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A transition-amplitude based representation of heterodyne detected coherent anti-Stokes Raman
signals is used to separate them into a parametric component that involves no change in the material
and dissipative processes associated with various transitions between states. Qualitatively different
contributions from the two processes are predicted for the signal generated by an overlapping
narrow �picosecond� and broad-band �femtosecond� pulse.
© 2009 American Institute of Physics. �doi:10.1063/1.3259653�

I. INTRODUCTION

Coherent anti-Stokes Raman spectroscopy �CARS� is a
four wave mixing technique widely used since the early days
of nonlinear optics,1–5 which shows narrow two-photon �1

−�2 resonances �Fig. 1�. The technique provides a powerful
spectroscopic tool for probing molecular vibrations and for
imaging applications.6,7 Time domain femtosecond tech-
niques with pulse shaping enhance the degree of control over
the signals.8–14

All third order nonlinear optical techniques, such as
CARS, are commonly described in terms of the third order
optical susceptibility ��3�, obtained from a perturbative ex-
pansion of the density matrix.15 For clarity we first consider
frequency-domain heterodyne-detected �i.e., stimulated�
CARS, where a molecule is coupled to four optical modes
with complex field amplitudes that are defined using E�r , t�
=� jE j exp�ik jr j − i� jt�+c .c. This will allow us to introduce
the basic ingredients which will be used later to describe
multimode broad-band time-domain CARS as superpositions
of the frequency domain signals. Time translation invariance
requires that the mode frequencies satisfy

�1 − �2 + �3 − �4 = 0. �1�

The signal obtained by measuring mode �i will be denoted
Si. There are four possible signals:3

S1 = −
4�

�
���1 − �2 + �3 − �4�

�I�E1
�E2E3

�E4��3��− �1;�4,− �3,�2�� , �2�

S2 = −
4�

�
���1 − �2 + �3 − �4�

�I�E1E2
�E3E4

���3��− �2;�3,− �4,�1�� , �3�

S3 = −
4�

�
���1 − �2 + �3 − �4�

�I�E1
�E2E3

�E4��3��− �3;�2,− �1,�4�� , �4�

S4 = −
4�

�
���1 − �2 + �3 − �4�

�I�E1E2
�E3E4

���3��− �4;�1,− �2,�3�� . �5�

While Eqs. �2�–�5� provide a useful recipe for computing the
various signals, it is not obvious from these expressions what
is really happening in the material in the course of the ��3�

process. The CARS signal is composed of two different
types of processes: Resonant processes, where the molecule
makes transitions between different electronic or vibrational
states, and parametric processes, which involve an exchange
of photons between various field modes but ultimately leave
the molecule in its initial state. Separating the two will be
one of the goals of this paper. One recipe used to accomplish
this goal is to write I�E1E2

�E3E4
���3��=I�E1E2

�E3E4
��R��3�

+R�E1E2
�E3E4

��I��3�, identifying the first term with the para-
metric process and the second as the contribution of resonant
processes.6 We shall show that this applies in some cases but
is not generally valid.

The physical interpretation becomes more transparent
when we examine the material system directly. In frequency-
domain heterodyne experiments the molecule is prepared in
a nonequilibrium steady state involving the molecule and the
four modes of the radiation field and undergoes transitions
between states. Such transitions can be described using scat-
tering theory,16 and their flux is recast in the form

Jfi = ��Tfi�2���opt − � fi� , �6�

where �opt denotes the energy supplied by the optical modes
�which is some combination of the mode frequencies � j, see
below�, and Tfi is a transition amplitude connecting the ini-
tial and final states. �� fi=Ef −Ei is the energy difference
between the initial and final states of the molecule. To first
order in the radiation matter interaction Tfi=−E� fi and
Eq. �6� becomes the Fermi Golden rule. Photon counting
statistics is also recast in this form.17 Spontaneous Raman
signals, where �1 is absorbed and �2 is emitted, are given by
the celebrated Kramers–Heisenberg �KH� formula, which co-
incides with Eq. �6� when T is calculated to second order,18a�Electronic mail: srahav@uci.edu.
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SKH��1,�2� = �E1�2��
b

�cb�ba

�1 − �ba
�2

���1 − �2 − �ca� . �7�

The KH form implies that the molecule undergoes a transi-
tion from state a to state c, at a steady state rate given by Eq.
�7�.

Pump-probe signals, which involve only two field
modes, were recently recast in terms of T matrix elements.19

Here we extend this approach to the more general four mode
case of stimulated CARS signals. The CARS signal is recast
in terms of transition amplitudes and the parametric and dis-
sipative components of the signals are identified. In addition,
certain linear combinations of optical signals are shown to be
equal to material fluxes, and are therefore purely dissipative.
The expressions for the dissected CARS signals are then
used to study the signal from a strong narrow-band pulse
with a weaker overlapping broad-band pulse. In this case the
resonant and parametric processes make very different con-
tributions to the overall signal, which are analyzed in detail.
This application, which demonstrates the usefulness of the
transition amplitudes representation, is the main result of this
paper.

In Sec. II we define the minimal model of frequency
domain CARS, a molecule with three relevant levels inter-
acting with four field modes and give the standard expres-
sions for the optical signals in terms of the nonlinear suscep-
tibility ��3�. In Sec. III the signals are recast in term of
transition amplitudes and dissected into their dissipative and
dispersive components. These results are extended to pulses
of arbitrary shape and used to analyze the signal from a
specific pulse configuration in Sec. IV The resonant and
parametric processes make qualitatively different contribu-
tions to the overall signal. Finally, some implications of the
results are discussed in Sec. V.

II. STIMULATED CARS SIGNALS

In this section we define the model and derive expres-
sions for the various CARS signals. The model for the inter-
acting molecule, with relevant states as well as the couplings
to the electromagnetic field, is depicted in Fig. 1. a and c are
vibrational states belonging to the ground electronic state
whereas b is an electronically excited state. The levels a and

c are resonantly coupled by two possible Raman processes,
with �1−�2=�4−�3��ca. The system is described by the
Hamiltonian3–5

H = Hs + H f + Hint, �8�

with the molecular part,

Hs = ��a�a	
a� + ��b�b	
b� + ��c�c	
c� , �9�

and the field part,

H f = �
i=1

4

��iâi
†âi. �10�

Within the rotating wave approximation, the dipole cou-
pling between the laser field and the molecule is given by

Hint = �2��1

�
�1/2

â1e−i�1t�ba�b	
a�

+ �2��2

�
�1/2

â2e−i�2t�bc�b	
c�

+ �2��3

�
�1/2

â3e−i�3t�bc�b	
c�

+ �2��4

�
�1/2

â4e−i�4t�ba�b	
a� + h . c . , �11�

which corresponds to the transitions depicted in Fig. 1. We
had suppressed the dependence on the photon momentum to
simplify the notation.

To set the stage we first present the various CARS sig-
nals in the standard ��3� form. In practice, one only needs to
calculate the S4 signal explicitly. All other signals can be
obtained from it using various symmetries of the system.

The optical signal, defined as the �integrated� rate of
change of the number of photons in the ith mode, is given by

Si � dt
d

dt
�Tr âi

†âi	̂�t�� . �12�

Equations �2�–�5� for the signals can be derived from
Eq. �12� using the method outlined in Refs. 20 and 19. The
contributions to ��3� can be represented by closed time loop
�CPTL� diagrams. The calculation of ��3� in terms of ampli-
tudes representing the wave function in Hilbert space re-
quires pathways on the Schwinger loop involving both for-
ward and backward time evolutions.20

The CPTL diagrams, which correspond to the two
processes contributing to the signal �Eq. �5�� are depicted in
Fig. 2. In �i� the system is excited out of the ground state a,
while in �ii� it is excited out of state c. The loop diagrams
can be read according to the rules given in Refs. 19 and 20
leading to

ω3 ω4
ω 2ω 1

|a>

|c>

|b>

FIG. 1. The molecular levels and the relevant optical transitions in a CARS
process.
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��3��− �4;�1,− �2,�3� = −
��ba�2��cb�2

�3 � P�a�
��1 − �2 + �3 − �ba + i
���1 − �2 − �ca + i
���1 − �ba + i
�

+
P�c�

��3 − �4 + �1 − �bc − i
���3 − �4 − �ac − i
���3 − �bc + i
�� . �13�

Substitution in Eq. �5� gives

S4 =
4�

�4 ���1 − �2 + �3 − �4�I�E1E2
�E3E4

���ab�2��bc�2� P�a�
��4 − �ba + i
���1 − �2 − �ca + i
���1 − �ba + i
�

+
P�c�

��3 − �bc + i
���2 − �bc − i
���2 − �1 − �ac − i
��� , �14�

where we further used Eq. �1� to replace some frequency combinations by more compact ones.
The other signals can be calculated using the same method, or more simply by noticing that they are physically equivalent

to S4 under permutations of certain field modes, and of the states a and c. The signal S3 can be obtained from S4 by
interchanging modes 1 and 2, modes 3 and 4, and states a and c,

S3 =
4�

�4 ���1 − �2 + �3 − �4�I�E1
�E2E3

�E4��ab�2��bc�2� P�a�
��1 − �ba − i
���4 − �ba + i
���1 − �2 − �ca − i
�

+
P�c�

��2 − �bc + i
���3 − �bc + i
���2 − �1 − �ac + i
��� . �15�

The signals S1 and S2 can be obtained from S4 and S3 in an even simpler way. One notices that the modes 1 and 4, and
similarly 2 and 3, play the similar roles for these pairs of signals. Therefore, exchanging the field modes 1 and 4, as well as
2 and 3, will transform the S4 into S1 and S3 to S2. The remaining signals are given by

S1 =
4�

�4 ���1 − �2 + �3 − �4�I�E1
�E2E3

�E4��ab�2��bc�2� P�a�
��4 − �ba + i
���4 − �3 − �ca + i
���1 − �ba + i
�

+
P�c�

��2 − �bc + i
���3 − �bc − i
���3 − �4 − �ac − i
��� �16�

and

S2 =
4�

�4 ���1 − �2 + �3 − �4�I�E1E2
�E3E4

���ab�2��bc�2� P�a�
��1 − �ba + i
���4 − �ba − i
���4 − �3 − �ca − i
�

+
P�c�

��3 − �bc + i
���3 − �4 − �ac + i
���2 − �bc + i
��� . �17�

III. DISSECTING CARS SIGNALS INTO MATERIAL
AND PARAMETRIC FLUXES

Each of the signals given by Eqs. �14�–�17� has contri-
butions from two different types of physical processes: �i�
parametric processes, which involve an exchange of photon
between different field modes but ultimately leave the mol-
ecule in its initial state, and �ii� resonant dissipative pro-
cesses, which involve molecular transitions from one state to
another. The two types of processes play different roles and
the ability to separate their contributions can be used to im-
prove and analyze various measurements.

The different roles played by the parametric and reso-
nant components become clear when ��3� is recast in terms of
products of transition amplitudes. These transition ampli-
tudes describe processes where the molecule makes specific
transitions through interactions with given field modes.
For instance, Tca

�2��−�2 ,�1�=E1E2
��cb�ba��1−�ba+ i
�−1

E1E2
�T̃ca

�2��−�2 ,�1� corresponds to a second order transition
in which the molecule first makes a transition a→b, by ab-
sorbing a photon from mode 1, and then makes another tran-
sition b→c, emitting a photon into mode 2. The dressed
transition amplitudes T are given by products of the bare

amplitudes, T̃, and the field amplitudes. All relevant transi-
tion amplitudes for the present application are listed in Ap-
pendix A.

Written in terms of bare transition amplitudes, resonant
processes assume a generalized KH form. They are propor-
tional to a product of two transition amplitudes, one of which
is complex conjugated, between the same pair of states, mul-
tiplied by a �-function expressing conservation of molecule
+field energy. Parametric processes, in contrast, are de-
scribed in terms of a single transition amplitude, Taa, where
the system starts and ends in the same state. This represen-
tation is not unique since �the imaginary part of� a linear
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combination of such transition amplitudes is connected to
resonant transitions via the optical theorem. The latter states
that the probability missing in a state must be balanced by
transitions from that state to other states.

We shall partition the S4 signal �Eq. �14�� into its para-
metric and resonant components in two steps. First, the terms

in Eq. �14� are brought into a form which is proportional to

diagonal transition amplitudes T̃��
�4� plus additional resonant

terms. The term proportional to P�a� already has the desired
form. The term proportional to P�c� can be brought to a
similar form by writing ��3−�ba+ i
�−1= ��3−�bc− i
�−1

−2�i���3−�bc�, and then by taking the complex conjugate
of the term with three advanced Green functions. In the sec-
ond step, each of the terms with three retarded Green func-

tions ��T̃��
�4�� is rewritten as a sum of a symmetric and anti-

symmetric contributions. �The symmetry is with respect to
the order of interactions with the field modes.� The optical
theorem is then applied to the symmetric combination, re-
casting it as a sum over resonant processes. The antisymmet-
ric part is identified as the parametric process. This second
step is sketched in Appendix B.

The signal finally takes the form

S4 = S4,par + S4,dis, �18�

where

S4,par =
4�

�4 ���1 − �2 + �3 − �4�I�E1E2
�E3E4

���P�a�RT̃aa
�4��− �4,�3,− �2,�1� + P�c�RT̃cc

�4��− �2,�1,− �4,�3�� , �19�

and

S4,dis = −
2�2

�4 ���1 − �2 + �3 − �4��P�a��E1
�E2E3

�E4T̃ba
�3���2,− �3,�4�T̃ba

�1����1� + c . c .����1 − �ba�

+ P�a��E1E2
�E3E4

�T̃ba
�3���3,− �2,�1�T̃ba

�1����4� + c . c .����4 − �ba�

+ P�a��E1E2
�E3E4

�T̃ca
�2��− �2,�1�T̃ca

�2���− �3,�4� + c . c .����1 − �2 − �ca�

+ P�c��E1
�E2E3

�E4T̃bc
�3���4,− �1,�2�T̃bc

�1����3� + c . c .����3 − �bc�

− P�c��E1E2
�E3E4

�T̃bc
�3���1,− �4,�3�T̃bc

�1����2� + c . c .����2 − �bc�

− P�c��E1
�E2E3

�E4T̃ac
�2��− �1,�2�T̃ac

�2���− �4,�3� + c . c .����2 − �1 − �ac�� . �20�

The other signals can be treated in a similar manner. For S3 we get

S3 = S3,par + S3,dis, �21�

where

S3,par =
4�

�4 ���1 − �2 + �3 − �4�I�E1
�E2E3

�E4��P�c�RT̃cc
�4��− �3,�4,− �1,�2� + P�a�RT̃aa

�4��− �1,�2,− �3,�4�� , �22�

and

S3,dis = −
2�2

�4 ���1 − �2 + �3 − �4��P�c��E1
�E2E3

�E4T̃bc
�3���4,− �1,�2�T̃bc

�1����3� + c . c .����3 − �bc�

+ P�c��E1E2
�E3E4

�T̃bc
�3���1,− �4,�3�T̃ba

�1����2� + c . c .����2 − �bc�

+ P�c��E1
�E2E3

�E4T̃ac
�2��− �1,�2�T̃ac

�2���− �4,�3� + c . c .����2 − �1 − �ac�

+ P�a��E1E2
�E3E4

�T̃ba
�3���3,− �2,�1�T̃ba

�1����4� + c . c .����4 − �ba�

− P�a��E1
�E2E3

�E4T̃ba
�3���2,− �3,�4�T̃ba

�1����1� + c . c .����1 − �ba�

− P�a��E1E2
�E3E4

�T̃ca
�2��− �2,�1�T̃ca

�2���− �3,�4� + c . c .����1 − �2 − �ca�� . �23�

ω1

2ω

3ω

4ω

i)

|a> <a|

|b>

|c>

|b>

|a> 4ω

3ω 2ω

1ω

ii)

|c> <c|

|b> <b|

<a|

|a>

FIG. 2. CPTL representation of ��3��−�4 ;�1 ,−�2 ,�3� contributing to the S4

signal. �i� and �ii� represent the two terms in Eq. �13�, respectively. The
interaction with the detected mode ��4� is chronologically the last.
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The expressions for S1 and S2 can be obtained from S4

and S3 by exchanging the field modes, as was discussed in
Sec. II. However, we will only make use of S4 and S3 in the
following application.

An alternative approach for computing the dissipative
signals is based on examining molecular fluxes. These are
defined as the rates of change of the population in the mo-
lecular states,

J� � dt
d

dt
�Tr��	
��	̂�t�� , �24�

with �=a ,b ,c. Conservation of probability implies Ja+Jb

+Jc=0, which follows from ����	
��=1̂ in the molecular
Hilbert space.

It is possible to relate the molecular fluxes J� to combi-
nations of optical signals Si. This is done by comparing the
Heisenberg equation of motion d

dt âi,H
† âi,H= �i /��

��Hint , âi,H
† âi,H� with d

dt ��	H
��H= �i /���Hint , ��	H
��H�. For
the interaction Hamiltonian �11�, this gives

Ja = S1 + S4, �25�

Jc = S2 + S3, �26�

Jb = − �
i=1

4

Si. �27�

Equations �25�–�27� express the rate of change of mo-
lecular populations in terms of combinations of optical sig-
nals. This connection is important since optical signals are
usually measured in order to study material properties. Equa-
tions �25�–�27� enforce conditions on the parametric part of
the various optical signals. For instance, Eq. �25� means that
S1,par+S4,par=0. This can be verified using Eq. �19�, and not-
ing that S1,par is obtained from it by exchanging field modes
1 and 4, and similarly modes 3 and 2. �The factor of
IE1E2

�E3E4
� changes its sign under this operation while the

rest is left unchanged.� The combinations of signals �Eqs.
�25�–�27�� are purely dissipative and better suited for mo-
lecular interpretation.

IV. APPLICATION TO SIGNALS GENERATED BY A
NARROW AND A BROAD-BAND PULSE

Signals driven by pulses of arbitrary bandshape can be
readily computed as superpositions of the frequency-domain
results presented earlier. To that end we need to switch from
the discrete mode expression Eq. �18� �or Eq. �21�� to a de-
scription allowing for a continuous distribution of frequen-
cies. This is done by replacing Ei �Ei

�� with ���i� /2�
�����i� /2�=��−�i� /2�� and integrating over all frequencies
except the one corresponding to the frequency dispersed sig-
nal. ����� is the bandshape of the optical field.� We then
have

S4�Ei� → S��4� =
1

�2��4� d�1d�2d�3S4����i�� .

We now apply the results of Sec. III to a specific pulse
configuration and show that the resonant and parametric pro-
cesses lead to distinct components of the signal. The results
presented below demonstrate the usefulness of dissecting the
signal into its dissipative and dispersive components.

In recent experiments8,10,11,14 molecules were driven by
an overlapping broad-band femtosecond and narrow-band pi-
cosecond pulse �depicted in Fig. 3�

���� = �̃��� + 2�E0��� − �0� + 2�E0
���� + �0� , �28�

where �̃��� is the band shape of the broad-band pulse, and E0

is the amplitude of the narrow-band pulse, centered at �0.
���� is a slightly broadened �-function, of width , de-
scribing the shape of the narrow pulse. The narrow-band
pulse is strong, so that high-order interactions with it domi-
nate the measured signal. The signal is given by two inter-
actions in the narrow-band and two with the broad-band and
we assume that there are no electronic resonances in the
frequency range covered by the pulses.

Due to the Raman interactions with the narrow-band
pulse the measured signal shows a series of Raman peaks at
frequencies �0����� where ���� are vibrational transition
frequencies of the molecules. The resulting signal is also
depicted heuristically in Fig. 3

In the following we analyze the signal using Eqs. �18�
and �21�, which dissect it into its components. For clarity, we
assume a single active vibrational mode, leading to one posi-
tive and one negative Raman peak.

The signal outside the frequency range of the narrow-
band pulse has two regions, ����0 and ���0�, which will
be treated separately. In each region the signal frequency
corresponds to a different detection mode out the four dis-
crete modes of Sec. III We assume ��ca. Typically  is a
few cm−1 whereas the resonant frequency �ca�1000 cm−1.

For ���0 the signal is obtained by taking Eq. �18� for
S4, replacing the discrete modes by integrals over the pulse
band-shape, and identifying these as belonging to either the
narrow or broad-band pulse, and then performing some of

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

ω 0 ω +ω0 ca ω

ε(ω)

FIG. 3. The pulse configuration �Eq. �28�� consists of a broad-band pulse
�dashed-green line� and a narrow-band pulse �red-filled line� centered at �0.
Raman resonances at �0��ca modulate the broad pulse envelope �blue-
solid line�.
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the integrations with the help of the �-functions. The narrow-
ness of the peak at �0 allows to make further approxima-
tions, leading to a simple form of the signals. Details of the
derivation and a general expression are given in Appendix C.

Assuming a very narrow band, Eqs. �C1� and �C2� give

S�� � �0� = Spar�� � �0� + Sdis�� � �0� , �29�

with

Spar�� � �0� �
1

��4 ��ba�2��cb�2� P�c�
��0 − �bc��2�0 − � − �bc�

−
P�a�

��0 − �ba��� − �ba��
�I�E0

�2�̃�2�0 − ���̃����� d�3���3 − �0�R
1

� − �3 − �ca + i

, �30�

and

Sdis�� � �0� � −
1

�4 ��ba�2��cb�2�P�a� − P�c����� − �ca − �0�

�� 1

��0 − �bc�2 ��̃��0 + �ca�E0�2 +
1

��0 − �ba���0 − �bc�
R�E0

�2�̃��0 − �ca��̃��0 + �ca��� . �31�

Equation �31� describes the Raman resonance for
���0 for a single vibrational mode and shows a single vi-
brational transition. Extension to the multimode case is
straightforward and would result in additional Raman peaks.
This should be contrasted with the parametric part of the
signal, Eq. �30�, which is not restricted to a narrow frequency
range. Instead, it is given by the long range function of
�, �d�3���3−�0�R��−�3−�ca+ i
�−1. Additional vibra-
tional or solvent modes would result in parametric contribu-
tion in all frequencies. The solvent contributions often domi-
nate the parametric signal.

The derivation of the signal for ���0 is done along
similar lines. The main difference is that the frequency of
interest must be the lower one in a Raman pair, and therefore
corresponding to S3 instead of S4. The derivation is sketched
in Appendix C. For a very narrow band, Eqs. �C3� and �C4�
give

S�� � �0� = Spar�� � �0� + Sdis�� � �0� , �32�

with

Spar�� � �0� �
1

��4 ��ba�2��cb�2� P�c�
��0 − �bc��� − �bc�

−
P�a�

��0 − �ba��2�0 − � − �ba��
�I�E0

�2�̃�2�0 − ���̃����� d�4���4 − �0�R
1

�4 − � − �ca + i

, �33�

and

Sdis�� � �0� �
1

�4 ��ba�2��cb�2�P�a� − P�c����� + �ca − �0�

�� 1

��0 − �ba�2 ��̃��0 − �ca�E0�2 +
1

��0 − �ba���0 − �bc�
R�E0

�2�̃��0 − �ca��̃��0 + �ca��� . �34�
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Equation �34� shows a positive Raman resonance at the fre-
quency �=�0−�ca, as expected. Note that the Raman peak
in Eq. �31� was negative.

Equations �31� and �34� are quite similar, except for an
overall sign. They only differ by two factors appearing in the
pump-probe terms. Since the vibrational transition frequency
is much smaller than electronic transition frequencies, �ca

��ba, it is justified to use �0−�ba��0−�ca as long as �0 is
tuned far from the electronic resonances. This means that as
long as the field amplitude �̃ varies slowly on the scale of
vibrational transition frequencies, so that ��̃��0+�ca� / �̃��0

−�ca��−1�1, the magnitude of the Raman peaks at ���0

and ���0 is essentially the same and the resonant part of
the signal is antisymmetric around �0. The parametric con-
tribution, in contrast, is not antisymmetric even when the
above approximations are valid.

We now discuss the relative magnitudes of the paramet-
ric and dissipative contributions to the signal assuming that �̃
is constant in the frequency regime of interest. We can write

R�E0
�2�̃2� = �E0�̃�2cos � , �35�

I�E0
�2�̃2� = �E0�̃�2sin � . �36�

The phase � controls the magnitude of the parametric and
dissipative processes. When �=� /2 or 3� /2 the parametric
part of the signal takes its maximal value, while it vanishes
for �=0 or �. In addition, the two dissipative terms in
Eq. �31� or Eq. �34� interfere constructively when �=0 and
destructively when �=�.

The narrow peak at �0 is assumed to have a Gaussian
bandshape,

���� =
1

�2�2
e−�2/22

. �37�

The transition frequencies are chosen as �ba=20 000 cm−1,
�ca=1000 cm−1, and �bc=19 000 cm−1. The narrow peak is
assumed to be centered at �0=10 000 cm−1 and to have
width of =10 cm−1. Finally, we take 
=1 cm−1.

The different contributions to the signal in the vicinity of
the Raman peaks ��0��ca� are depicted in Fig. 4 for various
values of �, as indicated. The dissipative process presented
in Fig. 4 is an a→c transition, namely, a Stokes process.

To understand the relative magnitude of the parametric
and dissipative contributions, we note that the parametric
signal is proportional to sin �. By comparison, in each of the
region of the Raman peaks depicted in Fig. 4, the dissipative
part of the signal is proportional to A+B cos �, with A ,B of
order unity. �The precise values are immaterial for the fol-
lowing qualitative argument.� Therefore, the parametric pro-
cess give maximal contribution to the signal when �=� /2
�Fig. 4�i�� or �=3� /2. Interestingly, the dissipative process
is composed of two contributions which can either interfere
constructively ��=0� or destructively ��=��. At �=0 �Fig.
4�iii�� only the dissipative signal contributes. Moreover, its
contribution is relatively strong. At �=� both the dissipative
and dispersive contributions are suppressed.

The above considerations show that it is possible to con-
trol the relative contributions of dissipative and dispersive

processes to the signal by tuning the phase difference be-
tween the narrow-band and broad-band pulses. It should be
noted that the parametric contribution may include contribu-
tions from additional modes �not included in our simplified
model�. However, these are expected to be featureless on the
scale of , the width of the peaks.

V. DISCUSSION

Time-domain CARS measurements are traditionally in-
terpreted in terms of vibrational coherences and represented
by double sided Feynman diagrams for the density matrix in
Liouville space. That representation allows to naturally in-
corporate vibrational dephasing. The close time path loop
representation used here is more suitable for frequency do-
main measurements and for describing parametric processes.
Vibrational dephasing �which is not discussed here� will re-
quire performing ensemble averages over products of ampli-
tudes and is less transparent in this picture. Both representa-
tions are exact but highlight different aspects of the process.

In this paper we showed that the loops can be broken
into products of two transition amplitudes. One represents
forward propagations and its complex composite is time re-
versed. This representation was used to study the signal re-
sulting from a combination of a narrow �picosecond� and a
broad-band �femtosecond� pulse. Such measurements have a
mixed time and frequency domain characteristics and can be
described by both types of diagrams. We demonstrated that
this representation naturally separates the contributions from
dissipative and dispersive processes.

The dissipative signal consists of a series of �pairs of�
Raman peaks with opposite signs. These peaks were shown
to be antisymmetric around the narrow-band pulse. That is,
equal in magnitude, but with opposite overall sign, indepen-
dent of the overall phase difference between the pulses. The
dispersive part of the signal breaks this symmetry.

It is interesting to compare the present dissection of the
signal, which is based on transition amplitudes, and the
method used in Ref. 6. For the part of the signal which is

FIG. 4. The Stokes contributions to the CARS signal from processes start-
ing at state a for various values of �, as indicated. The dissipative part of the
signal �solid-dark line� given by Eqs. �31� and �34�, the parametric part
�dashed line� given by Eqs. �30� and �33�, and their sum �thick-blue line�.
The dissipative part of the signal corresponds to a Stokes process, namely,
the transition a→c. The width of the signals is determined by , the width
of the narrow-band peak. Including the anti-Stokes contribution would re-
duce the signal without changing the lineshapes.
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proportional to P�a�, ��3� turns out to be equal to the bare

transition amplitude T̃aa
�4� �frequency arguments omitted from

brevity�. In this case, using

I�E1E2
�E3E4

�T̃aa
�4�� = I�E1E2

�E3E4
��RT̃aa

�4�

+ R�E1E2
�E3E4

��IT̃aa
�4�,

and the optical theorem yields identical results to those of
Ref. 6.

Interestingly, the part of ��3� proportional to P�c� is not

equal to the bare transition amplitude T̃cc
�4�. �More precisely,

to its complex conjugate.� They differ by a term whose con-
tribution to the �dissipative part of the� signal S4 is

���3 − �bc�R�E1E2
�E3E4

�T̃bc
�3����4,− �1,�2�T̃bc

�1���3�� .

As long as the product of bare transition amplitudes is
real both methods of dissecting the signal give the same
results. This means that these recipes differ only when

T̃bc
�3����4 ,−�1 ,�2�T̃bc

�1���3� becomes imaginary, that is, when
there is an additional resonance.

By inspecting Eq. �20� for the dissipative signal, written
in terms of transition amplitudes, we can identify the mo-
lecular transitions involved. Focusing on the second order
Raman transitions, we see that the �P�a� contribution in-

cludes a factor of E1E2
�E3E4

�T̃ca
�2��−�2 ,�1�T̃ca

�2���−�3 ,�4�+c .c.
This allows to associate this signal with
interference between two pump-probe processes, involving
modes 1, 2 and 3, 4, respectively. The molecular transition
generating this signal is from state a to c through b. This is
obviously a Stokes process. This is amusing, as this is the
resonant part of the so-called coherent anti-Stokes Raman
spectroscopy. The “CARS” acronym is more suited for the
description of the parametric part of the signal. Similar con-
siderations show that the resonant Raman signal proportional
to P�c� is an anti-Stokes process.
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APPENDIX A: TRANSITION AMPLITUDES FOR THE MODEL OF FIGURE 1

The transition amplitudes required for the calculation of CARS signals for the level scheme of Fig. 1 are listed below:

T̃ba
�1���1� = T̃ba

�1���4� = �ba, �A1�

T̃bc
�1���2� = T̃bc

�1���3� = �bc, �A2�

T̃ca
�2��− �2,�1� =

�cb�ba

�1 − �ba + i

, �A3�

T̃ca
�2��− �3,�4� =

�cb�ba

�4 − �ba + i

, �A4�

T̃ac
�2��− �1,�2� =

�ab�bc

�2 − �bc + i

, �A5�

T̃ac
�2��− �4,�3� =

�ab�bc

�3 − �bc + i

, �A6�

T̃ba
�3���2,− �3,�4� =

�bc�cb�ba

��4 − �3 − �ca + i
���4 − �ba + i
�
, �A7�

T̃ba
�3���3,− �2,�1� =

�bc�cb�ba

��1 − �2 − �ca + i
���1 − �ba + i
�
, �A8�

T̃bc
�3���4,− �1,�2� =

�ba�ab�bc

��2 − �1 − �ac + i
���2 − �bc + i
�
, �A9�
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T̃bc
�3���1,− �4,�3� =

�ba�ab�bc

��3 − �4 − �ac + i
���3 − �bc + i
�
, �A10�

T̃aa
�4��− �1,�2,− �3,�4� =

��cb�ba�2

��4 − �3 + �2 − �ba + i
���4 − �3 − �ca + i
���4 − �ba + i
�
, �A11�

T̃aa
�4��− �4,�3,− �2,�1� =

��cb�ba�2

��1 − �2 + �3 − �ba + i
���1 − �2 − �ca + i
���1 − �ba + i
�
, �A12�

T̃cc
�4��− �3,�4,− �1,�2� =

��ab�bc�2

��2 − �1 + �4 − �bc + i
���2 − �1 − �ac + i
���2 − �bc + i
�
, �A13�

T̃cc
�4��− �2,�1,− �4,�3� =

��ab�bc�2

��3 − �4 + �1 − �ba + i
���3 − �4 − �ac + i
���3 − �bc + i
�
. �A14�

APPENDIX B: SEPARATING THE DISSIPATIVE AND
PARAMETRIC CONTRIBUTIONS

In this appendix we sketch the steps needed to separate
the contribution to the optical signal S4 which is proportional

to I�E1E2
*E3E4

*T̃aa
�4��−�4 ,�3 ,−�2 ,�1�� into its resonant and

parametric parts. �The first term in the right hand side of Eq.
�14�, which is written in terms of the transition amplitude
�A12�.� While we discuss the signal S4 and processes starting
and ending at state a the same considerations would apply to
other signals as well as for other diagonal transition ampli-
tudes.

The transition amplitude above represents a four-photon
process a→b→c→b→a where a photon from mode 1 is
absorbed first, then a photon is emitted into mode 2, and a
photon is absorbed from mode 3 and finally a photon is
emitted into mode 4. The model discussed here allows also
for a time reversed process which starts by absorbing a pho-
ton from mode 4, then emitting into mode 3, absorbing from
mode 2 and finally emitting into mode 1. The contribution to
the signal can be written in a form which takes into account
both processes

E1E2
*E3E4

*T̃aa
�4��− �4,�3,− �2,�1� = Tsym + Tas, �B1�

where

Tsym = 1
2 �E1E2

*E3E4
*T̃aa

�4��− �4,�3,− �2,�1�

+ E1
*E2E3

*E4T̃aa
�4��− �1,�2,− �3,�4�� �B2�

Tas = 1
2 �E1E2

*E3E4
*T̃aa

�4��− �4,�3,− �2,�1�

− E1
*E2E3

*E4T̃aa
�4��− �1,�2,− �3,�4�� . �B3�

This separation is meaningful since Tsym and Tas turn out to
correspond to resonant and parametric contributions to the
signal.

Eq. �1� can be used to show that T̃aa
�4��−�4 ,�3 ,−�2 ,�1�

= T̃aa
�4��−�1 ,�2 ,−�3 ,�4�. This allows to write Tas as

Tas = iI�E1E2
*E3E4

*�T̃aa
�4��− �4,�3,− �2,�1� , �B4�

whose imaginary part appears in Eq. �19�. This contribution
is identified as a parametric process.

Tsym is the sum of the two possible pathways to make a
fourth order transition starting and ending at a. It can be
recasted as a contribution from resonant terms using the op-
tical theorem

2ITsym = − ��E1E2
*E3E4

*T̃ba
�1���1�T̃

ba

�3�*��2,− �3,�4� + c.c.����1 − �ba� − ��E1E2
*E3E4

*T̃ba
�3���3,− �2,�1�T̃

ba

�1�*��4� + c.c.����4 − �ba�

− ��E1E2
*E3E4

*T̃ca
�2��− �2,�1�T̃

ca

�2�*�− �3,�4� + c.c.����1 − �2 − �ca� . �B5�
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Eq. �B5� recast the imaginary part of a fourth order forward
�a→a� scattering amplitude as a sum over all processes
leaving the initial state.

Substitution of Eq. �B4� �Eq. �B5� respectively� in Eq.
�14�, with the help of Eq. �B1�, result in the �P�a� terms of
Eq. �19� �Eq. �20��. The �P�c� terms are obtained by first
bringing the term to a similar form and then repeating the
above steps, as discussed in Sec. III.

APPENDIX C: DERIVATION OF EQUATIONS „29…–„34…

In this appendix we derive the expressions for the dissi-
pative and parametric components of the signal considered in
Sec. IV. We start with the signal at ���0 obtained by two
interactions with the narrow-band pulse and two interactions
with the broad-band pulse. Note that more interactions with
the narrow-band pulse can only affect the signal at frequen-
cies which overlap with that pulse �or are very close to it�, so
we can discard this possibility. Contributions to the signal
with either one, or no interactions with the narrow-band

pulse may be readily separated out using their different func-
tional dependence on E0. The result of all these consider-
ations is that the signal frequency must play the role of the
larger frequency in a pair of modes, which can be chosen as
�4, with �3 as a mode in the narrow-band pulse. As a result
the signal in this case is described by S4, Eq. �18�. �Similarly,
the case ���0 would lead us to identify the measured
frequency as the lower frequency in the Raman pair and use
Eq. �21� instead.�

We are yet to identify �1 and �2 with frequencies of the
broad-band and narrow-band pulses. Since we consider the
signal which scale as E0

2 one of these modes should be taken
from the narrow-band pulse. This allows for two different
contributions: �i� �2 in the narrow-band pulse, which forces
�1����0 and �ii� �1 in the narrow band pulse with �2

��0. The first contribution is a pump-probe process while in
�ii� there are contributions from both sides of the narrow-
band pulse.

This leads to

Spar�� � �0� =
1

��4 ��ba�2��bc�2�� d�2d�3�E0�2���3 − �0����2 − �0�I��̃���2 − �3 + ���̃����

�� P�c�
��3 − �bc���2 − �bc�

−
P�a�

�� − �3 + �2 − �ba��� − �ba��R
1

� − �3 − �ca + i


+� d�1d�3���1 − �0����3 − �0�I�E0
�2�̃��1 + �3 − ���̃����

�� P�c�
��3 − �bc���1 + �3 − � − �bc�

−
P�a�

��1 − �ba��� − �ba��R
1

� − �3 − �ca + i

� , �C1�

and

Sdis�� � �0� = −
1

�4 ��ba�2��bc�2�P�a� − P�c���� d�2
1

��2 − �bc��� − �ba�
R��̃���2 + �ca��̃�����E0�2���2 − �0�

���� − �ca − �0� +� d�1
1

��1 − �ba��� − �ba�
R�E0

�2�̃��1 − �ca��̃�������1 − �0���� − �ca − �0�� .

�C2�

Equations �C1� and �C2� are quite general. However, the
presence of the broadened �-function in Eqs. �C1� and �C2�,
which is a result of the narrow-band pulse, allows to make
further approximations.

We assume that the pulse envelope �̃���, as well as the
nonresonant factors of the form ���−�ba�−1, arising from
transitions to and from state b, are slowly varying functions
of the frequency on the scale of . We can then replace some

of the frequency variables in the slowly varying factors,
whose range is limited by the broadened �-functions, with
�0. For example, in the second factor of Eq. �C1�,
I�E0

�2�̃��1+�3−���̃�����I�E0
�2�̃�2�0−���̃����. Consistent

application of this approximation simplifies the expressions
considerably and allows to perform some of the remaining
integrations.

This approximation also allows to neglect one of the
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parametric contributions as it is typically small when com-
pared to the other. This results from the fact that �̃��2−�3

+���̃������̃����2 which is real. Since it is the imaginary
part of this factor which appears in Eq. �C1�, we conclude
that this term is subdominant as long as E0

�2�̃�2�0−���̃���
does not turn out to be a real number too. The latter case
would require a more careful analysis. Since it is not a typi-

cal case, we do not consider it here. Application of the nar-
row pulse approximation results in Eqs. �30� and �31�.

The signal for ���0 can be calculated similarly. Here �
must correspond to the lower frequency in a Raman pair. As
a result it should be identified with �3 of Sec. III, and S3 �Eq.
�21�� should serve as a starting point for the calculation.
Repeating the above steps, we find

Spar�� � �0� =
1

��4 ��ba�2��bc�2�� d�1d�4�E0�2���1 − �0����4 − �0�I��̃���1 + � − �4��̃����

�� P�c�
��1 + � − �4 − �bc��� − �bc�

−
P�a�

��4 − �ba���1 − �ba��R
1

�4 − � − �ca + i


+� d�2d�4���4 − �0����2 − �0�I�E0
�2�̃��2 + �4 − ���̃����

�� P�c�
��2 − �bc��� − �bc�

−
P�a�

��4 − �ba���2 + �4 − � − �ba��R
1

�4 − � − �ca + i

� , �C3�

and

Sdis�� � �0� =
1

�4 ��ba�2��bc�2�P�a� − P�c���� d�1
1

��1 − �ba��� − �bc�
R��̃���1 − �ca��̃�����E0�2���1 − �0�

���� + �ca − �0� +� d�2
1

�� − �bc���2 − �bc�
R�E0

�2�̃��2 + �ca��̃�������2 − �0���� + �ca − �0�� .

�C4�

Using the narrowness of ���� to make further approxima-
tions results in Eqs. �33� and �34�.
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