biomechanical properties. The biomechanical proper-
ties of tendons are directly related to fibril length, diameter
and modulus and inversely to interfibrillar spacing (58), and
thick fibrils are predicted to withstand higher tensile forces
owing to the higher number of intrafibrillar crosslinks (59).

To assess the biomechanical properties of the wild-type and
mutant tendons, we performed a series of tensile strength
experiments. In a stretch-to-failure experiment, mutant
tendons were able to withstand higher stresses and were
stretched more before failure. However, when the mutant
tissues were tested in a cyclic strain experiment, they
became more lax with an increasing number of cycles,
which is analogous to the progressive joint laxity observed
in PSACH-MED patients (2). Lax tendons would also be
less suitable for conveying the appropriate forces from
muscle to bone, which might help explain the neuromuscular
symptoms seen in PSACH-MED patients. By analogy to the
structural changes seen in mouse mutant tendon and ligament,
we can hypothesize that joint laxity in PSACH-MED patients
might also stem from an altered distribution of collagen fibrils.

Tendons are known to adapt to mechanical load require-
ments, and inactivity has been shown to decrease collagen
turnover in tendon (37,60,61). It was also shown that training
increased the cross-sectional area of tendons in pigs (62) and
that an increase in cross-sectional area of tendons correlates
with an increase in tendon stiffness (37). Collagen fibril diam-
eters also shift towards thicker fibrils with age (63), resulting
in less compliant tissues (50). Therefore, it is likely that the
tendon and ligament pathology seen in this mouse model of
mild PSACH, and in PSACH-MED patients, becomes exacer-
bated with age as short-limbed dwarfism and increasing joint
pain greatly reduce the patients’ mobility. The increased
joint laxity may in turn have an effect on the joint stability
and the progression of degenerative joint disease in PSACH
patients (44,45).

In summary, we have shown that COMP is expressed in the
Achilles tendon and skeletal muscle of adult mice. We have
demonstrated that Comp T585M mutant mice suffer from a
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progressive myopathy that is specifically localized to the peri-
mysium and the MTJ. The distribution of collagen fibril diam-
eters is altered in the mutant tendon and ligament, whereas the
PG content is comparable between the wild-type and mutant
tissues. The biomechanical properties of mutant tendon are
dramatically altered, making the tissue more resilient to
failure stresses, but ultimately more lax following cyclic
strain. We therefore hypothesize that the mild myopathy
reported in PSACH-MED results from altered forces trans-
mitted by the mutant tendon, and that the joint laxity may
be directly due to the structural abnormalities in the ligament.
Furthermore, our study suggests that the difficulties in walking
and easy tiredness experienced by some PSACH-MED
patients might be a combination of the skeletal phenotype
and an underlying tendinopathy. Since tendons are able to
adapt to mechanical load and environmental requirements
(36,37,61,64), certain physiotherapeutic treatments may help
alleviate some of clinical symptoms of PSACH-MED, such
as muscle weakness and joint instability. Our detailed charac-
terization of the mild myopathy and tendinopathy in the mouse
model of mild PSACH may also help in the management and
early diagnosis of some forms of PSACH-MED, specifically in
those children that present with tiredness and muscle weakness
prior to the diagnosis of an underlying skeletal dysplasia.

MATERIALS AND METHODS
Transgenic mice

The generation and phenotypic characterization of the mice
used in this study is described in detail in Pirog-Garcia et al.
(20). Wild-type mice and mice homozygous for the Comp
T585M mutation were used in this study. We specifically
chose to study the homozygous mutant mice in order to
better accentuate the muscle and tendon pathology. All exper-
iments were performed in compliance with the relevant Home
Office and Institutional regulations governing animal breeding
and handling.

Grip-strength analysis

Grip strength measurements were performed using a hand-
held Chatillon digital force gauge (ChatillonDFE Series
Digital Force Gauge, Ametek Inc.; Fig. 1A). Briefly, the
mice were preconditioned 20 times on the cage lid, then
held by the tail and gently lowered towards the apparatus.
They were allowed to grip the grid with their forelimbs only
and were pulled backwards in a horizontal plane. The
highest force applied to the grid (maximum strength) and
the force at the moment the grasp was released were recorded
(N). The test was repeated two times per mouse, and 10 mice
per genotype were tested at 3 and 9 weeks of age. One-way
ANOVA was used for statistical analysis of the data.

RNA extraction and real-time PCR

Following snap-freezing of tissues in liquid nitrogen and their
homogenization, RNA was extracted from the Achilles
tendon, soleus/gastrocnemius skeletal muscle and posterior
longitudinal spinal ligament tissue from 3 week-old mice,
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using TriZOL reagent (Ambion Inc.). The RNA was DNasel-
treated (Ambion Inc.) and first-strand cDNA synthesized using
Superscript III™ reverse transcriptase with random hexamers
(Invitrogen Ltd). Real-time analysis of COMP, collagen 1, col-
lagen II and myoD expression was performed using SYBR®
Green Kit (Eurogentech) on a Chromo4 sequence detector
system (Bio-Rad). Each sample, including ‘no template’ con-
trols, was run in duplicate and every sample had an 18S
control. Each experiment was repeated at least three times
with tissue from unrelated animals for statistical relevance,
and the results were analysed by independent samples z-test.

Western blotting

Achilles tendon and gastrocnemius/soleus skeletal muscle
tissue at 3 weeks of age was snap-frozen and homogenized,
boiled in SDS-loading buffer containing DTT and loaded on
an SDS—PAGE gel. The resolved gel was electroblotted
onto a nitrocellulose membrane, which was blocked overnight
with 2% skimmed milk powder in PBS-T. Primary antibodies
[BiP (Cell Signalling Ltd), tenascin C, bcl-2 and actin (Abcam
Plc), COMP (Genetex)] were diluted in PBS-T. An ECL
detection kit (PerkinElmer Inc.) was used to develop the
blots according to the manufacturer’s protocol. The X-ray
films were then scanned, and the densitometry of the bands
was measured using Aida analysis software (Raytek Scientific
Ltd). Independent samples #-test was used for statistical
analysis.

Histology and immunohistochemistry

Full mouse limbs were skinned and fixed in ice-cold 10%
neutral buffered formalin solution (Sigma-Aldrich Ltd; for his-
tology) or in ice-cold 95% ethanol/5% acetic acid solution (for
IHC), decalcified in 20% (w/v) EDTA, pH 7.4, paraffin-
embedded and sectioned (6 pm sections). For haematoxylin
and eosin (H&E) staining, the slides were dewaxed in
xylene, rehydrated and H&E-stained using a ThermoShandon
Ltd automated stainer, dehydrated in increasing concentrations
of ethanol and in xylene and mounted using a xylene-based
mounting solution. Gomori’s trichrome staining (Polysciences
Inc.) was performed according to the manufacturer’s protocol
and mounted using a xylene-based mounting solution (Pertex,
Surgipath). Muscle fibres with central nuclei were counted and
their number was expressed as a percentage of all the muscle
fibres seen. Independent samples #-test was used for statistical
analysis.

For THC analysis, slides were dewaxed and rehydrated,
endogenous peroxidase activity was quenched in H,O,/
MetOH, followed by antigen unmasking in 0.2% bovine
testes hyaluronidase (Sigma-Aldrich Ltd) in PBS. Samples
were blocked in goat serum and BSA in PBS for 1 h and
immediately incubated with primary antibody [COMP
(Genetex Inc.), type I and type II collagen (Chemicon), type
IV collagen, type VI collagen, desmin, vimentin and tenascin
C (Abcam Ltd)] in PBS/BSA for 1 h. Slides were washed in
PBS/BSA and incubated with FITC-conjugated secondary
antibody (Abcam) and mounted in Vectashield™ containing
DAPI (Vector Labs Ltd) or incubated with a biotinylated
goat anti-rabbit IgG (Dako Cytomation Ltd) in PBS with

goat serum, followed by incubation with ABC/HRP reagent
(Dako Cytomation Ltd) and developed using DAB chromogen
(Dako Cytomation Ltd), with methyl green as counter stain
(Vector Labs Ltd). Vectamount™ (Vector Labs Ltd) xylene-
free mounting medium was used for mounting the slides.

Ultrastructural analysis

Wild-type and mutant Achilles tendon and posterior longitudi-
nal spinal ligament were dissected from mice at 3 and 9 weeks
of age and immediately fixed in 2.5% glutaraldehyde in 1 m
sodium cacodylate buffer for 2 h at 4°C. The tissues were
washed three times in 0.1 M sodium cacodylate buffer and
fixed in 2% OsO,4 in 0.1 M cacodylate buffer for 2 h. They
were washed in distilled water and incubated for 2 h in 2%
aqueous uranyl acetate at 4°C. The tendons were then
washed in distilled water, dehydrated in increasing concen-
trations of acetone (50, 70, 90 and 100% for 30 min), incu-
bated in propylene oxide to improve resin penetration and
1:1 solution of resin:propylene oxide and embedded in
TAAB medium slow resin (TAAB Laboratories Equipment
Ltd). Thin 70—80 nm sections were cut with a diamond
knife on a Leica ultramicrotome and placed on electron micro-
scope grids. Sections on the grids were stained with silver
citrate solution and viewed in a FEI Tecnai 12 Twin trans-
mission electron microscope operated at an accelerating
voltage of 80 kV. The fibril diameters were measured, and
the distribution was analysed for statistical significance using
Mann—Whitney U test.

DMMB assay

PG content was analysed using the DMMB assay (65).
Achilles tendons at 3 weeks of age were digested overnight
in 50 wg/ml proteinase K in 100 mm K,HPO, (pH 8.0) at
56°C. The samples were centrifuged at 12 000 g in Ultrafree
filter (Amicon), and the flow through was used for DMMB
assay (66). Serial dilutions of shark chondroitin sulphate
(Sigma) in K,HPO, were used as a calibration curve, and
the absorbance was read at A = 525. The retentate was used
for DNA contents analysis using Hoechst dye, as described
in Orioli et al. (66). The calculated GAG content was then nor-
malized to the DNA content of the tissues, and the data were
statistically analysed using independent samples #-test.

Biomechanical analysis

Tensile loading and cyclic stress tests were performed on an
Instron 1122 tensile tester (Instron). Achilles tendons were
harvested at 3 weeks of age and stored in PBS at —80°C.
They were gently thawed and the cross-sectional area was
assessed by measuring the thickness in three points along
the tendon’s length. The average mouse tendon length was
~5mm. The tendons were fitted into the tensile tester as
shown in Fig 6A and were kept moist in PBS throughout the
experiment. For the tensile loading test, the sample’s starting
length was 1 mm, and the samples were elongated at a con-
stant strain rate of 0.08/s, until breaking point and force and
displacement were measured. The toe region for the samples
was established in the tensile loading test. In the cyclic



stress, the starting sample length was 2 mm; the samples were
stretched and relaxed with a constant strain amplitude of 0.5
for n =9 cycles at the strain rate of 0.04/s, and the force
and displacement were recorded. The force was normalized
against the cross-sectional area, and the decrease in stress at
each cycle was compared between the wild-type and mutant
samples. Independent samples #-test was used for statistical
analysis.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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