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Abstract Schizophrenia is one of the most common mental

illnesses, with hereditary and environmental factors impor-

tant for its etiology. All antipsychotics have in common a high

affinity for monoaminergic receptors. Whereas hallucinations

and delusions usually respond to typical (haloperidol-like)

and atypical (clozapine-like) monoaminergic antipsychotics,

their efficacy in improving negative symptoms and cognitive

deficits remains inadequate. In addition, devastating side

effects are a common characteristic of monoaminergic anti-

psychotics. Recent biochemical, preclinical and clinical

findings support group II metabotropic glutamate receptors

(mGluR2 and mGluR3) as a new approach to treat schizo-

phrenia. This paper reviews the status of general knowledge

of mGluR2 and mGluR3 in the psychopharmacology,

genetics and neuropathology of schizophrenia
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Introduction

Schizophrenia is a chronic mental disorder that affects

approximately 1% of the population worldwide with sim-

ilar prevalence throughout diverse cultures and geographic

areas [1–5]. The symptoms of schizophrenia include

‘‘positive’’ symptoms (e.g., hallucinations, delusions, par-

anoia), negative symptoms (e.g., social withdrawal, apathy,

abnormal emotional responses), and cognitive deficiencies

such as impaired memory, attention deficit, and reduced

executive functioning. Serendipity played a role in the

discovery of both the first (typical, haloperidol-like) and

second (atypical, clozapine-like) generation of antipsy-

chotics. The first antipsychotic chlorpromazine was

discovered in 1952 as an antihistaminic that decreased

psychosis [6]. Haloperidol was first developed as a pain

reliever [7], and clozapine was originally a ‘‘tricyclic

antidepressant with neuroleptic properties’’ [8, 9]. To date,

both the mechanism of action of antipsychotics and the

pathogenesis of the disease remain largely unknown.

Since schizophrenia is incurable, treatment with

antipsychotics typically continues for life. Typical

antipsychotics do not resolve negative symptoms, may fail

to improve positive symptoms, and worsen cognitive

symptoms in some patients [10, 11]. Atypical antipsy-

chotics have a reduced risk of extrapyramidal symptoms,

and have become the first-line treatment for schizophrenia

[12, 13]. However, whereas positive symptoms usually

respond to antipsychotic medication, success in treating

schizophrenia remains limited by low efficacy of the

neuroleptics in the treatment of negative symptoms and

cognitive deficits [14, 15]. Clozapine was discovered more

than 50 years ago and approved by the FDA in 1989, yet it

remains the only antipsychotic medication with established

efficacy in treatment-resistant schizophrenia patients.
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Clozapine could also be beneficial for less severely ill

patients who show only partial response to other antipsy-

chotic drugs. Despite its efficacy, clozapine has substantial

undesirable effects on metabolic parameters causing

weight gain, glucose abnormalities, hypertriglyceridemia,

and hypertension. Reports have also shown that 1–2% of

patients who take clozapine will develop agranulocytosis, a

sometimes fatal side effect that severely limits the use of

the most efficacious antischizophrenia drug [16–19]. All

the antipsychotic medications currently prescribed have in

common a high affinity for monoaminergic receptors.

Notably, recent preclinical and clinical findings suggest

metabotropic glutamate receptors 2 and/or 3 as a new target

to treat schizophrenia [20–24]. Treatment of schizophrenic

patients with the mGluR2/3 agonist LY2140023 led to an

improvement of both positive and negative symptoms

without significant side effects compared to placebo [25].

Studies with twin, family and adoption suggest that

schizophrenia results from a combination of predisposing

genes and hazardous environmental factors [26, 27]. Here,

we review the potential implications of mGluR2 and

mGluR3 in the pharmacological, genetic and epigenetic

aspects of the disorder.

Group II metabotropic glutamate receptors

L-Glutamate is the major excitatory neurotransmitter in the

mammalian CNS, acting through both ligand-gated ion

channels and G protein-coupled receptors (GPCRs). The

ionotropic glutamate receptors are multimeric assemblies

of four or five subunits, and are subdivided into three

groups (AMPA, NMDA, and kainate receptors) [28].

GPCRs represent the largest family of signal transduction

membrane proteins, and a major target for therapeutic

drugs. All known GPCRs have a common structural tem-

plate composed by seven membrane-spanning alpha

helices joined by hydrophilic loops [29, 30]. The three

major families of GPCRs include the rhodopsin-like

receptors (family A), the glucagon-related receptors (fam-

ily B), and metabotropic glutamate-related receptors

(family C). Family C is characterized by a large amino

terminus extracellular domain that consists of two lobes

separated by a large cleft that contains the agonist binding

site [31, 32]. This family includes the metabotropic gluta-

mate receptors (mGluRs), the c-aminobutyric acid

(GABAB) receptor, and the calcium sensing receptors.

Metabotropic glutamate receptors have been subdivided

into three groups, based on sequence similarity, pharma-

cology, and G protein coupling. The group I mGluRs is

represented by mGluR1 and mGluR5, both coupled to

Gq/11 proteins and activation of phospholipase C. The

group II (mGluR2 and mGluR3) and group III (mGluR4,

mGluR6, mGluR7 and mGluR8) receptors are coupled to

Gi/o proteins and typically inhibit adenylyl cyclase activity.

With the exception of the mGluR6 isoform, which is

expressed restrictedly at the postsynaptic site of retinal

ON-bipolar cells, metabotropic glutamate receptors are

widely distributed in the brain.

Although much biochemical and biophysical data are

consistent with the ability of GPCRs to bind and activate G

proteins in a monomeric form [33–38], many recent studies

support the hypothesis that G protein coupling in cell

membranes involves the formation of GPCR homo- and

heterodimers or higher order oligomers [39–41]. In par-

ticular, much evidence indicates that family C receptors

exist and function as dimers [31]. Thus, the co-assembly of

two non-functional GPCRs, GB1 and GB2, is required for

the expression of functional GABAB receptors, and the

heterodimer GABAB receptor has been demonstrated to

activate through a mechanism of trans-activation [42–44].

The functional significance of family C receptor dimer-

ization is further supported by the demonstration that a

closed state of both binding domains in the homodimeric

mGluR5 is required for full activity [45], and that mGluR1

[46] and mGluR5 [47] are expressed in the cell membrane

as a dimer, not as a higher order oligomer. The crystal

structure of the amino terminus ligand-binding domain of

the mGluR1 receptor presents a disulphide bridge con-

necting the two protomers [48, 49]. Similarly, disulphide

bonding within the amino terminus domains of mGluR5

and the calcium-sensing receptor has been reported to be

important for covalent dimerization [50]. In addition, the

expression of heterocomplexes between rhodopsin-like and

metabotropic glutamate receptors have been reported for

mGluR5, dopamine D2, and adenosine A2A [51, 52], and

for mGluR2 and serotonin 5-HT2A receptors [53], thus

further complicating the interpretation of signaling through

metabotropic glutamate receptors.

Group II metabotropic glutamate receptors as a new

antipsychotic target

The lack of clear pathological lesions in schizophrenia

represents one of the main limitations for research on this

disease using rodent models. Psychotomimetic drugs such

as phenyclidine (PCP) and lysergic acid diethylamide

(LSD) induce schizophrenia-like psychosis in humans and

represent in mouse a pharmacological tool that has led to a

better understanding of the neurochemical basis underlying

schizophrenia and psychosis [54–57]. A single dose of PCP

has been shown to intensify the symptoms in patients with

schizophrenia, to produce hallucinations, and to reduce

cognitive ability. In addition, acute PCP administration in

rodents has been shown to elicit deficits in pre-pulse
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inhibition (PPI) of the startle response, a measure of sen-

sorimotor gating deficits, to increase locomotor activity, to

decrease social recognition, and to produce cognitive def-

icits of particular relevance to schizophrenia [58]. Studies

with healthy volunteers showed similarities between the

early stages of schizophrenia and the psychological effects

induced by the LSD-like hallucinogen psilocybin [59]. The

cellular and behavioral responses induced by hallucinogens

are abolished in serotonin 5-HT2A knock-out mice [60, 61].

The complexity of schizophrenia makes it unfeasible to

mimic the entire syndrome in mouse models. However, all

these findings suggest that PCP-like and LSD-like drugs

may be used as tools to model specific signs or symptoms

associated with schizophrenia.

The demonstration in rodents that mGluR2/3 activation

attenuates the effects of PCP on locomotion and working

memory [62], and that suppresses the head-twitch response

induced by the hallucinogenic 5-HT2A receptor agonist

DOI [63], led to a tremendous amount of research showing

functional and behavioral interactions between 5-HT2A,

mGluR2/3, and NMDA receptors (see [57] for review).

Studies in healthy human subjects reported that the

behavioral effects of ketamine are disrupted by the

mGluR2/3 agonist LY354740 [64]. Recent clinical trials

support the significance of mGluR2/3 agonists as a new

class of antipsychotics [25]. Thus, treated patients with

LY2140023 showed significant improvements in both

positive and negative symptoms of schizophrenia. Impor-

tantly, patients taking the LY2140023 did not show

Parkinsonian side effects. Moreover, in contrast to atypical

antipsychotics such as clozapine and olanzapine, the

mGluR2/3 agonist did not result in undesirable effects on

metabolic parameters. A long-standing question was whe-

ther mGluR2, mGluR3 or both are responsible for the

antipsychotic effects of the mGluR2/3 agonists. Recent

preclinical results in mouse models together with studies of

allelic variation in humans suggest different roles for

mGluR2 and mGluR3 in the mechanism of action of glu-

tamate antipsychotics and the genetic link to schizophrenia.

Antipsychotic-like effects in mouse are mGluR2,

and not mGluR3, dependent

The absence of selective orthosteric ligands has precluded

detailed studies on the physiological and behavioral sig-

nificance of mGluR2 and mGluR3 for the mechanism of

action of glutamate antipsychotics. Experiments with

mGluR2 knock-out mice suggested that mGluR2 mediated

the inhibition of the PCP-induced locomotor activity by the

mGluR2/3 agonist LY314582 [65]. Concurrent studies with

LY404039 [66] and LY379268 [67] provided evidence that

the effects of the mGluR2/3 agonists blocking the

locomotor activity induced by PCP and amphetamine are

abolished in mGluR2 knock-out mice, and are unaffected

in mGluR3 knock-out mice. These data suggest that

mGluR2, and not mGluR3, is the receptor responsible for

the antipsychotic-like effects of the mGluR2/3 agonists in

murine models.

The great majority of GPCR ligands used in the clinic

and in basic research are orthosteric ligands (i.e., agonists,

antagonists, and inverse agonists) that compete with

endogenous ligands for the same binding site. Allosteric

ligands modulate receptor function by binding not to the

orthostheric site but to different regions in the receptor, the

allosteric sites [68]. Interestingly, positive allosteric mod-

ulators of mGluR2 have behavioral effects similar to

mGluR2/3 orthosteric agonists. The mGluR2 positive

allosteric modulator LY487379 reduced the PCP- and

amphetamine-induced locomotion activity in a comparable

manner to the allosteric mGluR2/3 agonist LY379268 [69].

In the same context, the mGluR2 positive allosteric mod-

ulator biphenyl-indanone A (BINA) blocks the head-twitch

behavioral response induced by the hallucinogenic 5-HT2A

agonist DOB [70]. Since allosteric modulators are unable

to induce a functional response in the absence of ortho-

steric agonists, the effects of LY487379 and BINA on the

behavioral effects of psychotomimetic drugs suggest that

the allosteric modulators potentiate the mGluR2-dependent

responses induced by the endogenous agonist glutamate.

The mGluR2 is likely to be responsible for the effects of

antipsychotic mGluR2/3 agonists, and all the clozapine-

like atypical antipsychotics have a high affinity for the

5-HT2A receptor. The functional and behavioral interaction

between 5-HT2A and mGluR2 receptors is well established

(Fig. 1), and activation of mGluR2 inhibits the cellular,

electrophysiological, and behavioral responses induced by

PCP-like and LSD-like psychotomimetic drugs (see [57]

for review). Recent findings showed that 5-HT2A and

mGluR2 co-localize in cortical pyramidal neurons and

form a receptor heterocomplex [53, 57]. Interestingly,

chronic treatment with the hallucinogenic 5-HT2A agonist

DOB alters the behavioral responses to the mGluR2/3

agonist LY379268 [71]. In addition, the locomotor activity

induced by the mGluR2/3 antagonist LY341495 is reversed

by antipsychotic drugs [72], and decreased in 5-HT2A

knock out mice [53, 57]. These and other data [57], toge-

ther with the expression of 5-HT2A and mGluR2 as a

receptor heterocomplex in mouse and human brain

[53, 57], suggest that the 5-HT2A-mGluR2 heterocomplex

might represent a new target for antipsychotic therapies

(Fig. 1). On the other hand, the blockage of the PCP-in-

duced hyperlocomotion elicited by high doses of clozapine,

risperidone, and olanzapine is not affected in mGluR2/3

double-knock out mice [25, 66]. Although the risks of

extrapyramidal symptoms are much less with atypical

mGluR2, mGluR3 and schizophrenia 3779



antipsychotics when compared to haloperidol, it has been

reported that high doses of clozapine and other atypical

antipsychotics produce motor suppression and catalepsy in

rodents [73]. Since all atypical antipsychotics have a high

affinity for the 5-HT2A and a modest affinity for the

dopamine D2 receptor, further investigations with lower

and therapeutically relevant doses of clozapine-like drugs

are necessary to determine whether the 5-HT2A-mGluR2

complex is fully or in part responsible for the effects of

atypical antipsychotics, as well as for the effects of gluta-

mate antipsychotics.

GRM2 and GRM3 genes in schizophrenia

Twin studies show the existence of a genetic predisposition

to schizophrenia, with estimates of heritability of risk at

73–90% [74–76]. While other factors besides genetics are

definitely involved, investigation of the genetic alterations

responsible for schizophrenia represents a useful approach

to better understand the cause of the disease [27]. Meta-

botropic glutamate receptor 2 gene (GRM2) has been

mapped to chromosome 3p21.1–p21.2 [77], and linkage

studies of schizophrenia show no positive results regarding

this region [78–83]. The polymorphisms identified in the

coding exons of GRM2 revealed ten missense mutations

and one silent mutation [84]. However, these polymor-

phisms did not show statistically significant differences in

schizophrenics and controls [84]. Further investigation

with different cohorts might be necessary to better under-

stand the potential role of the polymorphisms of the human

GRM2 in receptor function, and to extend our knowledge

of a potential association between SNPs in GRM2 and

schizophrenia. In contrast to GRM3 (see below), no alter-

native splicing of GRM2 is expressed in human brain

[85–87].

Metabotropic glutamate receptor 3 gene (GRM3) has

been mapped to chromosome 7q21.1–q21.2 [88], and

several linkage studies reported one of the schizophrenia

susceptibility loci as located in the proximity of the

GRM3 region [78–80, 82, 83]. A unique case was

reported with familial 7q21 reciprocal translocation and

childhood-onset schizophrenia (COS) [89]. Polymor-

phisms in GRM3 have been associated with negative

symptom improvement with clozapine [90]. Combined

genomic and neurobiological approaches showed that

GRM3 genotype affects cognition as well as prefrontal

and hippocampal physiological responses [91], which was

hypothesized as an increased risk for schizophrenia. The

SNP proposed as associated with schizophrenia

(rs6465084) showed lower levels of prefrontal N-acetyl-

aspartate (NAA), which is a reservoir for glutamate [91,

92]. Catechol-o-methyltransferase (COMT) degrades cat-

echolamines such as dopamine, serotonin adrenaline, and

noradrenaline. Epistatis between COMT genotypes or

haplotypes and SNPs in GRM3 has been explored

showing association with working memory [93, 94].

Concurrently, these data suggest an association of SNPs

in GRM3 and schizophrenia, yet the potential link

between genetic variations in GRM3 and schizophrenia

remains debatable. First, genome-wide scans have

implicated several regions of the genome; however,

meta-analysis showed that the GRM3 locus did not reach

statistical significance as implicated in schizophrenia

[27]. Second, while five studies found association

between individual SNPs and/or haplotypes in GRM3 and

schizophrenia [91, 93, 95–97], eight studies including one

meta-analysis did not [83, 98–104]. Among the five

positive studies, the research findings showing associa-

tions have not been consistent for the specific SNP

patterns. It is therefore not established that GRM3 vari-

ants play a major role in predisposing to schizophrenia.

Furthermore, since all SNPs within GRM3 are either

noncoding or synonymous, the mechanisms underlying

the genetic associations between polymorphisms in

GRM3 and schizophrenia remain controversial. Recent

evidences indicate that silent SNPs may result in differ-

ent three-dimensional folding patterns of the transcribed

mRNA that can affect mRNA degradation and in vivo

Fig. 1 This schematic presents a model for the neurotransmitter

receptors and cellular subtypes implicated in the mechanism of action

of metabotropic glutamate antipsychotics. The mGluR2 and the

5-HT2A co-localize and form a receptor heterocomplex in cortical

pyramidal neurons. The mGluR2, and not the mGluR3, is responsible

for the antipsychotic-like effects induced by mGluR2/3 agonists in

mouse models of schizophrenia. All atypical antipsychotics have in

common a high affinity for the 5-HT2A receptor, and a lower affinity

for dopaminergic receptors. Further investigation is needed to

understand the role of the 5-HT2A-mGluR2 complex in the mecha-

nism of action of atypical and glutamate antipsychotics, in addition to

the cellular signaling pathways and neuronal circuits responsible for

the antipsychotic effects. For the purpose of clarity, not all the

neurotransmitter receptors implicated in schizophrenia are shown
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protein folding and, consequently, protein function [105–

107]. However, most of the studies suggest that the level

of expression of mGluR3 mRNA is unaffected in

schizophrenia brain (see below). Alternative pre-mRNA

splicing also represents an important mechanism involved

in the generation of transcript and protein diversity [86].

Alternative splicing of GRM3 studies in human brain

reported four splice variants: full-length GRM3 (2.8 kb),

GRM3 with exon 2 deleted (GRM3D2, 2.2 kb), GRM3

with exon 4 deleted (GRM3D4, 1.8 kb), and GRM3 with

exons 2 and 3 deleted (GRM3D2D3, 1.4 kb) [87]. The

most abundant variant GRM3D4 corresponds with a

truncated protein with a conserved extracellular ligand

binding domain, absence of seven-transmembrane

domains, and a 96-amino acid C-terminus. A SNP in

GRM3 was found to correlate with the expression of the

GRM3D4 splice variant [108], but it is not the GRM3

variant rs6465084 that has been reported to affect cog-

nition (see above and [91]). In conclusion, while the

current data concerning GRM3 do not allow rejection of

the null hypothesis, to date there is no clear association

between any SNP, genotype, or haplotype with

schizophrenia.

Level of expression of mGluR2 and mGluR3

in schizophrenia

The majority of the findings in post-mortem human brain

suggest that the level of expression of mGluR3 mRNA is

unaffected in schizophrenia [53, 91, 109–112]. Our current

understanding of how the genome regulates gene expres-

sion and function is limited. However, the unaffected level

of expression of mGluR3 mRNA is supported by the

hypothesis that variation in GRM3 is not associated with

schizophrenia (see above). Fewer studies have investigated

the level of expression of mGluR2 mRNA in post-mortem

human brain of schizophrenic subjects. Semi-quantitative

approaches such as in situ hybridization have reported

unaffected mGluR2 mRNA expression in thalamus [110],

and higher mGluR2 mRNA expression in the prefrontal

cortex white matter [111]. However, quantitative real-time

PCR assays shown lower level of expression of mGluR2

mRNA in prefrontal cortex [53] and cerebellum [112] in

schizophrenics. Further investigation in larger samples is

required to determine the level of expression of mGluR2

mRNA in schizophrenia brain, as well as to test whether

chronic antipsychotics have a significant effect on mGluR2

mRNA expression.

Discrepant results have been published regarding the

level of expression of mGluR2/3 protein in prefrontal

cortex, with unaffected [113] and higher [114] mGluR2/3

immunoreactivity in antipsychotic-treated schizophrenic

subjects. It has been reported that the density of mGluR2/

3 binding sites is lower in cortex from young untreated

schizophrenic subjects [53], and recent findings by semi-

quantitative western blot assay suggest a reduction in

mGluR3 protein in prefrontal cortex in schizophrenic

subjects, with mGluR2 protein levels unchanged [115].

Much evidence indicates that metabotropic glutamate

receptors exist and function as heterodimers, and the

amino terminus ligand-binding domain presents a disul-

phide bridge connecting the two protomers (see above).

Thus, it is reasonable to speculate that metabotropic

glutamate receptors are expressed as dimers in the cell

membrane under physiological conditions. However, the

level of expression of mGluR3 as dimer has been

reported to be significantly lower in prefrontal cortex of

schizophrenic subjects, whereas total mGluR3 protein

was not altered significantly [116]. The unaffected level

of expression of mGluR3 mRNA in schizophrenia brain,

as well as the mGluR2-dependent mechanism of action

of glutamate antipsychotics in mouse models (see above),

makes necessary further investigation of the level of

expression and function of mGluR2 and mGluR3 in post-

mortem human brain of schizophrenic subjects and

controls.

Conclusions and future directions

Multidisciplinary approaches suggest that mGluR2, and

not mGluR3, is the target of metabotropic glutamate anti-

psychotics in mouse models. Further investigation is

necessary to better understand the molecular and cellular

mechanisms by which mGluR2 activation elicits antipsy-

chotic effects. Whereas the etiology of schizophrenia

clearly involves genetic factors, inheritance alone is not

sufficient for clinical manifestation of schizophrenia, and

considerations of the etiology of schizophrenia also

include the role of environmental factors. Several

approaches have reported that factors such as obstetric

complications [117, 118], maternal infection [119, 120],

and prenatal malnutrition [121] influence schizophrenia

risk. Interestingly, recent findings suggest that GRM3

gene interacts with obstetric complications to affect the

risk of schizophrenia [122]. However, the genetic data

available so far are fragmented to fully validate the

associations between the polymorphic GRM3 gene and

schizophrenia. A better understanding of the genetic and

epigenetic mechanisms that regulate the level of expres-

sion and function of mGluR2 and mGluR3 in

schizophrenia brain will not only continue a fascinating

new chapter in neurobiology and molecular psychiatry,

but might also ultimately lead to the identification of

entirely new classes of antipsychotic drugs.
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