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The genome-wide recombination rate (RR) of a species is often described by one parameter, the ratio between total
genetic map length (G) and physical map length (P), measured in centimorgans per megabase (cM/Mb). The value of this
parameter varies greatly between species, but the cause for these differences is not entirely clear. A constraining factor of
overall RR in a species, which may cause increased RR for smaller chromosomes, is the requirement of at least one chiasma
per chromosome (or chromosome arm) per meiosis. In the present study, we quantify the relative excess of recombination
events on smaller chromosomes by a linear regression model, which relates the genetic length of chromosomes to their
physical length. We find for several species that the two-parameter regression, G = G0 + k � P , provides a better charac-
terization of the relationship between genetic and physical map length than the one-parameter regression that runs
through the origin. A nonzero intercept (G0) indicates a relative excess of recombination on smaller chromosomes in
a genome. Given G0, the parameter k predicts the increase of genetic map length over the increase of physical map length.
The observed values of G0 have a similar magnitude for diverse species, whereas k varies by two orders of magnitude. The
implications of this strategy for the genetic maps of human, mouse, rat, chicken, honeybee, worm, and yeast are discussed.

[Supplemental material is available online at http://www.genome.org.]

The meiotic recombination rate (RR), defined as the ratio between

genetic and physical map length and measured in centimorgans

per megabase (cM/Mb), is known to vary widely between the ge-

nomes of different species. As a rule of thumb for the human ge-

nome, 1 cM genetic map length equals 1 Mb physical map length

(see, e.g., Collins and Morton 1998; Ulgen and Li 2005). This rate is

about twice as large as the genome-wide RR observed in the mouse

genome (Jensen-Seaman et al. 2004), but far less than the RR of 340

cM/Mb that is observed in the yeast genome (Mortimer et al. 1992;

Baudat and Nicolas 1997). Understanding of these differences in

RR between different species is of fundamental importance for

evolutionary and medical genetics (Nachman 2002). In addition to

these differences between species, it was also noted that RR differs

between chromosomes within a species, with smaller chromo-

somes showing higher RR (Nachman and Churchill 1996; Broman

et al. 1998; International Human Genome Sequencing Consor-

tium 2001; Venter et al. 2001; Kong et al. 2002; Matise et al. 2007).

Therefore, species differences in genome-wide RR may be best

studied under a model that also considers the intragenomic dif-

ferences between chromosomes.

From a population genetic perspective, the main role of re-

combination is the production of new combinations of alleles by

shuffling of parental haplotypes, which increases the efficiency of

natural selection in theoretical and empirical model systems

(Maynard-Smith 1978; Barton and Charlesworth 1998; Otto and

Lenormand 2002; Rice 2002). Many recent empirical studies have

addressed the question, at which sites in a genome is re-

combination most likely to occur (Petes 2001; Hey 2004; McVean

et al. 2004; Coop 2005; Myers et al. 2005; Mancera et al. 2008). In

this context, it was also found that RR evolves extremely fast on

a kilobase scale (Ptak et al. 2005; Winckler et al. 2005) and that

historical recombination hotspots are associated with specific gene

functions in human, which was hypothesized to indicate an in-

fluence of natural selection on hotspot locations (Freudenberg et al.

2007; The International HapMap Consortium 2007). When RR is

examined at a megabase scale instead of a kilobase scale, the evo-

lution of local RR is more constrained (Myers et al. 2005) and differs

much less between closely related species, such as human and

chimpanzees (Ptak et al. 2005; Winckler et al. 2005). However, the

mechanism behind this conservation of RR on the larger scale is

unclear. One contributing explanation could be the requirement of

a minimal or fixed number of chiasmata per chromosome during

meiosis to stabilize homologous chromosome pairs (Mather 1938).

The question of how many chiasmata are exactly required per

chromosome or per chromosome arm has not been resolved yet

and might not have a generally valid answer (Laurie and Hultén

1985; Lynn et al. 2004). Nevertheless, these meiotic constraints

can explain the excess of recombination on shorter chromosomes.

Consistent with an influence of karyotype on overall recom-

bination rate, a correlation was found between the number of

chromosome arms in a genome and the genetic map length (De

Villena and Sapienza 2001a). Altered recombination may lead to

aneuploidy (Hassold and Hunt 2001; Lynn et al. 2004), which may

impose strong selective constraints and explain the tight re-

lationship between karyotype structure and recombination rate

(De Villena and Sapienza 2001b; Dumas and Britton-Davidian

2002).

On the other hand, domesticated plants and animals show

evidence for increased chiasma formation (Burt and Bell 1987),

which suggests that there exist additional determinants of

genome-wide RR than karyotype. For instance, the level of in-

terference in chiasma formation could differ between species

(Broman et al. 2002). Therefore, it would be useful to apply a for-

mal method that separates the contribution of karyotype struc-

ture from the relationship between physical and genetic map

length. This is not accomplished by the genome-wide cM/Mb ra-

tio: Although the cM/Mb ratio is a convenient single-parameter
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measurement, it does not model the higher contribution of smaller

chromosomes to the genome-wide RR of a species.

To address this problem and better understand the overall RR

of a genome, we propose a novel strategy that explicitly models, if

and to what extent, the overall RR in a genome is influenced by the

relative excess of recombination on smaller chromosomes. This

proposed two-parameter strategy takes into account that a certain

minimal amount of recombination is required to maintain ge-

nome integrity during meiosis (Mather 1938) and that a genome

therefore has minimal genetic map length. This idea becomes

more clear if we use a statistical regression framework to compare

the proposed strategy with the one-parameter strategy that is

typically applied to shorter scales than the chromosome scale.

Since the one-parameter characterization of RR implies that ge-

netic length is proportional to the physical length and re-

combination events occur independently on different chromo-

somes, the cM/Mb ratio is the slope of the linear regression of

genetic lengths of chromosomes over their sequence lengths, with

the requirement that the regression line goes through the origin.

In our new approach, we drop the requirement that the regression

line must go through the origin by using two parameters to fit the

genome-wide genetic map information at the chromosomal scale.

From a biological perspective, the one-parameter model

considers the length of the genetic map of a genome to be de-

termined by the length of the underlying physical map and the

species-specific RR. Building on this, the two-parameter model also

includes a separate effect of karyotype structure that may produce

a disproportional distribution of recombination events over chro-

mosomes of different length. Under the two-parameter model, the

value of the y-intercept quantifies the relative excess of recom-

bination events on a hypothetical chromosome with length zero,

whereas the slope of the regression measures the increase of ge-

netic with physical map length in the same way as the one-

parameter model. Our results show that in human, as well as other

species, the two-parameter regression provides a much better fit for

describing the genetic map length of chromosomes.

Results

A two-parameter regression model fits
the genetic map length of human
chromosomes better than
the one-parameter model

To look for systematic differences in the

recombination rate between human chro-

mosomes, we started by reproducing the

Marey map (Chakravarti 1991; Rezvoy

et al. 2007), a cumulative plot similar to

those used in DNA sequence representa-

tion or analysis (Li 1997; Grigoriev 1998),

for 22 human autosomes and 34 arms

of metacentric chromosomes (Supple-

mental Fig. S1). The chromosome-scale or

chromosome-arm-scale recombination rate

may be defined as the slope of a straight

line that links the first and the last marker.

For smaller chromosomes or chromo-

some arms, the endpoints in the Marey

map tend to lie above the line with a slope

equal to 1 (cM = Mb), that is, smaller chro-

mosomes (�arms) have larger cM/Mb

ratios (see also Fig. 16 of International Human Genome Sequenc-

ing Consortium 2001 and Table 12 of Venter et al. 2001).

We next regressed the genetic map length of chromosomes

over their physical map length (Fig. 1A; a similar plot can be found

in Housworth and Stahl 2003). When sex-averaged, female and

male genetic lengths are fitted separately, the three regression lines

are described by:

Gch;sex � ave;human = 48:1 + 0:78P

Gch;female;human = 54:2 + 1:02P

Gch;male;human = 42:0 + 0:53P: ð1Þ

The normality assumption of regression residuals was tested

graphically by a QQ plot (Supplemental Fig. S2), and the normality

condition does not seem to be violated.

Equation 1 shows that the y-intercept G0 for female data is

29% larger than for male data, whereas the slope k is 92% larger.

Thus, the different lengths of the male and female maps mainly

manifest as a different slope and less so as a different y-intercept. As can

be seen from Figure 1A, all human chromosomes exceed the minimal

length of 50 cM both for the male and the female genetic maps.

To test the robustness of the y-intercept value, we added

random noise to the genetic map length and repeated the re-

gression analysis. The histogram of 50,000 y-intercepts from this

procedure is shown in Supplemental Figure S3. Although values of

G0 range from 35 to 60, they are all far from zero.

We next repeated the analysis using chromosome arms in-

stead of full chromosomes as separate data points (Fig. 1B). This

leads to the regression equations:

Garm;sex� ave;human = 28:0 + 0:77P

Garm;female;human = 29:0 + 1:05P

Garm;male;human = 27:1 + 0:48P: ð2Þ

Figure 1. Two-parameter regression of human genetic length over physical length. (A) Analysis at the
chromosome scale. (Squares) Female, (open circles) male, and (solid circles) sex-averaged genetic
length of each chromosome (in centimorgans, cM) is plotted against its physical length (in megabases,
Mb). The least-square regression lines are: y = 54.2 + 1.02x (female), y = 42.0 + 0.52x (male), and y = 48.1 +
0.78x (sex average). (B) Analysis of metacentric chromosome at the chromosome-arm scale. The best-fit
regression lines are: y = 29.0 + 1.05x (female), y = 27.1 + 0.48x (male), and y = 28.0 + 0.77x (sex average).
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The y-intercepts at chromosome-arm-scale regression is now

reduced to somewhat more than half of the intercept at the full-

chromosome scale. This reduction shows that cytogenetic con-

straints exert a smaller influence on the chromosome-arm scale

than on the full-chromosome scale.

Several methods can be used to show that the two-parameter

regression model fits the data better than the one-parameter re-

gressions. To this end, we first compared the coefficient of de-

termination R2, which is the proportion of variability explained by

the regression model. The observed R2 values of the one-parameter

regression range between 0.48 and 0.87, whereas the R2 values

of the two-parameter regressions range between 0.86 and 0.98

(Table 1), indicating that the two-parameter regression explains

more of the variability in the data.

We further cast the comparison between the one- and two-

parameter regression as a model selection problem. Two such

model comparison strategies are provided by the Akaike infor-

mation criterion (AIC) (Akaike 1974) and Bayesian information

criterion (BIC) (Schwarz 1978). Both AIC and BIC values for the

two-parameter regression model are smaller than those for the

one-parameter model, indicating a better statistical model (Sup-

plemental Table S1).

Finally, we tested the null hypothesis that G0 is zero. The

P-values in this test range between 10�13 and 10�8 (Table 1). Because

the null hypothesis is that all chromosomes have the same RR,

a simulated distribution of G0 can be obtained from the regression

over data that are obtained by the permuting of chromosome-

specific cM/Mb ratios, while leaving the physical chromosome

length unchanged. Out of 50,000 such permutations, only two

showed a G0 value that is larger than the observed value of 48.1 (for

sex-averaged full chromosome data), corresponding to a P-value

of 4 3 10�5. To summarize, all evaluation methods support the

conclusion that the two-parameter regression model is better than

the one-parameter model.

As the deCODE data were published more than 6 years ago,

we further tested the chromosome-scale regression strategy on

a more recent data set, the Rutgers Map v.2 (Matise et al. 2007). The

regression lines are G = 53.33 + 0.87P (sex-average), G = 50.29 +

1.19P (female), and G = 57.58 + 0.57P (male), respectively. These

results are consistent with the parameter estimations in Equation

1, again showing that male and female data differ more in the slope

than in the y-intercept.

Two other quantities can be derived from G0 that help to

interpret the y-intercept parameter. The first is the physical

length Pmin on the regression line that corresponds to a spec-

ified minimum genetic length Gmin such that Gmin = G0 + kPmin.

If we set Gmin = 50 cM, then we obtain Pmin = 2.45 Mb for sex-

averaged chromosome data. One may assume that for any hypo-

thetical chromosome with P < Pmin, its genetic length G remains

constant at 50 cM and does not decrease for shorter chromosome

length. As the second quantity of interest, we define the per-

centage of genetic length that is explained by the inclusion of

G0 into the model as: a = 22G0=ð22G0 + k+22
i=1PiÞ. For the sex-

averaged data, we find that a = 31% of variability is explained

by the y-intercept. This value can also be obtained from the

decomposition of RR = +22
i=1Gi=+

22
i=1Pi = 22 �G0=+

22
i=1Pi + k: 1.13 =

0.35 + 0.78, because 0.35/1.13 = 31%. The relatively large per-

centage value once again highlights the importance of the

y-intercept G0 for modeling chromosome-scale recombination

rate in human.

Different intercept but similar slope in the two-parameter
regression models for rat and mouse chromosomes

Both the rat (Rattus norvegicus) and the mouse (Mus musculus) ge-

nomes are known to have lower recombination rates than human

( Jensen-Seaman et al. 2004), with rat having a higher overall RR

than mouse. The rat genome has a roughly equal physical map

length, but contains one more chromosome (n = 20) than the

mouse genome (n = 19). Furthermore, rat chromosomes show

a greater heterogeneity in their physical length, and one may hy-

pothesize that these karyotype differences contribute to the

somewhat higher RR in rat (0.62 cM/Mb vs. 0.57 cM/Mb in

mouse). The regression models of the sex-averaged genetic length

of rat and mouse chromosomes over their sequence lengths

(Fig. 2A) are:

Gch;sex� ave;rat = 22:49 + 0:43P

Gch;sex� ave;mouse = 15:62 + 0:44P: ð3Þ

These models display a similar slope, and the different overall

RR of rat and mouse mainly manifests as a different intercept

value G0.

Testing G0 = 0 for the rat genome is significant (P-value =

0.0012), whereas testing G0 = 0 for the mouse genome (the fitted G0

value for mouse is 69% of that for rat) is not significant (P-value =

0.11). AIC/BIC calculation confirms that the two-parameter re-

gression is a convincingly better model for rat than the one-

parameter regression, whereas this barely holds for the mouse data

(Supplemental Table S1). Thus, the mouse genome displays

a nonsignificant excess of recombination on smaller chromo-

somes, which is consistent with the smaller variation of chromo-

some size in the mouse genome. The greater y-intercept for the rat

genome supports the hypothesis that cytogenetic factors contrib-

ute more to the genetic map length of rat than mouse.

Because the rat karyotype consists of both metacentric and

acrocentric chromosomes, we repeated the analysis after splitting

all metacentric rat chromosome into two parts, based on the lo-

cation of the centromere. Different from the human genome, for

the rat genome this mainly affects the smaller chromosomes,

which are often metacentric. The regression line is now described

by G = 7.48 + 0.52P, and testing the intercept is still significant

(P-value = 0.024), although at a less stringent level. Thus, at the

scale of chromosome arms, the likelihood of crossovers is more

determined by physical length and less influenced by any obligate

recombination requirements.

Table 1. Comparison of the two-parameter and one-parameter
regression models for human genetic length, at the chromosome
scale (22 data points) and the chromosome-arm scale (34 data
points)

Two-
parameter

R2

One-
parameter

R2

P-value for
testing
G0 = 0

Human chromosome,
sex-averaged

0.976 0.817 3.1 3 10�10

Female 0.984 0.866 8.6 3 10�11

Male 0.942 0.694 1.2 3 10�8

Human chromosome
arm, sex-averaged

0.955 0.775 9.3 3 10�13

Female 0.964 0.861 7.1 3 10�11

Male 0.864 0.480 7.7 3 10�11

Comparison coefficient of determination (R2) for two- and one-parameter
regressions, and P-value for testing the null hypothesis of zero y-intercept.
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Recombination rate of small and large chromosomes
in the chicken genome

The chicken (Gallus gallus) genome consists of both large (macro-)

and small (micro-) chromosomes (Smith et al. 2000; International

Chicken Genome Sequencing Consortium 2004), with length rang-

ing from a few megabases to close to 200 Mb. The two-parameter

regression model for the chicken genetic data in Figure 2B leads to:

Gch;sex� ave;chicken = 34:68 + 2:79P: ð4Þ

In this regression model, the nonzero intercept is significant with

a P-value of 1.33 3 10�7, and there is a considerable difference of

AIC/BIC for the one- and two-parameter regression favoring the

two-parameter model (Supplemental Table S1). Both coefficients of

determination for the two- and one-parameter regressions attain

a high value: 0.98 and 0.93, respectively. A reason that the one-

parameter regression only marginally reduces the R2 value is given

by the fact that larger chromosomes contribute much more to the

total variance, which is equally well captured by the one-parameter

model. Thus, two of the three methods confirm a relative excess of

recombination on short chromosomes.

However, the orders-of-magnitude difference between the

sizes of chicken chromosomes raises the question of the robustness

of the regression. From International Chicken Genome Sequenc-

ing Consortium (2004) and Supplemental Figure S4, it is clear that

the genetic length reaches a plateau at the level of 50 cM for

microchromosomes smaller than 8 Mb. When chromosomes be-

low a certain length threshold are discarded from the regression

analysis, the y-intercept value changes slightly, but not dramati-

cally. For example, if the length thresholds for removal are 8 Mb

and 25 Mb, G0 for Equation 4 decreases to 32.95 and 31.88. When

the regression model is only fitted to the five largest chromosomes

(longer than 50 Mb), the model parame-

ters are G = 26.22 + 2.84P. On the other

hand, if we remove the largest five chro-

mosomes, the regression line is G = 31.86 +

3.01P.

To see how the quality of the map

distance measurements may influence

these results, we next looked at the recently

updatedchickenmap(Groenen et al. 2009),

which contains more genetic markers and

higher marker density. Applying the two-

parameter regression leads to

Gch;sex� ave;chicken = 34:23 + 2:04P: ð5Þ

As can be seen, the overall reduction

of RR as compared to the older map (In-

ternational Chicken Genome Sequencing

Consortium 2004) mainly manifests as

a reduced estimate of k, whereas the esti-

mate of G0 remains almost unchanged.

Exceptionally high recombination
on the largest honeybee
chromosome leads to a better fit
of the one-parameter than
the two-parameter model

Notably, the two-parameter regression

does not provide a better fit for the ge-

netic map data from honeybee (Apis mellifera) (Beye et al. 2006)

than the one-parameter model. When plotting the genetic length

over physical length (Fig. 2C), the y-intercept of the regression line

does not significantly differ from zero (P-value = 0.81):

Gch;sex� ave;bee = � 4:22 + 23:49P: ð6Þ

The coefficient of determination for both the two- and one-

parameter regression is ;0.95. In contrast to other genomes, AIC/

BIC analysis favors the one-parameter regression model (Supple-

mental Table S1).

As can be seen from Figure 2C, the longest chromosome

(chromosome 1) is four times the length of the shortest chromo-

some, and the regression result may depend on the presence of this

‘‘outlier.’’ To check this possibility, we repeated the analysis after

chromosome 1 was removed, which led to the regression equation:

G = 28.71 + 20.36P. However, also in this model, testing G0 = 0 is

not significant (P-value = 0.37), both the two- and one-parameter

regressions exhibit similar coefficients of determination (R2 = 0.80,

0.79), and the zero-intercept regression is still the better model

according to AIC/BIC analysis (Supplemental Table S1). Therefore,

different from other species, the honeybee genome does not display

any significant excess of recombination on smaller chromosomes.

Two-parameter regression at much shorter length scales:
The example of budding yeast

Yeast (Saccharomyces cerevisiae) has been extensively used to study

the molecular machinery of recombination, and it has a much

smaller (;12 Mb) and more compact genome (Cherry et al. 1997).

Although the physical length of yeast chromosomes only ranges

from 200 kb to 1.5 Mb, their genetic length is between 100

and 500 cM, even longer than the genetic length of human

Figure 2. The genetic length (in centimorgans, cM) vs. physical length (in megabases, Mb) plotted
for five genomes. (A) (3) Mouse (Mus musculus) and (s) rat (Rattus norvegicus). [Data source: Table 1 of
Jensen-Seaman et al. 2004.] The regression lines are: y = 15.62 + 0.44x (mouse), y = 22.49 + 0.43x (rat).
(B) Chicken (Gallus gallus). [Source: old data (year 2004, s) are from Supplemental Table S2 of the
International Chicken Genome Sequencing Consortium (2004); new data (year 2008, 3) are from
Table 1 of Groenen et al. (2009).] The regression line is y = 34.68 + 2.79x (old data) and y = 34.23 +
2.04x (new data). (C ) Honeybee (Apis mellifera). [Source: Table 2 of Beye et al. 2006.] The regression
line is y = �4.22 + 23.49x. (D) Budding yeast (Saccharomyces cerevisiae). [Source: http://downloads.
yeastgenome.org/chromosomal_feature/SGD_features.tab.] The regression line is y = 49.12 + 287.74x.
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chromosomes. The best-fitting regres-

sion line for the yeast genetic map is (Fig.

2D):

Gch;sex� ave;yeast = 49:12 + 284:74P: ð7Þ

The nonzero y-intercept is significant

(P-value = 0.009). The two-parameter

regression is superior to the one-param-

eter model as judged by AIC/BIC (Sup-

plemental Table S1). The value of the

y-intercept, 49.12 cM, is very close to

50 cM, which corresponds to almost one

crossing-over event for a hypothetical

chromosome of physical length of zero.

The extremely high recombination

rate in the yeast genome is surprising.

From the molecular perspective, one can

speculate about various hypotheses, such

as a different meiotic regulatory system

that makes a denser spatial distribution

of chiasmata possible; a lack of second-

ary chromatin structure as compared to

higher organisms so that the actual phys-

ical distance between two locations on

a chromosome is more or less equal to the linear sequence distance;

or the lack of another supporting mechanism to hold chromatids

together so that more chiasmata per chromosome arm are required

for proper chromosome segregation. On the other hand, the

y-intercept of the regression has a similar magnitude as that ob-

served for higher organisms, indicating a similar relative excess

of recombination on smaller chromosomes.

The difference between the central gene cluster and telomeric
regions in worm genome is due to a difference in G0

Finally, we used genetic map data from the worm Caenorhabditis

elegans to show that the two-parameter regression strategy can also

be useful to compare different regions within a genome. The

chromosomes of C. elegans are unusual, because discrete centro-

meres are missing and the chromosomes are holocentric, that is,

microtubules attach at many sites for chromatid segregation

(Tyler-Smith and Floridia 2000). Accordingly, the Marey map

analysis of the worm genome indicates that each worm chromo-

some can be partitioned in three regions: the central gene-rich

region with a low recombination rate and two distal telomeric re-

gions with high recombination rates (Barnes et al. 1995). There-

fore, we separately performed the regression analysis of genetic

length over physical length for these two types of regions (Fig. 3).

The fitted regression coefficients are:

Gcentral;worm = � 2:22 + 1:01P

Gdistal;worm = 18:39 + 0:94P: ð8Þ

Within the single-parameter framework without the intercept

term G0, the two types of regions would have a very different cM/Mb

ratio: 4.57 for telomeric regions, 0.68 for central regions. However,

when allowing nonzero G0 values, the two regions display similar

slope values, 1.01 and 0.94. This indicates a constant excess of

recombination in the distal region as compared to the central re-

gion in C. elegans, which is combined with a similar incremental

cM/Mb ratio. Thus, after accounting for a fixed amount of re-

combination in a distal chromosome region, the likelihood of any

additional recombination depends on similar strength on physical

length in distal and central regions.

As a note of caution, one may point out that the regression

coefficient in Equation 8 is obtained from only a few data points.

Nevertheless, further regression diagnostics supports our conclu-

sion. For example, testing G0 = 0 is significant for the distal regions

(P-value = 0.006), but not significant for central regions (P-value =

0.57). AIC/BIC analyses lead to the same conclusion (Supple-

mental Table S1).

Discussion
Our results show that instead of the simpler genetic-to-physical

length ratio, the relationship between the physical and genetic

map length at chromosome scale is better described by a statisti-

cal model that contains a second parameter G0, which is the

y-intercept of the regression of genetic map length over the physi-

cal chromosome length. A conceptually similar approach was

used earlier in measuring the genome-wide recombination rate

of a species by counting the chiasmata on each chromosome in ex-

cess of one (Burt and Bell 1987).

The consideration of this intercept parameter is important,

because karyotype structure has been established as an important

determinant of genome-wide RR (DeVillena and Sapienza 2001a;

Coop 2005) and smaller chromosomes display higher RR (Inter-

national Human Genome Sequencing Consortium 2001; Inter-

national Chicken Genome Sequencing Consortium 2004). Our

proposed two-parameter model provides a formal expression of

this size dependency of RR: RR = G/P = k + G0/P; that is, a constant

term k plus a second term that increases for smaller chromosome

sizes P (if G0 is positive). This is what we observe for human, mouse,

rat, chicken, and yeast genomes. When writing G0 as G0 = G � kP,

the y-intercept measures the amount of recombination after the

physical map length has been accounted for. Therefore, one would

expect that the total map length G of a chromosome increases by

G0 after splitting it up into two separate parts. In fact, this has

Figure 3. The cM-Mb plot using the physical and genetic length of central gene clusters (five data
points) and distal arms (10 data points) of five worm (Caenorhabditis elegans) chromosomes (Table 1 of
Barnes et al. 1995). The best-fitting regression lines are y = 18.39 + 0.94x for the (3) distal/telomeric
arms and y = �2.22 + 1.01x for the (s) central gene cluster regions.
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already been quantitatively observed for the experimental alter-

ation of yeast chromosome I (Kaback et al. 1992).

When comparing RR between species, the usage of k instead

of the genome-wide cM/Mb ratio will reduce the influence of

karyotype differences on the result. This was also the intention

behind the counting of chiasmata per chromosome in excess of

one (Burt and Bell 1987). In our study, the order of species remains

unchanged, whether ranked by k or by cM/Mb ratio. However,

owing to the different values of k, we cannot use a single regression

line to model the genetic–physical length relationship across spe-

cies. Thus, a molecular mechanism must exist that drives, within

a particular species, the proportional increase of genetic over phys-

ical map length. This mechanism might typically act with weaker

strength in larger genomes, which could contribute to the inverse

correlation between genome size and RR (Lynch 2006).

Among mammals, it was furthermore found that RR is more

similar for more closely related species (Dumont and Payseur

2008), which could be partly caused by their similar karyotypes.

It might be interesting to test where in the phylogenetic tree

the signal might be altered, when using k instead of the genome-

wide cM/Mb ratio. In this context, it is also important that ge-

nome-wide RR typically differs between genders and individuals

(Broman et al.1998; Kong et al. 2002, 2004; Cheung et al. 2007;

Petkov et al. 2007). The biological factors that were invoked as

possible explanations, such as differences in synaptonemal com-

plex formation or crossover interference, may be more plastic than

karyotype structure. The respective strength of these factors could

also contribute to species differences and may be better measured

by using k than by using the genome-wide cM/Mb ratio.

If k were equal to zero with the obligate chiasma requirement

holding true, then G0 would be required to be 50 cM. This pattern

can be observed for female opossum (Monodelphis domestica),

where each chromosome acquires exactly one crossover near one

of its telomeres (see Supplemental Fig. S5; Mikkelsen et al. 2007).

Similarly, very small chromosomes may always acquire exactly one

crossover, despite reduced chromosome size, as seen for the

microchromosomes in the chicken genome. In order to predict the

transition from this plateau to the linear regression, we derived the

minimum physical length parameter Pmin from a given Gmin and

the estimated regression parameters. Note that if both physical and

genetic lengths are measured as those in excess of Pmin and Gmin,

their ratio is exactly equal to k: (G � Gmin)/(P � Pmin) = (G � Gmin)/

(P � (Gmin � G0)/k) = (G � Gmin)/((kP + G0 � Gmin)/k) = k.

Because reduced recombination may result in aneuploidy of

smaller chromosomes (Warren et al. 1987; Brown et al. 2000), it is

conceivable that the length of smaller chromosomes could in-

fluence genome-wide RR by introducing a lower bound for the

propensity for chiasma formation in a species. Our analysis sup-

ports the size of the smaller chromosomes as a strong determinant

of genome-wide RR for the six genomes studied in this paper

(Supplemental Fig. S6). In log–log scale, the correlation coefficient

between RR and the shortest chromosome length is �0.92

(P-value = 0.008). If the recombination rate is measured by k, in

log–log scale the correlation coefficient is �0.91 (P-value = 0.01).

This correlation is nearly as strong as the reported correlation

between RR and the total physical length for more than 100 ge-

nomes (cc =�0.99, P-value = 0.0003 on log–log scale) as reported in

Lynch (2006). Obviously, data on more species are needed for

a more conclusive analysis. Nevertheless, it may be interesting to

point out that the genome with the lowest known recombination

rate, opossum, lacks any short chromosome (Mikkelsen et al. 2007;

Samollow et al. 2007).

Obviously, any genome-wide analysis relies on the availabil-

ity of high-quality data. We are convinced that the data used in this

study are of sufficient quality to study recombination on the

chromosomal scale. However, some error might be introduced by

the fact that the used genetic maps are not perfect and, in partic-

ular for telomeres, missing some data. This can be seen for the

chicken genomes, where the two chromosomes fall below the

minimum genetic length of 50 cM in the older map and climb to

;50 cM in the newer map (Supplemental Fig. S4). Data selectively

missing crossovers at the telomeres might lead to an under-

estimation of G0 in the regression model.

We note that we restricted our analysis to chromosomes or

chromosome arms. If the genetic length is regressed over the

length of much smaller regions, the coefficient of determination

R2 is expected to be much lower owing to a mixture of recombina-

tion hotspots and coldspots. From a biological perspective, we also

would not expect a positive G0 value in such a regression, because

there is no requirement for a megabase-sized region to have at least

one chiasma to maintain meiotic integrity.

In summary, we find that the introduction of the G0 param-

eter helps us to understand the recombination rate differences

between species, because it separates the effect of the requirement

for at least one chiasma formation on smaller chromosomes from

the factors that determine the amount of recombination on larger

chromosomes. More specifically, the partitioning of the chromo-

some-scale recombination rate leads to the following list of con-

clusions:

1. Human male–female RR differences disproportionately affect

larger chromosomes;

2. The higher recombination rate in the rat genome as compared to

the mouse genome is likely to be caused by the higher number of

smaller chromosomes that constitute the rat karyotype;

3. Both chicken micro- and macrochromosomes display a high

RR, and the extraordinarily high RR of some microchro-

mosomes does not lead to an extraordinary excess of recom-

bination on smaller chromosomes;

4. The honeybee genome does not display any significant excess

of recombination on smaller chromosomes;

5. Yeast displays a relative excess of recombination on smaller

chromosomes that is similar to higher organisms, despite its

outstandingly high overall recombination rate; and

6. Recombination of the worm genome mainly occurs in telo-

meric regions, and given one recombination per chromosome,

the likelihood of a second recombination is determined by

physical map length.

These examples demonstrate that the proposed statistical frame-

work allows us to pinpoint differences in the genomic re-

combination rate, which should be useful for the further study of

the genome-wide recombination rate as a quantitative trait of

fundamental importance.

Methods

Genetic map data
The human genetic map was obtained from Kong et al. (2002) that
uses 5136 microsatellite markers with 1257 meiotic events, and
is estimated from pedigree data (Supplemental Table E). The rat
(R. norvegicus) and mouse (M. musculus) genetic map data were
obtained from Table 1 of Jensen-Seaman et al. (2004), based on
2305 markers in rat and 4880 markers in mouse. The two chicken
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(G. gallus) genetic maps were obtained from Supplemental Table
S2 of International Chicken Genome Sequencing Consortium
(2004), which is built from 1471 markers, and from Table 1 of
Groenen et al. (2009), built from 9258 markers. The honeybee
(A. mellifera) genetic map was obtained from Table 2 of Beye et al.
(2006) based on 1500 markers. The budding yeast (S. cerevisiae) ge-
netic map was downloaded from http://downloads.yeastgenome.org/
chromosomal_feature/SGD_features.tab. The worm (C. elegans) phys-
ical and genetic lengths of central ‘‘gene clusters’’ and distal ‘‘arms’’
were obtained from Table 1 of Barnes et al. (1995), based on 168
markers.

Measuring how good a linear regression is by coefficient
of determination

Regression analyses were carried out by the lm( ) subroutine in the
R statistical package. For genetic lengths, {Gi} (i = 1,2,��� n, e.g., n =

22 for the chromosome-scale regression and n = 34 for the chro-
mosome-arm-scale regression), one can regress them over se-
quence lengths {Pi} (i = 1,2, ��� n) allowing y-intercept (nonzero G
when P approaches 0):

G + G0 + kP; ð9Þ

or, without the y-intercept (G approaches 0 as P approaches 0):

G = kP: ð10Þ

How good a linear regression model fits the data can be
measured by the coefficient of determination R2, which is the
proportion of variability that is explained by the model. More
specifically, if SStot = +n

i=1ðGi � E½Gi�Þ2 is the total sum of squares
of the genetic lengths of chromosomes, the term SSerr = +n

i=1

ðGi �G0 � kPiÞ2 for allowing nonzero y-intercept, or the term
SSerr = +n

i=1ðGi � kPiÞ2 for not allowing y-intercept, is the residual
sum of squares (RSS), then

R2 = 1� SSerr

SStot
= 1� RSS

SStot
: ð11Þ

Model selection by Akaike information criterion

The Akaike information criterion (AIC) (Akaike 1974) of a statisti-
cal model is defined as 2p � 2log(L), where p is the number of pa-
rameters in the model, and L is the maximum likelihood estimated
from the data. Similarly, the Bayesian information criterion (BIC)
(Schwarz 1978) is defined as log(n)p � 2log(L), where n is the
number of samples used to calculate the likelihood. For linear re-
gression, AIC/BIC is related to the residual sum of squares (RSS)
according to Venables and Ripley (1999) by:

AIC = 2P + n logðRSS=nÞ

BIC = logðnÞp + n logðRSS=nÞ; ð12Þ

where n is the number of sample points for the regression analysis.
Between two statistical models that are fitted to the same data set,
the model with a smaller AIC/BIC value is considered to be better
than the model with a larger AIC/BIC value.

For the comparison between the two- and one-parameter re-
gressions, we have:

AIC2 � AIC1 = 2� n log
RSS1

RSS2

BIC2 � BIC1 = logðnÞ � n log
RSS1

RSS2
: ð13Þ

If the second term, n log(RSS1/RSS2), is larger than 2 [for AIC, or
long(n)for BIC], then the two-parameter regression can be seen as
the better model than the single-parameter regression.

Quantities derived from G0

The linear relationship between G and P cannot extend to the
physical length of zero, if the y-intercept is greater than zero and
the obligate chiasma requirement holds. Therefore, a point Pmin

must exist below which genetic map length remains constant at
Gmin, independent from the actual physical map length of a chro-
mosome. We can define this transition point as follows: Pmin is the
physical length for which the regression line crosses the horizon-
tal line defined by the minimum genetic length Gmin, thus Pmin =

(Gmin � G0)/k.
Another derived quantity is the genome-wide percentage of

genetic length that is explained by G0. For a single chromosome (i),
this percentage is ai [ G0/(G0 + kPi). For the whole genome, it
is a [ nG0=ðnG0 + k+iPiÞ, where n is the number of chromosomes.
This definition of a is valid only when the y-intercept is positive
(G0 > 0).
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