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Making conclusions about the functional neuroanatomical organiza-
tion of the human brain requires methods for relating the functional
anatomy of an individual’s brain to population variability. We have
developed a method for aligning the functional neuroanatomy of
individual brains based on the patterns of neural activity that are
elicited by viewing a movie. Instead of basing alignment on
functionally defined areas, whose location is defined as the center
of mass or the local maximum response, the alignment is based on
patterns of response as they are distributed spatially both within and
across cortical areas. The method is implemented in the two-
dimensional manifold of an inflated, spherical cortical surface. The
method, although developed using movie data, generalizes success-
fully to data obtained with another cognitive activation paradigm—
viewing static images of objects and faces—and improves group
statistics in that experiment as measured by a standard general
linear model (GLM) analysis.
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Introduction

Aligning functional neuroanatomy across multiple subjects is

a crucial precursor for the statistical analysis of group data in

functional neuroimaging studies and, more generally, for de-

veloping models of brain organization that are representative of

a population. Current methods for anatomical alignment rely on

anatomical features that can be identified with high-resolution

structural magnetic resonance imaging (MRI) scans. The most

common technique is Talairach normalization (Talairarch and

Tournoux 1988)—a three-dimensional (3D) piecewise affine

registration technique based on a small number of anatomical

landmarks. A more powerful technique uses the curvature of

cortical folding to align cortical neuroanatomy, represented in

a two-dimensional (2D) manifold (Fischl, Sereno, and Dale 1999;

Fischl, Sereno, Tootell, et al. 1999; Argall et al. 2006). Basing

cortical registration on curvature produces superior alignment

of the major sulci and gyri of the cortex, as compared with 3D

volumetric registration (Fischl, Sereno, and Dale 1999; Argall

et al. 2006).

Functionally defined regions, however, are not consistently

located relative to anatomical landmarks on the cerebral

cortex. For example, the location of the visual motion area,

MT, can vary across individuals by more than 2 cm after

Talairach normalization (Watson et al. 1993) and can either be

in the inferior temporal sulcus or the lateral occipital sulcus

(Tootell et al. 1995). Moreover, the primary visual cortex, area

V1, can vary in size by as much as 2-fold across different

subjects’ brains (Rademacher et al. 1995; Dougherty et al.

2003). Consequently, methods for intersubject alignment based

on anatomy can afford only approximate intersubject registra-

tion of the center and extent of functional cortical areas.

The functional anatomy of the human brain also has a regular

organization at a finer spatial scale than that of cortical areas.

Functional areas mostly subtend 1 cm2 of the cortical surface or

more. Topographic maps within cortical areas, however, can

exist at a much finer spatial scale. The separation of

representations in V1 for nearby retinotopic locations is on

a millimeter scale (Sereno et al. 1995). At an even finer level of

organization, the representation of a single retinotopic location

consists of topographically organized maps of stimulus orien-

tation (Bartfeld and Grinvald 1992; Vanduffel et al. 2002).

Similar topographic maps exist in other sensory cortices, such

as tonotopy in auditory cortex and somatotopy in somatosen-

sory cortex. In higher-order visual areas within the lateral

occipital and ventral temporal (VT) cortices, different object

categories evoke distinct patterns of activity, suggesting the

existence of within-area topographies that reflect object

features (Haxby et al. 2001).

Between-subject alignment of anatomy based on functional

response is possible with CARET software (Van Essen et al.

2001). This method relies on landmarks that are drawn on the

surface by the operator. Consequently, this method is limited

by the number of landmarks that can be identified and does not

attempt to align within-area topography.

We decided to investigate whether cortical functional

anatomy could be better aligned based on local variations in

functional response to a complex stimulus that are common

across subjects. In contrast to previous approaches and

proposals (Van Essen et al. 2001; Mazziotta et al. 2001a,

2001b), our method attempts to find the optimal alignment of

all cortical points, whose spacing is defined by the size of

voxels in the imaging grid—a ‘‘complete correspondence

code’’—that relates every cortical point in an individual’s brain

to a corresponding cortical point in the brains of other

individuals. This approach incorporates more locally defined

functional information than simple alignment of the centers of

functionally defined areas that are identified with functional
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localizers (e.g., Van Essen et al. 2001). Thus, the long-term goal

of our method development project is to align not only the

centers of functional areas but also the borders of these areas

and some aspects of within-area topography.

In this report, we present an algorithm for aligning cortical

functional anatomy across subjects based on patterns of neural

activity evoked by cognitive and perceptual tasks. Our method

employs algorithms for intersubject cortical alignment that

were developed originally for anatomy-based cortical align-

ment in the 2D manifold of an inflated, spherical cortical

surface (Fischl, Sereno, and Dale 1999; Fischl, Sereno, Tootell,

et al. 1999). We use functional magnetic resonance imaging

(fMRI) time-series as indices of local functional response

profile. The fMRI time-series were obtained while subjects

watched a feature movie, Raiders of the Lost Ark, and while

subjects participated in an experiment on face and object

perception. Previous work suggests that neural activity during

a movie viewing is synchronized across subjects in a large

percentage of the cerebral cortex, presumably reflecting

a broad spectrum of perceptual and cognitive processes

(Hasson et al. 2004; Bartels and Zeki 2004a, 2004b). Perception

of still images of faces and objects evokes neural activity

primarily in early visual cortices and in the extrastriate cortices

of the ventral object vision pathway (Puce et al. 1996;

Kanwisher et al. 1997; Haxby et al. 1999, 2001; Ishai et al.

1999, 2000). Activity in VT cortex that is evoked by face and

object perception reveals a few areas that respond preferen-

tially to some categories, such as faces and houses (Kanwisher

et al. 1997; McCarthy et al. 1997; Epstein and Kanwisher 1998;

Downing et al. 2001), and category-related variation on a finer

scale than that defined by these areas (Haxby et al. 2001;

Hanson et al. 2004). Our procedure uses anatomy-based

alignment as the initial condition. We then use our new

method of function-based alignment to further warp the

cortical surface. Whereas the anatomy-based alignment max-

imizes correspondence of indices of cortical curvature, our

method maximizes correspondence of functional time-series

for each cortical node.

We derive independent warps based on each half of the

time-series data collected while subjects watched the movie.

We also derive warps based on time-series data collected while

subjects participated in the face and object perception exper-

iment. The validity of the warps is then tested by applying them

to the data sets that were not used in their derivation, such as

the other half of the movie or the face and object perception

experiment.

The results demonstrate that our algorithm improves the

registration of functional architecture across subjects, as indexed

by cross-validating generalization to movie-viewing data and by

generalization to data from the face and object perception

experiment. Generalization across experiments indicates that

the warps that our algorithm generates have general validity that

extends beyond the specifics of the experimental paradigm that

was used to generate the warps.

Materials and Methods

Data Acquisition

Subjects

Ten healthy young subjects (5 men, mean age = 23 years) participated

in 2 fMRI studies. All subjects gave written informed consent.

Movie Stimulus

In the first fMRI study, subjects watched Raiders of the Lost Ark. Movie

viewing was divided into 2 sessions. In the first session, subjects

watched the first 55:03 of the movie. After a short break, during which

subjects were taken out of the scanner, the second 55:30 of the movie

was shown. Subjects were instructed simply to watch and listen to the

movie and pay attention. The movie was projected with an LCD

projector onto a rear projection screen that the subject could view

through a mirror. The sound track for the movie was played though

headphones using an air conduction system.

Face and Object Stimuli

In the second fMRI study, subjects viewed static pictures of 4 categories

of faces (human female, human male, monkeys, and dogs) and 3

categories of objects (houses, chairs, and shoes). Images were presented

for 500 ms with 2000-ms interstimulus intervals. Sixteen images from

one category were shown in each block and subjects performed a one-

back repetition detection task. Repetitions were different pictures of the

same face or object. Blocks were separated by 12-s blank intervals. One

block of each stimulus category was presented in each of 8 runs.

fMRI Image Acquisition

Blood oxygen level--dependent images were obtained with echoplanar

imaging using a Siemens Allegra head-only 3T scanner (Siemens,

Erlangen, Germany) and head coil.

For the movie study whole brain volumes of 48, 3-mm thick sagittal

images (time repetition [TR] = 3000, time echo [TE] = 30 ms, flip

angle = 90, 64 3 64 matrix, field of view [FOV] = 192 mm 3 192 mm)

were obtained every 3 s continuously through each half of the movie

(1101 volumes for part 1, 1110 volumes for part 2).

For the faces and objects study, we obtained images of brain volumes

consisting of 32, 3-mm thick axial images (TR = 2000, TE = 30 ms, flip

angle = 90, 64 3 64 matrix, FOV = 192 mm 3 192 mm) that included all

of the occipital and temporal lobes and all but the most dorsal parts of

the frontal and parietal lobes. One hundred and ninety-two volumes

were obtained in each of 8 runs.

Structural MRI Image Acquisition

High-resolution T1-weighted Magnetization-prepared Rapid Acquisition

Gradient-echo (MPRAGE) images of the entire brain were obtained in

each imaging session (TR = 2500 ms, TE = 4.3 ms, flip angle = 8�, 256 3

256 matrix, FOV = 256 mm 3 256 mm, 172 1-mm thick sagittal images).

Additional T1-weighted MP--RAGE images were available for some

subjects from unrelated experimental sessions. These images were used

to create models of the cortical surface (see below).

fMRI Data Preprocessing

Movie fMRI Data

Preprocessing of the movie fMRI data began with correcting between-

scan head movements (3dVolreg in AFNI, Cox, http://afni.nimh.nih.-

gov), then reducing extreme values (3dDespike in AFNI). Movement-

related artifacts were reduced further by regressing the time-series data

against the motion parameters that were calculated in the motion-

correction step (3dDeconvolve in AFNI). We then calculated the

residuals around the model of movement-related signal changes. The

data were then low- and high-pass filtered to remove temporal variation

with frequencies higher than 0.1 Hz and lower than 0.00667 Hz

(3dFourier in AFNI). High-pass filtering removes low temporal

frequency changes with periods longer than 150 s. Low pass filtering

temporally smoothes fluctuations with frequencies higher than the

hemodynamic response function. Global variations in signal were

factored out by first calculating the mean whole brain intensity for each

time point then regressing the time series against the whole brain

means (3dmaskave then 3dDeconvolve in AFNI). The residuals around

variation that correlated with whole brain means were used for the

analysis of between-subject synchrony of neural activity. By removing

the effect of global variation, the data reflects only local variation

(Hasson et al. 2004). The data were not smoothed spatially.
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Face and Object fMRI Data

Preprocessing of the visual categories fMRI data began with correcting

between-scan head movements (3dVolreg in AFNI, Cox, http://

afni.nimh.nih.gov), then reducing extreme values (3dDespike in AFNI).

In the next step, we removed the mean, linear and quadratic drifts from

each time series and further reduced movement-related artifacts by

regressing the time-series data against the motion parameters that were

calculated in the motion-correction step (3dDeconvolve in AFNI). We

then calculated the residuals around the calculated model of signal

changes that could be related to these factors. The data were further

preprocessed in the same way as the movie data (low- and high-pass

filtering, removal of global variation effects).

Mean response to each category was calculated using multiple regre-

ssion with 7 regressors, one for each category (3dDeconvolve in AFNI).

The b-weights for each regressor were used as indices of response

magnitude for subsequent group analysis of the difference between

responses to faces and responses to objects using t-tests (see below).

Building a Model of the Cortical Surface from the Structural MRI

The structural T1-weighted MRI images for each subject were brought

into alignment (minctracc in MINC, Collins, http://www.bic.mni.

mcgill.ca) then averaged. This produces a high-quality, low noise

image. The cortical surface was then extracted from the intensity-

normalized, segmented 3D image as a tessellated triangular mesh, then

inflated to a sphere and registered to a spherical atlas (recon-all in

FreeSurfer, Fischl, http://surfer.nmr.mgh.harvard.edu). Extraction of

the cortical surface begins with automated alignment of the 3D brain

image to the Talairach atlas (Talairarch and Tournoux 1988) using

affine transformations. The initial sphere, therefore, is a Talairach-

normalized representation of cortical anatomy. The registered spherical

meshes provide a 2D (spherical) coordinate system for comparing

cortices across subjects at about 1-mm resolution (about 160 000

nodes per hemisphere). To further simplify comparison between

subjects and reduce the number of nodes to about 40 000 per

hemisphere, the meshes were resampled using standard numbering,

uniformly on the sphere, at 2-mm resolution (MapIcosahedon in SUMA,

Saad, http://afni.nimh.nih.gov/afni/suma). The new meshes provide a

standard ordering for comparing cortices across subjects.

Placing fMRI Data on the Cortical Surface

Functional data were placed on the cortical surface by first registering

structural images obtained during the experiment, which were already

in alignment with functional data, with the high-resolution structural

images used to create the cortical surfaces (3dvolreg in AFNI).

Functional data recorded at locations falling on or between corre-

sponding inner and outer (pial) cortical mesh nodes were then

averaged and associated with that standard mesh node number

(3dVol2Surf in SUMA). The time course at each cortical node was an

average of voxels across the thickness of the cortex. The voxels

averaged for any given cortical node lay along a line connecting

corresponding mesh nodes in the inner (white matter--gray matter

boundary) and outer (pial) surfaces, and extending 1 mm on either side.

This line traversed from one to 3 voxels. We used 2-mm spacing of

cortical nodes as a compromise between voxel size (3 mm linearly) and

the roughly 1-mm spacing in the nodes recovered by FreeSurfer. One-

mm spacing was too computationally expensive. However, 3-mm

spacing would undersample voxels in some locations. Associated with

each standard mesh node number within the 2-mm resolution mesh

(36 002 nodes), then, is a functional time-series for each subject on the

cortex, aligned anatomically.

Function-based Registration Approach

Our approach is to employ the whole fMRI time-series data (that

corresponds to some standard experiment, e.g., movie viewing) as

a feature vector that represents the functionality of the corresponding

point on the cortical surface. Using anatomical alignment as initialization,

the algorithm iteratively optimizes a warp field for each subject that

maximizes the intersubject correlation of functional time-series, subject

to a pair of regularization constraints that preserve the cortical topology

of each subject. Thus, we view the functional registration algorithm as

a fine-tuning of the anatomical alignment. In regions where there is

negligible activity detected by the fMRI scan, the algorithm will have no

incentive to apply a warp, resulting in the preservation of the anatomical

alignment. Moreover, instead of basing alignment on functionally defined

areas, whose location is usually defined as the center of mass or the local

maximum response, the alignment is based on patterns of response as

they are distributed spatially both within and across cortical areas

(Haxby et al. 2001). In other words, the alignment is based on a complete

correspondence code (Blanz and Vetter 2003) that relates every cortical

point in an individual’s brain to a corresponding cortical point in the

brains of other individuals. The proposed method is implemented on

a standard 2D representation (inflated and projected onto a standard

spherical surface, as described in the previous section) of the cortical

surface. Registration is thus performed on a spherical surface, not

a Euclidean grid.

Deformation Model

Intersubject registration requires nonrigid warp models that can account

for local deformations. Here, we employ a dense deformation approach,

where each mesh node is allowed to move independently of its spatial

neighbors. Regularization terms incorporated in the objective function

ensure that the warps respect the surface topology and minimize the

distortion of distances between neighboring cortical nodes.

The dense deformation approach typically requires a local (point)

similarity measure, the gradient of which determines the direction of

the move (warp) of the corresponding point. When dealing with data

sets that have a small number of values at each point/voxel (e.g.,

convexity, sulcal depth, curvature or T1-weighted MR images that

display structural information, beta maps that summarize the response

to various stimuli in a controlled experimental paradigm, etc.) com-

puting a point-wise similarity between the 2 data sets is usually only

possible by making use of a local neighborhood around the point of

interest or the whole image. In the case of fMRI, however, we have

much richer information at each point: long time-series (typically of

length 100--2000). We used this information to compute a local (point-

wise) alignment measure, the gradient of which can be used to drive

the warp locally. Because computation time and memory are valuable

resources, we investigated the fast-to-compute Pearson correlation

measure r between the 2 time-series as an index of similarity.

Warp Regularization

There are many approaches to regularize a nonlinear spatial warp (see

Modersitzki 2003, for a detailed treatment). The main goal is to avoid

overfitting by penalizing unexpected warps. Typically, invertibility and

smoothness are the2maincharacteristics imposedona spatialwarp. In the

triangulated (mesh-like) representation of the cortical surface, smooth-

ness is related to the preservation of internode distances. Invertibility, on

the other hand, can be achieved by avoiding folds of the mesh.

Following Fischl, Sereno, and Dale (1999), we investigated a folding

penalty and metric distortion penalty (precise definitions of these

terms can be found in Online Supplemental Material). The folding

penalty effectively prevents the introduction of folds in the warped

mesh, rendering the final warp invertible. The metric distortion penalty,

on the other hand, favors transformations that preserve internode

distances. The influence of both of these terms is determined by their

relative weights that are input parameters to our algorithm.

Our current approach to regularize the warp was favored over

alternative methods due to its flexibility and relative ease of imple-

mentation. Furthermore, it has previously been successfully applied

to registration problems (Fischl, Sereno, and Dale 1999). There is,

however, very limited scientific evidence that would justify any other

regularization. For instance, as we discussed in the Introduction, the

areas of some well-studied functional regions can vary significantly

across individuals, whereas we have very limited knowledge about

intersubject variability of other functional regions. This suggests that

strongly imposing the preservation of internode distances may be too

strict for functional registration. Thus, in our implementation we put

a small weight on the metric distortion penalty term.

Implementation

The cortical surface is represented with a regularized triangulation,

which is stored as a list of mesh nodes. For each subject i, each mesh
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node v contains a spatial position �xv
i , experimental time-series �t vi , a list

of neighboring nodes Nv, and belongs to a list of mesh triangles Tv. In

the regularized mesh, all interneighbor distances are the same d0, and

all triangles have the same area A0.

The functional registration algorithm modifies the time-series and

spatial positions of the floating subject mesh nodes only. This is stored

as a warp field, which can be added to the original spatial positions to

interpolate the new time-series. (The warp field is in spherical

coordinates, because the mesh nodes are only allowed to move on

the spherical surface, conforming to the 2D topology of the cortex.)

The algorithm attempts to maximize ET = Ec –kEf –bEmwith respect

to the warp field parameters of each cortical node, where Ec is the total

node-wise intersubject correlations (i.e., the alignment measure), Ef is

the folding penalty term, and Em is the metric distortion penalty. k
and b are scalar weights that determine the influence of the regu-

larization terms. Each node is allowed to move independently, and the

optimization is done using gradient-ascent with a line search, as im-

plemented in MATLAB’s Optimization Toolbox.

The algorithm can be summarizedwith the following update equation:

�xv
j ðt Þ = �xv

j ðt – 1Þ + cðt Þ
 
@Ec ði; jÞ
@ �xv

j

–k
@Ef

@ �xv
j

–b
@Em
@ �xv

j

!
jðt – 1Þ;

where c(t) is a time-varying step size.

Note that gradient-ascent is guaranteed to find a local optimum of

the objective function, but not necessarily the global optimum. In an

attempt to improve the capture range of the algorithm, and avoid local

optima, the algorithm uses a multiresolution strategy, in which the

functional data of each subject are represented at multiple spatial

resolutions. Alignment is performed first on fMRI time-series data

smoothed to 6 mm spatial resolution, followed by alignment on data

smoothed to 4-mm resolution. The final warp is then calculated based

on unsmoothed data.

Group-Wise Registration

We register a group of N > 2 subjects together by developing an atlas,

or group template, that represents the average of the population.

Selecting an individual subject as the atlas may fail to sufficiently

capture the variability of functional response across the group. On the

other hand, selecting the average of the group as the atlas might blur

the location of functionally defined cortical areas. For these reasons, we

develop the atlas iteratively during the registration process through

a sequence of pair-wise registrations. In each pair-wise registration, the

brain of an individual subject is functionally aligned to the current

estimate of the group atlas.

When the functional registration begins, the group of subjects is

in anatomical alignment. An atlas defined as the group average of

functional response is undesirable due to the variability in anatomical

location of functional areas across subjects. Hence, the functional data

of an individual subject is selected as the initial group atlas. The

alignment then proceeds by sequentially registering the remaining

subjects to the group atlas using the pair-wise functional registration

algorithm described above. After each registration, the group atlas is

refined by averaging the functional data of the subjects that have been

functionally normalized. Thus, subject n, 2 <n <N, is registered to the

average of subjects 1 through (n – 1). This procedure is illustrated in

Figure 1A.

After one pass through this process, the group atlas represents an

average of functional response from the group. However, the initial

selection of an individual to represent the group can potentially

introduce bias into the alignment procedure. To address this concern,

we run several additional passes through the group in which each

subject’s warp field is refined by functionally (pair-wise) registering it

to its leave-one-out atlas, defined as the average of all of the other

functionally normalized subjects in the group. This procedure is illus-

trated in Figure 1B. After each pair-wise registration, all subjects’ warps

are renormalized so that the average location of all individual subject

nodes warped to each atlas node is the anatomical location of that node

in standardized spherical cortical space. This is done to prevent universal

(across subjects) drifts in the warps (see Online Supplemental Material

for details).

Validation Testing

The output of the functional registration algorithm are warps—sets of

changes in spherical coordinates ðD/i ;j ;Dhi;j Þ required to functionally

align each node i in subject j‘s cortical mesh (the standardized,

anatomically registered spherical mesh as provided by FreeSurfer and

SUMA described above) to a group functional template—for a given

experiment such as movie viewing. How warps generalize from training

data from which the warps are derived, such as one half of the movie, to

test data, such as the other half of the movie or the faces and objects

experiment, provides a key test of warp validity. The validation

procedure was as follows. Data from the test experiment was placed

on the existing standardized, anatomically registered spherical meshes

for each subject (3dVol2Surf in SUMA). Warps from the training

experiment were applied to each mesh node. Functional data at each

new warped to location was assigned via interpolation. Time-series test

data was correlated at each node before and after functional warping,

for each subject versus the template formed by all other subjects. A

significant increase in correlation would provide support for warp

validity. When test data consisted of regressor b-weights, as in

the general linear model (GLM) analysis of the faces and objects

Figure 1. (A) The first step for developing a group atlas. First, one subject’s
functional data is aligned to that of another. The mean time-series at each cortical
node is calculated for these 2 subjects. The functional data for the third subject is
aligned to the mean data for the first 2 subjects, and the mean time-series at each
cortical node is calculated for these 3 subjects. The functional data for each additional
subject is added to the atlas in the same way, by first aligning the functional data
then calculating the group mean time-series for each cortical node. (B) The atlas is
further refined by iteratively realigning each subject’s functional data to its leave-one-
out atlas, that is, the mean time-series for all of the other functionally normalized
subjects. After each pair-wise registration, all subjects’ warps are renormalized so
that the average location of all individual subject nodes warped to each atlas node
is the anatomical location of that node in standardized spherical cortical space. This
is done to prevent universal (across subjects) drifts in the warps (see Online Sup-
plemental Material for details).
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experiment, a significant increase in the magnitude of t-tests of selected

contrasts after functional warping would provide further support for

warp validity. Finally, warp validity was tested by examining the effects

of warps on the between-subject overlap of functionally defined

regions of interest, namely the fusiform face area (FFA) (Kanwisher

et al. 1997) and the parahippocampal place area (PPA) (Epstein and

Kanwisher 1998). Each subject’s FFA nodes were determined as the

cortical nodes in VT cortex that responded significantly more strongly

to faces than to objects (P < 0.0001). The PPA nodes of each subject

were determined as the cortical nodes in VT that responded

significantly more strongly to houses than to both small objects and

faces (P < 0.0001 for both contrasts).

Results

Improved between Subject Correlations on
Cross-Validation

As the starting point for function-based alignment, we used

anatomy-based alignment that uses local cortical curvature as

an index of gyral anatomy to align the cortex (FreeSurfer,

Fischl, http://surfer.nmr.mgh.harvard.edu). This procedure

begins with normalization to the Talairach stereotaxic brain

atlas (Talairarch and Tournoux 1988) as the initialization point.

As a further test of validity, we also applied function-based

alignment using Talairach normalization as the initialization

point (next section). In this section, however, anatomic

registration refers to the full procedure of Talairach normali-

zation plus curvature-based alignment.

Mean correlation was calculated at each cortical point for all

pairings of each subject versus the mean time-series of the

other 9 subjects. The correlations were performed on time-

series data at 72 004 anatomically corresponding cortical

points (36 002 points per hemisphere). We calculated 2,

independent warps of cortical anatomy that were based on

the data sets obtained while subjects watched the first half (P1

warp) and the second half (P2 warp) of the movie, respectively.

For cross-validation of these functional registrations, we then

applied the P2 warp to the data from the first half of the movie

and vice versa and calculated the correlations again for

comparison with the initial values. In the first half of the

movie, mean correlation improved from +0.066 to +0.086 with

functional registration based on the P2 warp. Note that the

signal variance in this analysis of unsmoothed data is a small

portion of total variance. The enhancement of between-subject

alignment was evident in the number of cortical points with

significant correlations (r > 0.1, P < 0.01 after correction of df

for temporal autocorrelation) in the positive tail of the

distribution, with a 25.9% (SD = 2.4%) increase from 19 776

to 24 899 (t(9) = 34.0, P < 10
–10). In the second half of the

movie, mean correlation improved from +0.068 to +0.088 with

functional registration based on the P1 warp. The number of

significant correlations increased by 25.6% (SD = 2.8%) from

20 435 to 25 670 (t(9) = 28.5, P < 10
–9).

Figure 2 demonstrates visually the effect of applying the P2

warp to the first half of the movie (see Supplemental Figure 1 for

images of the application of the P1 warp to the second half of

the movie). The strength of correlations and the area occupied

by significant correlations (r > 0.10, P < 0.01) have increased

noticeably. Highly correlated nodes tend to be in posterior

cortices, especially in the superior temporal, VT, and lateral

occipital cortices, as well as in parietal and premotor cortices.

Motor and somatosensory cortices near the central sulcus show

little or no between-subject synchrony. Uncorrelated areas also

appear in locations similar to the ‘‘default’’ (Gusnard and Raichle

2001) or ‘‘intrinsic’’ system (Golland et al. 2007).

The increases in between-subject correlations in the training

data, in other words the effect of applying a warp to the data that

were used to produce that warp, were substantially greater, as

expected. In the first half of the movie, the non--cross-validated

increase in mean correlation was from +0.066 to +0.109, with

a 59% increase in the number of significant correlations. In the

second half of the movie, non--cross-validated increase in mean

correlationwas from +0.068 to +0.112,with a 60% increase in the

number of significant correlations. The shrinkage with cross-

validation is an index of how much overfitting occurred in the

derivation of warps, a source of error that could be improved

with further refinements of our method.

Direct Comparison of Anatomic-Curvature--based and

Function-based Alignment Starting with the Same

Initialization

The results reported above were for function-based registration

using anatomic normalization based on cortical curvature as the

initialization point. We reasoned that optimal use of our method

should start with the optimal anatomic alignment. This

comparison, however, does not index the power of function-

based alignment versus anatomic-curvature--based alignment

when both are calculated using the same initialization point.

Curvature-based alignment using Freesurfer begins with Talair-

ach normalization of the 3D brain image before identifying the

cortical surface and warping that surface based on gyral anatomy

(curvature). For a direct comparison of the power of anatomic-

curvature--based alignment and function-based alignment, we

recalculated the warp fields based on functional response for

each subject using the same Talairach-normalized surfaces as the

initialization point. We used the same cross-validation procedure

to evaluate the results, namely applying the P1 warp to the data

from the second half of the movie. Anatomic-curvature--based

alignment, relative to Talairach normalization, increased the

number of significant correlations by 17.6% (SD = 8.0%). By

contrast, function-based alignment, using Talairach alignment as

the initialization point, increased the number of significant

correlations over Talairach alignment alone by 32.6% (SD =
3.5%). This difference was highly significant (t(9) = 5.1, P < 10

–3).

As expected, function-based alignment starting with anatomic-

curvature--based alignment produced a significantly, larger

increase in the number of significant correlations than did

function-based alignment starting with Talairach normalization.

Relative to Talairach normalization, function-based normali-

zation using anatomic-curvature--based normalization as the

starting point increased the number of significant correlations

by 47.8% (SD = 7.7%). The number of significant correlations

after function-based alignment initialized with curvature-based

alignment was significantly greater than that initialized with

Talairach normalization (t(9) = 6.14, P < 10–3). The recommended

procedure for applying our method, therefore, uses anatomic-

curvature--based alignment as the starting point for function-

based alignment.

Cross-Validation to Visual Perception Experiment

Increased between-Subject Correlations for Full Time-Series

We also applied our functional alignment algorithm to the data

from a block design study of face and object recognition.

Between-subject correlations for the full time-series were
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significant for 9.4% of cortical nodes (SD = 1.9%) after

anatomic-curvature--based alignment. Of nodes in VT cortex,

29.2% (SD = 4.8%) showed significant between-subject cor-

relations. After functional registration, based on the warps

derived from response to the movie, the number of significant

correlations increased by 17.5% (SD = 3.5%) in the whole brain

and by 15.7% (SD = 2.1%) in VT cortex (t(9) = 16.2, P < 10
–7 and

t(9) = 24.2, P < 10
–8, respectively).

Figure 3 shows the effect of functional registration on the

number of between-subject correlations for the full time-

series from the face and object perception experiment. The

increase in correlations is evident in the visual cortices—VT,

ventral and dorsal occipital, posterior parietal—and a small

locus in inferior frontal cortex. The extent of VT cortex that

showed significant correlations for the visual experiment

time-series was highly similar to that in the movie data, but,

unlike in the movie data, we did not find large areas of

significant correlations in the lateral occipitotemporal cortex,

in the superior temporal sulcus, or in the parietal and premotor

cortices.

Enhanced t-Test Contrast for Faces versus Objects

Between-subject correlations of the full time-series from the

face and object perception experiment reflect shared variance

due to both general visual responses as well as category-

specific responses. In order to examine whether functional

registration based on neural activity evoked by watching

a movie increased the alignment of category-specific cortical

topographies, we also performed a GLM analysis on the

contrast between responses to faces and to nonface objects

across subjects. We calculated a t-test at each node, testing

whether the contrast between the response to faces versus

objects (mean b for face responses—mean b for object

responses) was significant. The number of cortical nodes that

showed significantly different responses to faces and objects

(|t| > 2.36, P < 0.05), increased by 14.0% in the whole brain

Figure 2. Generalization to the first half of the movie. The images in the left column show the sulcal anatomy for the inflated cortical surfaces (IPS—intraparietal sulcus;
LOS—lateral occipital sulcus; STS—superior temporal sulcus; CntlS—central sulcus; CingS—cingulate sulcus; CalcS—calcarine sulcus; CollS—collateral sulcus;
OTS—occipitotemporal sulcus). The images in the middle column show the mean correlation of each subject with the other 9 subjects for corresponding nodes after
anatomical cortical registration. The images in the right column show mean correlations after applying the warps to these nodes that maximized functional similarity in the second
half of the movie (cross-validation test). The effect of applying the warps based on the first half of the movie to the data from second half of the movie was highly similar (see
Supplemental Fig. S1). Correlations less than þ0.10 (P\ 0.01) are not shown.
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from 3980 nodes (5.5% of cortex) after anatomy-based reg-

istration to 4539 nodes (6.3% of cortex) after function-based

registration based on the warps from part 1 (4527 nodes) or

part 2 (4550 nodes) of the movie data. In VT cortex, the

number of cortical nodes that showed significantly different

responses to faces and objects increased by 31.8% from 631

(23.8% of VT cortex) to 832 (31.1% of VT cortex). The in-

creases in mean absolute value of t-tests for both warps (based

on parts 1 and 2 of the movie) were highly significant in both

hemispheres (t[36 001] > 6 in all cases, P < 10
–10).

Figure 4 shows the effect of functional registration on the

detection of cortical nodes in ventral occipitotemporal cortex

that showed a significantly different response to faces and

houses across subjects.

Improved Alignment of Functionally Defined Areas

As a further test of the effect of functional alignment on

conventional statistics, we identified 2 areas in VT cortex that

are defined by differential response to different visual object

categories—the FFA (Kanwisher et al. 1997) and the PPA

(Epstein and Kanwisher 1998). The FFA and PPA were iden-

tified in each subject based on data from the face and object

perception experiment after anatomic-curvature--based align-

ment and after functional alignment based on Part 1 of the

movie. For each individual FFA and PPA, the number of cortical

nodes that also were identified as the FFA or PPA in other

subjects was counted. After anatomic alignment, a mean of

22.8% (SD = 6.1%) of each subject’s FFA overlapped with 4 or

more other subjects’ FFA. Functional alignment nearly doubled

the portion of the FFA showing this amount of overlap to 45.2%

(SD = 7.4%) (P < 10
–6). Functional alignment also improved

overlap for the PPA, albeit to a lesser extent (26.2 ± 10.0% to

34.8 ± 13.8%, P < 0.01). The percentage of nodes showing

different levels of overlap for the FFA and PPA are shown in

Figure 5. The locations of FFA and PPA nodes that overlapped

for 5 or more subjects are shown in Figure 6.

Warping Functional Neuroanatomy based on the Face and

Object Perception Study

We also tested whether our functional normalization method

worked if the basis was functional brain responses during the

face andobject perception experiment.Wederived awarp based

on between-subject correlations for the face and object study

time-series and applied that warp to the data from the first and

second halves of the movie. Functional normalization based on

the face and object data increased the number of cortical nodes

with significant correlations in the first half of the movie by 5.9%

(SD = 1.1%, t(9) = 17.2, P < 10
–7) and in the second half of the

movie by 5.5% (SD = 0.8%, t(9) = 22.0, P < 10–8). Improvement of

between-subject correlations after normalization based on the

face and object perception data was most evident in ventral

occipitotemporal cortex, but we also observed small improve-

ments in parietal and lateral temporal cortices. Whereas the

number of significant correlations in VT cortex increased by

10.5% (SD = 2.8%), the number of significant correlations outside

of VT cortex increased by a significantly smaller proportion

(5.2%, SD = 0.9%, t(9) = 5.4, P < 10
–3).

Discussion

Warps generated from the movie data generalized well not

only to new movie data but also to a visual face and object

Figure 3. Generalization to a face and object perception experiment—between-subject correlations. The images on the left show the sulcal anatomy for the inflated cortical
surfaces of a representative subject (IOS—intraoccipital sulcus; IPS—intraparietal sulcus; STS—superior temporal sulcus; OTS—occipitotemporal sulcus; CollS—collateral
sulcus). The images in the middle show between-subject correlations in posterolateral and ventral views of the right hemisphere (r[ 0.1, P\ 0.01) after anatomical registration.
The images on the right show between-subject correlations after functional registration based on a cortical warp derived from the first half of the movie data. The lateral view has
been turned to enhance the view of posterior occipital and parietal cortex.

Figure 4. Generalization to a face and object perception experiment—GLM group
analysis. The left images show the t-statistic between 10 subjects after anatomically
aligning betas for faces (red to yellow) versus objects (dark to light blue) contrast
(right hemisphere). The right images show the t-statistic after further aligning the
betas using functional warps from the first half of the movie. Absolute t-values less
than 2.36 (P[ 0.05) are not shown.
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perception experiment consisting of the presentation of static

images of objects and faces. Mean intersubject correlations of

the functional time-series increased significantly, over anatom-

ical alignment alone, in every generalization test of the cortical

warps based on neural responses recorded while watching the

movie. The extent of cortex that showed correlated response

to the movies across subjects was 28% of total cortex based on

anatomical alignment alone and increased to 35% of total

cortex based on functional alignment.

The cortices that showed improved alignment after func-

tional alignment were primarily in occipital, temporal, and

parietal areas that are associated with visual and auditory

perception. Of particular interest is the large cortical area

in the superior temporal sulcus, extending for nearly the

entire length of this structure, which showed increased

synchrony (Fig. 1). These cortices are known to be polysensory

(Beauchamp et al. 2004) and to play an important role in action

understanding and social cognition (Allison et al. 2000; Haxby

et al. 2000; Gobbini et al. 2007). Functional alignment, also

improved detection of between-subject synchrony in premotor

and inferior frontal cortices. In general, the cortical areas

that showed between-subject synchrony agree well with the

findings of Hasson et al. (2004; Golland et al. 2007).

In a direct comparison of function-based alignment and

anatomic-curvature--based alignment using the same initial

condition, namely Talairach-based alignment, function-based

alignment resulted in between-subject synchrony in a signifi-

cantly larger extent of cortex, providing a clear quantitative

index of the advantage of function-based alignment. Whereas

curvature-based alignment increased the number of cortical

locations having significant between-subject synchrony by 19%,

function-based alignment resulted in an increase of 33%. As

expected, function-based alignment initialized with Talairach

alignment was not as effective as function-based alignment

initialized with curvature-based alignment, indicating that our

algorithm is more likely to settle into a suboptimal local

minimum with a less optimal initialization point. The recom-

mended procedure for applying our method, therefore, is to

use anatomic-curvature--based alignment as the starting point.

Functional alignment based on the movie data also had

a large effect on between-subject synchrony of local brain

activity during a face and object perception experiment, with

an 18% increase in the number of nodes with significant

Figure 5. The effect of functional alignment on the overlap of 2 functionally defined
regions—the FFA and the PPA—across subjects. The graphs show the average
portion of an individual subject’s FFA (Panel A) and PPA (Panel B) that overlaps with
the same functional region in other subjects for different amounts of overlap.

Figure 6. Illustration of the location and amount of overlap of 2 functionally defined regions—the FFA and the PPA—across subjects. Only nodes that were identified for 5 or
more subjects are shown. The images that illustrate PPA overlap are tipped to provide a better view of this region that is located more medially than the FFA. The images on the
left show the locations of sulci in these inflated cortex images (OTS—occipitotemporal sulcus; CollS—collateral sulcus). The images in the middle column show overlap among
subjects after alignment based on sulcal anatomy. The images on the right show overlap among subjects after functional alignment based on a warp derived from the movie data.
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correlations. Moreover, this increased synchrony reflected

category-specific functional topographies. Functional registra-

tion increased the number of cortical nodes that showed

a significant difference between responses to faces and objects

by 14% in the whole brain and by 32% in VT cortex. In addition

to improving group statistics for identifying face-selective

cortex in the fusiform gyrus (ventral view), function-based

alignment also improved detection of face-selective cortex in

the superior temporal sulcus, an area that is known to play an

important role in the representation of facial expression, eye

gaze, and social cognition (Allison et al. 2000; Haxby et al. 2000;

Gobbini et al. 2007). Functional alignment based on the movie

also increased overlap across subjects of 2 VT areas that are

defined by selective responses to faces and houses, namely the

FFA and the PPA.

Our method shows that a better map of the functional

organization of cortex that is general across subjects can be

derived using both anatomical and functional data than maps

that are derived based only on anatomical data. This map

preserves the topology of cortex in that it does not allow folding.

It is, therefore, a rubber-sheet warping of individual subject

topography. Penalty terms for warping distance insure that loci

in an individual subject’s brain are never warped more than 3 cm

to locations in the template brain, a distance that is consistent

with reports on the variability of the locations of functional loci

(e.g., Watson et al. 1993; Dougherty et al. 2003). The anatomy of

the template brain is meaningful, because each location in the

template brain is the mean location of the cortical loci in

individual brains that were warped to that location.

Functional alignment based on neural activity evoked by

watching a movie clearly enhanced the GLM group statistics in

the unrelated experiment on face and object perception,

indicating that our method may be of general utility for

functional neuroimaging research on a wide range of sensory,

perceptual, and cognitive functions. Further work is needed to

determine whether other fine-grained functional cortical top-

ographies, such as retinotopy and somatopy, can also be better

aligned using this method.

Our method also worked well when based on time series

from the more controlled experiment on face and object per-

ception. Due to the limited range of perceptual and cognitive

operations that are associated with viewing still images of

a restricted number of categories, the associated neural activity

involves a smaller portion of the cerebral cortex. With anat-

omical alignment, the extent of cortex that showed significant

between-subject correlations for response to the face and

object stimuli was 34% of the extent of cortex that showed

significant correlations for response to the movie. As expected,

warps generated from the face and object perception

experiment improved functional normalization in less cortex

than did warps generated from the movie data. Functional

normalization based on the face and object experiment

was most effective for increasing the number of significant

between-subject correlations in VT cortex, presumably be-

cause this focused experiment preferentially activated cortex

in the ventral object vision pathway.

These results show clearly that the neural response while

watching amovie providesmore information about the functional

architecture of the cerebral cortex than does the neural response

during a more limited, controlled experiment, and that this

information can be used effectively for function-based alignment

of cortical anatomy. The range of perceptual and cognitive states

that are evoked while watching a movie undoubtedly plays the

major role in the efficacy of this procedure. An actionmovie, such

as Raiders of the Lost Ark, also may be especially effective in

engaging the attention of subjects and may be more useful for

subjects with uncertain compliance, such as children and clinical

populations. Further investigations are required to determine the

extent to which functional alignment based on movie data

generates warps that are consistent with controlled experiments

in other cognitive domains.

It is possible that function-based normalization based on

neural activity evoked by more controlled experiments could

be more effective for a specific functional region. In our study,

however, the warps based on the face and object experiment

data did not align VT cortex, as indexed by the increase in

between-subject correlations while watching the movie, better

than did the warps based on data from watching the other half

of the movie. The key question is whether a single, optimal

warp exists for the cerebral cortex or for sectors of the

cerebral cortex—or will overlapping topographic maps for

different functions be aligned optimally by different warps. The

generalization of the movie-based warp to the face and object

data suggest that a single resampling warp can be effective for

many different functional topographies, but the optimality and

uniqueness of this warp are not established.

Our results show that 2 functionally defined regions, the FFA

and the PPA, are better aligned across subjects using warps

based on the movie data. Further work is necessary to

determine if other functionally defined regions, such as

retinopically defined early visual areas, the visual motion area

MT, and auditory areas, are also better aligned. Of even greater

interest is the question of whether within-area topographies,

such as retinotopy and tonotopy, are better aligned across

subjects. Some topographies have a spatial scale finer than that

of conventional fMRI, such as orientation-selectivity in early

visual cortex, but, nonetheless, can be detected with fMRI

using multivariate pattern analysis (e.g., Haynes and Rees 2005;

Kamitani and Tong 2005). These topographies, however, lose

their structure when undersampled into a 2- or 3-mm imaging

grid and, therefore, cannot be aligned with rubber-sheet

warping of the cortex.

We are making the MATLAB software for our algorithm

available for download (www.csbmb.princeton.edu/funcnorm).

Although we believe that function-based alignment will be

a useful preprocessing step for a broad spectrum of fMRI

studies, there are several reasons why the algorithm is not yet

ready for routine use:

1. Further work is necessary to optimize the method. Shrink-

age on cross-validation, and the sensitivity of the method to

initialization, indicates that our algorithm does not find

a unique, optimal solution. Further refinement is necessary

to insure that the method finds an optimal or near-optimal

warp that is consistent and replicable.

2. We have not established the optimal stimulus for our al-

gorithm. A different movie or a variety of selected movie

clips may prove better. For focused investigations of

specific brain systems, carefully designed stimuli within

that domain may be better. Setting the movie that we

selected for this initial report as the standard may not be

the best choice.

3. We have not developed a functional template brain that is

based on the alignment of a large number of brains of
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subjects who have watched the same movie. It also is

unclear whether such a template will work well across

scanners, scanner field strengths, and laboratories. Conse-

quently, each laboratory would have to develop its own in-

house brain template.

4. Finally, our method is costly in terms of scanner time. The

results we present here derive warps based on nearly one

hour of fMRI data for each subject. Consequently, use of

this method would require an additional scanning session for

each subject.

The use of our method as a preprocessing step to improve

statistics does not affect the degrees of freedom for statistical

analyses if the warps are based on unrelated data, such as those

obtained while subjects view a movie. If functional alignment of

data is based on data from the same experiment, extreme care

must be taken to insure that the data used to derive the warp

are not part of the data that are analyzed. Such an application

would involve standard split-half or leave-one-out data folds.

It is important to note that all of these analyses were per-

formed on data with minimal spatial smoothing. The data were

resampled to 2-mm spacing on the cortical mesh, which is

below the intrinsic spatial resolution of 3 mm in the functional

EPI images. Group analyses of fMRI data, including conventional

GLM analyses and between subject correlations for movie data

(Hasson et al. 2004), typically smooth the data spatially to

compensate for misaligned functional anatomy, using filters

with a full width at half maximum of 6--12 mm. By contrast, our

method allows us to overcome misaligned functional anatomy

without spatial smoothing and without the resulting loss of

high spatial frequency features of functional topographies.

Conclusion

In summary, our results indicate that functional registration

based on neural activity while watching a movie is a further

refinement beyond anatomical registration, and cross-validates

both to the other half of the movie and to another experiment

entirely. On cross-validation, the extent of cortex that shows

correlated timecourses of neural activitywhilewatching amovie

increased by 26% after function-based alignment. The warp

based on time courses of activity while watching a movie also

increased the sensitivity of group statistical analysis for an

experiment on visual perception of still images of faces and

objects, suggesting that it also may enhance the sensitivity for

investigations of many other perceptual and cognitive functions.

Thus, the method that we introduce here may be useful for

a wide range of applications in functional neuroimaging re-

search. Moreover, the vector field for warping can be used as an

index of the similarity of functional architectures in different

individuals, with potential for investigating the effect of de-

velopment, experience, and clinical disorders on cortical

functional anatomy.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/.
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