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Abstract
Quantification of tracer kinetics using dynamic positron emission tomography (PET) provides
important information for understanding the physiological and biochemical processes in humans
and animals. A common procedure is to reconstruct a sequence of dynamic images first, and then
apply kinetic analysis to the time activity curve of a region of interest derived from the
reconstructed images. Obviously, the choice of image reconstruction method and its parameters
affect the accuracy of the time activity curve and hence the estimated kinetic parameters. This
paper analyzes the effects of penalized likelihood image reconstruction on tracer kinetic parameter
estimation. Approximate theoretical expressions are derived to study the bias, variance, and
ensemble mean squared error of the estimated kinetic parameters. Computer simulations show that
these formulae predict correctly the changes of these statistics as functions of the regularization
parameter. It is found that the choice of the regularization parameter has a significant impact on
kinetic parameter estimation, indicating proper selection of image reconstruction parameters is
important for dynamic PET. A practical method has been developed to use the theoretical
formulae to guide the selection of the regularization parameter in dynamic PET image
reconstruction.
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I. Introduction
Dynamic positron emission tomography (PET) is a powerful tool in clinical and biological
research. Typically a sequence of dynamic images that represent the tracer distribution over
time are reconstructed. The time activity curve (TAC) of a region of interest (ROI) is then
extracted from the images and is used to estimate tracer kinetic parameters based on a
compartmental model. Many factors affect the precision and accuracy of the estimated
kinetic parameters and have been studied in the past, such as sampling schedule [1]-[8],
processing of reconstructed images and data [9]-[12], kinetic models [13]-[15], model fitting
algorithms [16], [17], and experimental designs [18]-[20]. Here we theoretically analyze the
effect of image reconstruction methods. We focus on penalized likelihood (PL)
reconstruction because it offers good theoretical properties [21].
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A. Importance of Analyzing Dynamic Reconstruction
We employed a Monte Carlo simulation example to demonstrate that dynamic PET and
static PET have different requirements on a reconstruction method. In this example, we
estimated the volume of distribution (VD) of a simulated tumor ROI in the brain. The details
of the simulation are presented in Section IV. Here we plotted the root ensemble mean
squared error (REMSE) of the estimated VD and the TAC (ROI uptake) as a function of the
regularization parameter β of the penalized likelihood reconstruction method (Fig. 1). The
static curve shows that for estimating the mean ROI uptake in this example, minimal
regularization (β = 1 × 10−8) is preferred. As we increase β to 3 × 10−6, the REMSE of the
estimated ROI uptake increased slightly to about 8%. However, this is not true for the
kinetic parameter estimation. With β = 1 × 10−8, the estimated VD exhibits 45% error. As
we increase β, the REMSE reduces with the minimum of 21% achieved at β = 3 × 10−6.
This indicates that for estimating VD using the same data set, a reasonable smoothing is
strongly preferred. While the smallest β value gives the minimum REMSE for the ROI
activity quantification, it does not translate into minimum REMSE in the kinetic parameter
estimation because the kinetic parameter estimation has different sensitivities to the bias and
variance. The bigger effects of reconstruction methods on dynamic PET than on static PET
reconstruction are due to the nonlinearity and identifiability of the kinetic models. It is worth
noting that the amount of the reduction in REMSE is equivalent to doubling the sensitivity
of a PET scanner. This result suggests that it is necessary to understand the propagation of
the bias and noise in reconstructed images in kinetic parameter estimations.

B. The Proposed Method and Its Relations to Other Work
The above example demonstrates the importance of selecting a proper regularization
parameter in PL reconstruction for dynamic PET. Error analysis is essential for proper
selection of the regularization parameter. A common method for error analysis is Monte
Carlo simulation (such as the one shown in Fig. 1). For example, Monte Carlo simulation
was used in [17] to study the error of plasma input function, and in [9] to study the effects of
reconstruction parameters, post-reconstruction filtering, and resolution recovery on kinetic
parameter estimation. One major disadvantage of Monte Carlo simulation is its high
computational cost.

Alternatively, a theoretical approach can be used to analyze noise propagation in parameter
estimation. Several methods have been developed for studying resolution and noise
properties of static image reconstruction (reconstruction of a single frame), including
iteration based methods for the EM algorithm, e.g. [22]-[24], and fixed-point based methods
for penalized likelihood reconstruction, e.g. [25]-[31]. Methods for selecting the
regularization parameter for lesion detection and ROI quantification have also been
developed [32]-[34].

Kinetic parameter estimation requires reconstruction of multiple frames. Thus, the effects of
reconstruction methods in dynamic PET are more complicated than in static PET
reconstruction. So far, theoretical analysis for kinetic parameter estimation using dynamic
PET has been limited. Most existing research on theoretical evaluation of kinetic parameter
estimation has considered little of the actual reconstruction effects and treated image
reconstruction as unbiased. The noise model for time activity curves was often assumed to
be zero mean with variance being proportional to the activity concentration [18]. Under this
model, the kinetic parameters estimated using the nonlinear weighted least squares (NLLS)
are considered unbiased and the variance is approximated by the inverse of the Fisher
information matrix. The computation of the Fisher information matrix can be achieved by
either using a numerical perturbation technique, e.g. [1], or a numerical inversion, e.g. [19].
These methods work reasonably well for reconstruction without any regularization, such as
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filtered backprojection (FBP) with a ramp filter or maximum likelihood (ML)
reconstruction. However, as we have shown in Fig. 1, unregularized ML reconstruction may
not be the optimal choice for kinetic parameter estimation. This observation has prompted us
to study kinetic parameter estimation using the penalized likelihood reconstruction.

This paper aims to develop a theoretical approach to analyzing the effect of penalized
likelihood reconstruction on kinetic parameter estimation. PL reconstruction is inherently
biased due to the regularization. The bias in the time activity curve will be propagated into
the estimated kinetic parameters. In addition, the conventional noise model, which assumes
the variance is proportional to the activity, is not valid for PL reconstruction [32]. Here we
exploit the accurate noise model that was derived in [34].

By combining the bias and variance of ROI activity quantification with kinetic modeling, we
can analyze how regularization in image reconstruction affects kinetic parameter estimation.
Approximate expressions for the bias, variance, and ensemble mean squared error of the
estimate have been derived, which provide guidance for selecting a proper regularization
parameter. Ahn et al. [35] have presented an approximate expression for calculation of the
covariance matrix of the kinetic parameters. However, their work is limited to only one-
dimensional examples with one tissue compartment model, in which the computation of the
sensitivity matrix with respect to kinetic parameters is relatively simple.

The selection of hyperparameter can be also done by other approaches [36]-[40], e.g. the
generalized cross validation (GCV), L-curve, and maximum likelihood methods. However,
these general approaches are not task-specific and do not guarantee the optimum
performance of a clinical task. In addition, most of them require high computational cost.
For example it requires evaluations of the MAP solution for different values of
hyperparameter to find the corner of the L-curve. In contrast, the theoretical method
presented in this paper requires less computation and is specifically aimed to optimize the
task of kinetic quantification in dynamic PET.

This paper is organized as follows. Section II presents the theory of PL image reconstruction
for dynamic PET and the calculation of the statistics of the TACs. Section III describes the
error propagation in kinetic modeling and the calculation of the sensitivity matrix.
Validations of the theoretical results using Monte Carlo simulations are given in Section IV.
Finally, conclusions are drawn in Section V.

II. Statistical Properties of Time Activity Curves
A. Image Reconstruction for Dynamic PET

PET measurements Yi, i = 1, . . . , M are well modeled as a collection of independent
Poisson random variables,

(1)

with the expectation, , related to the unknown tracer distribution, , through an
affine transform

(2)

where  is the detection probability matrix with the (i, j)th element being equal to
the probability of detecting an event from the jth pixel at the ith measurement, and 
accounts for the presence of scatter and randoms in the data. The task of image
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reconstruction is to estimate x from a measurement realization . The log-likelihood
function of the Poisson distribution is

(3)

A ML estimate can be found by maximizing (3). However, ML solutions are unstable (i.e.,
noisy) because the tomography problem is ill-conditioned. Thus, some form of
regularization is needed to reconstruct a reasonable image. The penalized maximum
likelihood method is to seek the image that maximizes an objective function as follows

(4)

where U (x) is a roughness penalty included for regularization. The regularization parameter
β controls the tradeoff between the resolution and noise. If β is too small, the reconstructed
image approaches the ML estimate and becomes very noisy; if β is too large, the
reconstructed image becomes very smooth and useful information can be lost.

While various penalty functions have been proposed for image reconstruction, here we focus
on the quadratic penalty function. The energy function can then be written as

(5)

where the superscript “T” denotes vector or matrix transpose, and R is a positive
semidefinite matrix.

B. Bias and Variance of Time Activity Curves
The derivation of the bias and variance of the activity inside a ROI has been developed in
[34]. For completeness of this paper, we describe the basic derivations here and extend them
to TACs.

The average activity inside a ROI at frame , can be computed as

(6)

where  is the reconstructed image of the integrated radioactivity over the nth time frame
duration (in units of Bq·min), fn is the indicator vector of the ROI at the nth time frame with
summation of all elements is 1. In most cases, fn remains the same for all time frames, but
we allow it to be different for different time frames in the analysis. The coefficient τn is
defined by τn = 1/(tn,e − tn,s), where tn,s and tn,e denote the starting and ending time of time
frame n, respectively. If tracer decay is considered in this step, we have τn = λ/(e−λtn,s –
e−λtn,e), where λ is the decay constant.

The whole TAC extracted can be denoted by a vector  as

(7)

where  denotes the dynamic images,  with  denoting the operation

of making diagonal.  is the block diagonal matrix composed of ,
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(8)

The mean and covariance of the TAC are

(9)

(10)

where  and  are the mean vector and the covariance matrix of the reconstructed

dynamic images for a given tracer distribution , respectively.

To proceed, we follow the same approach as in [34] and focus on small ROIs that are

surrounded by a large uniform region. Let  denote the reference dynamic image
sequence where the activity inside the ROI is equal to the uniform background, and

(11)

be the TAC of the ROI in the reference dynamic image. Considering the mean of the
reconstructed image  as a function of the true tracer distribution x,

we can have the following approximate expression for the mean of the dynamic images

(12)

where

which is the time activity inside the ROI above the background. ▽h(·) is the first derivative
matrix of h(·). This derivative matrix can be calculated from the penalized likelihood
objective function [25].

Substituting (12) into (9), we obtain an approximate expression for the mean of the ROI
TAC

(13)

Note that here we used the approximation that the reconstruction of the background-only
image is unbiased inside the ROI, i.e.
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This approximation is reasonable when the background region is relatively smooth, as we
will demonstrate in the computer simulations.

Define

as the true TAC of the ROI. Subtracting η0 from both sides of (13) yields the bias of the
TAC

(14)

where I is the identity matrix.

In this paper we use the frame-by-frame reconstruction model which does not include any
temporal correlation, so the matrices ▽h(·) and  are block diagonal,

(15)

(16)

where  and  are the resolution matrix and the covariance matrix of the
reconstructed image of the nth time frame, respectively. They can be computed by

(17)

(18)

where  is the Fisher information matrix for time frame n and βn is the
regularization parameter for time frame n. Readers are referred to [26], [29], [34] for details.

Substituting (17) and (18) into (14) and (10) yields the following approximate expressions of
the bias and variance of the TAC

(19)

(20)

C. Efficient Calculation
The computation of the bias and variance involve the inverse of [Fn + βnR]. Direct
calculation is very time-consuming due to the large size of the matrix (number of image
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pixels by number of image pixels), so we use block circulant matrices Fn(j) and R(j) that are
constructed using the jth columns of Fn and R, respectively, to approximate Fn and R
locally as proposed in [29]. We thus have the following approximations for the bias and
covariance,

(21)

(22)

where Hn(j) = Fn(j) + βnR(j) and j is the index of the voxel at the center of the ROI.

The constructed circulant matrices can be diagonalized by the Fourier transform,

where {λni(j), i = 1, · · · , N} are the Fourier coefficients (or eigenvalues) of Fn(j) and {μi(j),
i = 1, · · · , N} are the Fourier coefficients of R(j)1.  and QT represent the
Kronecker form of the Fourier transform and its inverse, respectively.

Substituting these circulant matrix approximations into (21) and (22), we can obtain the
following expressions

(23)

and

(24)

where {ξni, i = 1, · · · , N} and {ζni, i = 1, · · · , N} are the Fourier transforms of fn and
xn

ROI, respectively, and ‘*’ denotes complex conjugate.

1To guarantee that the eigenvalues are real and nonnegative, {λni(j), i = 1, · · · , N} are calculated as follows. We first compute the jth
column of Fn and arrange these values as an image. For an L × L × M voxel volume, we then shift this image so that the jth voxel is
moved to the center voxel (L/2 + 1, L/2 + 1, M/2 + 1). The missing voxels are filled with zero. To ensure that the Fourier coefficients
are real, we introduce symmetry on the shifted image which may contain missing voxels. Finally, we take the Fourier transform of the
resulting image and truncate any negative coefficients to zero. {μi(j), i = 1, · · · , N} are also calculated in this manner.
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III. Error Propagation in Kinetic Parameter Estimation
A. Tracer Kinetic Modeling

Tracer kinetic behaviors in dynamic PET imaging are often described by compartmental
models which mathematically can be represented by a set of ordinary differential equations,

(25)

where c(t) is a column vector representing the activity concentration of different tissue
compartments at time t, K and L are the kinetic parameter matrices which are comprised of
various rate constants, and u(t) denotes the system input.

For a commonly used three-compartment model, , where Cf(t) and Cb(t) are

the concentrations in the free and bound compartments;  where Cp(t) is the

concentration in the plasma; , , where K1, k2, k3, k4 are
the tracer rate constants. The differential equation model (25) can be analytically solved by
using the Laplace transform and the solution is

(26)

where the impulse response function matrix q(t) is given by

(27)

 denotes the convolution operation, Δα = α2 – α1 with

, and .

Note that c(t) is unmeasurable. The quantity that PET measures is the total activity
concentration

(28)

where 1 is the all-one vector and fv is the fractional volume which represents the fraction of
whole blood in the region of interest. Cwb(t) is the activity concentration in whole blood. In
practice, PET data are binned into discrete time frames. With consideration of tracer decay,
the measured quantity in time frame n is

(29)

where Δtn = tn,e – tn,s. An estimate of CT(n) is obtained using (7). Note that we use CT(n) to
represent the time integral of the activity and CT(t) or CT(τ) to represent the continuous-time
activity.
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Given a measured TAC, , the task of kinetic analysis is to estimate the rate
constants in K and L, and fv, which is usually accomplished by using a nonlinear least
squares formulation as follows

(30)

(31)

where {wn} are the weights and k are the kinetic parameters. For the three-compartment
model, k = [K1, k2, k3, k4, fv]T.

B. Error Propagation into Microparameters
The estimated kinetic parameters  can be represented as a function of the TAC
measurement ,

(32)

Using the first-order Taylor expansion, we have

(33)

where n denotes the actual TAC that is defined in (29), ▽g(·) is the first-order derivative of
g(·) and can be found by using the fixed point condition

(34)

Taking the derivative with respect to n and using the chain rule [25], we get the following
for the least squares objective function:

(35)

where S is the sensitivity matrix whose (n, l)th element is , n = 1, · · ·, Nf; l = 1, · · · ,
Np with Np being the number of unknown parameters to be estimated and W is the diagonal
matrix whose nth diagonal element is wn.

Thus the mean of the estimate  can be approximated by

(36)

and the bias is

(37)

In the above derivation, we have assumed that the kinetic parameters estimated from the
noise free TAC are unbiased, i.e. k = g(n).
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From (33), the covariance of the estimate  is

(38)

where cov[ ] = diag(var[ ]) and var[ ] is the variance of  given in (20) and can be
computed by (24).

If we set W as

(39)

cov[ ] can be simplified to

(40)

C. Calculation of the Sensitivity Matrix
The above derivation shows that the bias and variance of the estimated kinetic parameters
are related to the bias and variance of the TAC through the sensitivity matrix S, of which the
(n, l)th element is the derivative of the TAC value in the nth time frame, CT(n), with respect
to the lth kinetic parameter in k.

From (28), we have

(41)

and

(42)

Direct calculation of  using (26) is tedious and cannot be extended to higher-order
compartmental models. Here we present an easier and more general approach.

We start from (25) and take the derivative with respect to

(43)

The new input ul(t) in the above ordinary differential equation is given by

(44)

For the three-compartment model, we have
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Once ul(t) is given, we can solve (43) using the Laplace transform. The solutions for the
three-compartment model are

(45)

(46)

(47)

(48)

where

and

The (n, l)th element of the sensitivity matrix S is finally evaluated by

(49)

where  is given in (41) and (42).

D. Error Propagation into Macroparameters
The kinetic parameters k are referred to as microparameters. The parameters of biomedical
interest are called macroparameters, which are functions of the microparameters. Examples
of the macroparameters that are commonly used include the influx constant (KI) in
metabolic studies, and the volume of distribution (VD) and binding potential (BP) in
neuroreceptor studies. They are related to the microparameters in the three-compartment
model by the following equations:
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(50)

(51)

(52)

Using the first-order Taylor series approximation, we can approximate the bias and variance
of a macroparameter ψ(k) by

(53)

(54)

where △kψ denotes the derivatives of the macroparameter with respect to microparameters.
For the macroparameters shown above, △kψ's are given by

(55)

(56)

(57)

One figure of merit that is often used to assess the quality of parameter estimation is the
ensemble mean squared error, which is equal to the sum of the squared bias and the variance

(58)

The above theoretical expressions of the bias and variance can be used to calculate the
EMSE as a function of the regularization parameter. A user can then select the regularization
parameter that results in the minimum EMSE. Of course, other figures of merit that weight
bias and variance differently can also be used. We use EMSE as an example in this paper
because of its simplicity.

IV. Computer Simulations
A. Validation of the Theoretical Expressions

We conducted computer simulations to validate the theoretical expressions. We simulated
two brain phantoms (Fig. 2(a) and (b)). A small tumor was inserted in the white matter
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region in each phantom. The TAC of each region was generated using a three-compartment
model with an analytical blood input function [41] and with the kinetic parameters taken
from literature [42]. The kinetic parameters used were: K1 = 0.1104 mL/min/mL, k2 =
0.1910 min−1, k3 = 0.1024 min−1, and k4 = 0.0094 min−1 for the gray matter region; K1 =
0.0622 mL/min/mL, k2 = 0.1248 min−1, k3 = 0.0700 min−1, and k4 = 0.0097 min−1 for the
white matter region; and K1 = 0.0640 mL/min/mL, k2 = 0.1272 min−1, k3 = 0.0738 min−1,
k4 = 0.0081 min−1 for the tumor (referred to as ‘tumor S0’). We also simulated a different
case of tumor kinetics (referred to as ‘tumor S1’) with K1 = 0.0640 mL/min/mL, k2 =
0.08904 min−1, k3 = 0.0738 min−1, k4 = 0.00567 min−1, which has a larger difference in
TAC from the white matter. In all the simulations, fv was set to zero. The scanning sequence
consists of 24 time frames: 5 frames of 60 seconds, 5 frames of 120 seconds, 5 frames of
180 seconds, 5 frames of 250 seconds and 3 frames of 600 seconds.

The blood input and the regional TACs are shown in Fig. 2. These TACs were integrated for
each time frame and forward projected to form dynamic sinograms. Poisson noise was then
generated, which resulted in a total number of events over the 90 minutes equal to 50M. One
hundred independent identically distributed data sets were generated and reconstructed
frame-by-frame using the penalized likelihood method and the preconditioned conjugate
gradient (PCG) algorithm. The PCG was run for 100 iterations for each β value to guarantee
convergence. The regularization parameter β in the PL reconstruction was selected for the
last frame and was scaled for the earlier frames with respect to their total counts. The β
values vary from 1 × 10−8 to 1 × 10−4, which covers a reasonable range from very noisy
images to oversmooth images. Fig. 3 shows the reconstructed images of a noisy dataset.

We selected the tumor region as the ROI. TACs were extracted from the reconstructed
images and the kinetic parameters were estimated by using the nonlinear least squares
method with the Levenberg-Marquardt algorithm. The weighting factor was chosen as being
inversely proportional to the variance of the TAC that was estimated from 100 Monte Carlo
realizations. Figure 4 shows the bias and variance of the estimated TAC of tumor S1 in the
first phantom (Fig. 2(a)) with different regularization parameters, computed by both the
theoretical expressions and the Monte Carlo methods. We can see that when we increase the
β value, the bias is increased, but the variance is reduced. The staircase shape in the variance
plot is a result of the change in time frame duration. The relative REMSE in Fig. 4(c) was

calculated as . In general the theoretical
predictions match the Monte Carlo results very well.

Figure 5 shows the bias, variance, and REMSE of the estimated microparameters, K1, k2, k3,
k4, of tumor S1 in the first phantom. It is interesting to note that regularization has different
effects on different parameters. For example, the biases of K1 and k3 are insensitive to the
change of the regularization parameter, whereas the biases of k2 and k4 increase
dramatically as the regularization parameter increases. For all parameters, the variance
decreases as the regularization parameter increases. As a result, the REMSE is a
monotonically decreasing function of the regularization parameter for K1 and k3, but
exhibits a minimum at a midrange regularization for k2 and k4. The theoretical results match
the Monte Carlo results reasonably well.

The results of the second phantom are plotted in Fig. 6, which also shows good match
between the theoretical predictions and the Monte Carlo results. The trend of each plot is
quite similar to that shown in Fig. 5. Given the similarity between the results of the two
phantoms, we will focus on the first phantom in the rest of the Section.

The different trends in the bias curves of the four microparameters arise because in this
simulation K1 and k3 of the tumor region were similar to those of the surrounding white
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matter and, hence, are insensitive to regularization; whereas k2 and k4 of the tumor are
different from those of the white matter and, hence, are sensitive to regularization. To
validate this hypothesis, we performed four more sets of simulations, in which we kept all
the kinetic parameters, except one, of the tumor to be the same as those of the surrounding
white matter. The kinetic parameter being studied in each simulation is set to be 30% greater
than that of the white matter. Figure 7 shows the RMSE curves of the four parameters when
the tumor kinetics is generated with a 30% increase in k3. It shows that the errors of all the
other kinetic parameters monotonically reduce as the regularization parameter increases
while the error of k3 achieves a minimum with a medium regularization. The results of the
other three sets of simulation are similar, although the values of the optimum regularization
parameter are different for different kinetic parameters (they are 1 × 10−6, 1 × 10−5, 1 ×
10−5, 1 × 10−5 for K1, k2, k3, k4, respectively). These results demonstrate the importance of
using a task-specific figure of merit when selecting reconstruction parameters.

It is also noted that Monte Carlo results (K1, k2, k3, and k4) are biased even with very small
β values. Using computer-generated Gaussian distributed TACs, we found that the bias is
intrinsic to the nonlinear least squares fitting when the noise is high, which is the case with
small β values. Similar results have also been reported in [43].

Figure 8 compares the bias, variance, and ensemble mean squared errors for the estimated
macroparameters. The theoretical prediction matches with the Monte Carlo results very well
for KI. At small β values, the theoretical prediction underestimates the EMSE of VD and
BP, but overestimates the EMSE of VD and BP at large β values.

B. Improved Prediction Using a Hybrid Method
The error in the theoretical method is due to the nonlinearity in the transformation between
the microparameters and the macro-parameters. To solve this problem, we propose a hybrid
approach. After computing the bias and covariance of the microparameters by using the
theoretical expressions, we calculate an ensemble of the macroparameters from an ensemble
of computer-generated Monte Carlo samples of the microparameters by assuming they
follow a multivariate Gaussian distribution with the estimated mean and covariance. The
bias and variance of the macroparameters are then calculated from the ensemble. The bias,
variance, and EMSE of VD and BP are predicted very well by the hybrid approach as
compared with the Monte Carlo results as shown in Fig. 8.

Note that the use of the hybrid method does not increase the computation time because the
transformations from the microparameters to the macroparameters are simple and easy to
calculate. In this paper, 10,000 Monte Carlo samples were used, which took less than 1
second in MATLAB on a 2 GHz PC. Thus, the computation cost for the hybrid method is
the same as that of the fully theoretical method and can still be several orders of magnitude
faster than the Monte Carlo method for the same accuracy.

C. Effect of Count Levels
We also simulated different count levels. The minimum REMSE predicted by the proposed
method and Monte Carlo method are shown as functions of count level in Fig. 9. As
expected, the minimum REMSE decreases as the count level increases. For all the three
macroparameters, the results of the proposed method (hybrid approach) match well with the
Monte Carlo results. Note that the reduction in REMSE is less than the reduction in variance
as predicted from the count level because bias is independent of count level. We also
compared the regularization parameter selected by the Monte Carlo method and the
theoretical prediction for achieving the minimum REMSE. The results are shown in Table I.
In all cases, the optimum regularization parameters predicted by the proposed method are
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very close to the Monte Carlo results. We note that when the count level is very low, the
first-order approximation employed in this paper becomes less accurate to predict the noise
propagation in the nonlinear least squares fitting.

D. Practical Considerations
1) “Plug-in” Method—A critical problem with using the above theoretical method is that
it requires the true value of the TAC inside the ROI (or equivalently the kinetic parameters)
to calculate the bias of the TAC. This can be circumvented by using the following “plug-in”
strategy. For a given dataset, we first reconstruct the images with a small regularization
parameter to get the TAC and estimate the kinetic parameters of the ROI. We can then
“plug-in” the resulting kinetic parameters and the fitted TAC into the theoretical expressions
as the “true” value to estimate the optimal regularization parameter.

The performance of the plug-in method is demonstrated in Fig. 10 where we show the
resulting REMSE of the FDG data set when we reconstruct each noisy data set using the
regularization parameter selected by the “plug-in” strategy. The resulting REMSE is close to
the minimum REMSE value obtained with the optimal β selected using the noise-free TAC,
indicating that the “plug-in” method is very effective.

2) Effect of ROI Definition—Another practical issue is the definition of the ROI. In the
above simulation, we use the true tumor region as the ROI. However, in real situations, the
ROI delineation will not be exact. To investigate the effects of imperfect ROI on the plug-in
approach, we repeated the above plug-in method using both an enlarged ROI (+45%) and a
shrunk ROI (−45%). The results are also shown in Fig. 10. It shows that imperfect ROI
increase the REMSE slightly compared with the exact ROI, but results are acceptable, in
particular for VD and BP. These results demonstrate that the proposed method is robust
enough for practical applications.

V. Conclusions
Analysis of PL image reconstruction shows that proper selection of the regularization
parameters is important for dynamic PET. To explore the potential of PL reconstruction for
dynamic PET, we have developed a theoretical approach to analyzing penalized likelihood
image reconstruction for quantification of kinetic parameters. We performed an analytical
study of the noise propagation from raw PET measurement into kinetic modeling.
Approximate expressions of the bias, variance and ensemble mean squared error of the
kinetic parameters have been derived as a function of the regularization parameter in the PL
reconstruction. Computer simulations show that the theoretical predictions match well with
the Monte Carlo results. A plug-in method has also been developed and validated for
applying the theoretical results to guide the selection of the regularization parameter in the
PL reconstruction for dynamic PET. While we used EMSE to select the regularization
parameter, we should point out that the proper figure of merit is task dependent and the
proposed method is applicable to other figures of merit that are functions of the bias and
variance. The analysis can also be extended to dynamic PET reconstruction that uses smooth
temporal basis functions by properly modeling the correlation between the basis functions.
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Fig. 1.
Monte Carlo simulation results demonstrating the benefits of analyzing dynamic
reconstruction. While varying the regularization parameter β from 1 × 10−8 to 3 × 10−6 has
little effect on the REMSE of static ROI quantification, the error in VD (kinetic
quantification) can be reduced in half with the optimal regularization parameter.
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Fig. 2.
Simulation settings. (a) and (b): two brain phantoms consist of gray matter, white matter and
a small tumor inside the white matter; (c) the blood input function; and (d) the regional time
activity curves.
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Fig. 3.
Reconstructed dynamic images of one noisy data set with different regularization
parameters. Columns from left to right correspond to different time frames number 8, 15 and
21; rows from top to bottom correspond to (a) β = 10−8, (b) β = 3 × 10−6, and (c) β = 10−4.
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Fig. 4.
Bias, variance, and REMSE of the estimated time activity curve of tumor S1 using the
theoretical prediction and Monte Carlo method with different regularization parameters.
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Fig. 5.
Predictions of the bias, standard deviation and EMSE of microparameters (K1, k2, k3, k4) of
tumor S1 in the first phantom (Fig. 2(a)) by the theoretical method and Monte Carlo method.
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Fig. 6.
Predictions of the bias, standard deviation and EMSE of microparameters ((K1, k2, k3, k4) of
tumor S1 in the second phantom (Fig. 2(b)) by the theoretical method and Monte Carlo
method.
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Fig. 7.
Effects of regularization on kinetic parameter estimation. The tumor kinetics was generated
using the same kinetic parameters as the background white matter except a 30% increase in
k3.

Wang and Qi Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Comparison of the theorectial prediction and Monte Carlo method for estimating REMSE of
(a) KI, (b) VD, and (c) BP for tumor S1 with different regularization parameters.
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Fig. 9.
The predicted minimum REMSE of the macroparameters under different count levels by the
hybrid approach and the Monte Carlo approach. (a) Tumor S0 and (b) tumor S1.
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Fig. 10.
The effect of the “plug-in” method and ROI delineation on the selection of the regularization
parameter.
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TABLE I

Optimum regularization parameter log10 β chosen by the Monte Carlo and the proposed methods (in
parentheses)

SO, Count(M) KI VD BP

20 −4.0 (−3.5) −4.0 (−4.0) −4.0 (−4.0)

50 −4.5 (−4.5) −5.0 (−5.0) −5.0 (−5.0)

100 −5.0 (−5.0) −5.5 (−5.5) −5.5 (−5.5)

SI, Count(M) KI VD BP

20 −6.0 (−5.5) −5.0 (−4.5) −4.5 (−4.5)

50 −6.0 (−6.0) −5.5 (−5.5) −5.5 (−5.5)

100 −6.5 (−6.5) −6.0 (−6.0) −6.0 (−6.0)
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