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Abstract
A sequential intramolecular-intermolecular enantioselective alkene difunctionalization reaction has
been developed which is thought to proceed through Pd-catalyzed quinone methide formation. The
synthesis of new chiral heterocyclic compounds with adjacent chiral centers is achieved in
enantiomeric ratios up to 99:1 and diastereomeric ratios up to 10:1.

The formation of two carbon-heteroatom bonds across an alkene is a process which rapidly
increases molecular complexity. The osmium-catalyzed Sharpless dihydroxylation1 is the
epitome of enantioselective alkene difunctionalization, though recent research has included
other metal catalysts and expanded to the formation of functional groups other than 1,2-diols.
2 Currently, significant focus has been on palladium catalysis, likely due to the efficiency with
which palladium activates olefins for nucleophilic attack.3 However, in order to achieve the
second bond construction, β-hydride elimination from a Pd-alkyl intermediate A, which leads
to a Wacker-type monofunctionalized alkene product 1,4 must be prevented (Scheme 1). The
alkene dialkoxylation reaction developed in our laboratory is believed to accomplish this
through the formation of a quinone methide intermediate, which allows for attack by a second
equivalent of alcohol.5 Based on this mechanistic proposal, we envisioned an alkene
difunctionalization reaction where a sequential intra-intermolecular process would allow for
the selective formation of two distinct carbon-heteroatom bonds by employing substrates which
contain a nucleophile tethered to the alkene (Scheme 1). We hypothesized initial intramolecular
nucleopalladation to form heterocyclic intermediate B. Subsequent formation of a quinone
methide intermediate C allows for attack by an exogenous nucleophile to form the product and
release Pd0, which is reoxidized using molecular oxygen. Herein we report a highly
enantioselective addition of two distinct nucleophiles across alkenes capable of quinone
methide formation to access oxygen-based heterocycles with contiguous chiral centers.

In exploring the possibility of sequential intra-intermolecular alkene functionalization
reactions, we examined 2 as a substrate6 with methanol as the exogenous nucleophile. Under
the standard conditions for enantioselective intermolecular alkene dialkoxylation,5b using
(S)-iPrQuinox as the chiral ligand, a low yield of the desired product was observed with
promising enantioselectivity, but low diastereoselectivity (Table 1, entry 1).7 Addition of a
catalytic amount of base and removal of molecular sieves led to modest improvements in
product yield (entry 2). Reflecting on our intermolecular asymmetric dialkoxylation reaction,
where copper improved yield and chemoselectivity but was removed in order to achieve high
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enantioselectivity, we revisited the use of copper as an additive to improve the reaction.5b We
hypothesized that the reason for decreased enantioselectivity with increased copper loading
was that Cu sequesters the chiral ligand from Pd via ligand substitution, resulting in an achiral
palladium catalyst. Thus we added 20 mol% CuCl2 along with enough chiral ligand to
coordinate both metals (32 mol%). A significant improvement in yield was observed without
a detrimental effect on enantiomeric ratio (entry 3). Based on the accelerated rate of the
reaction, we were able to decrease the metal and ligand loadings (entry 4). In order to find
conditions that would allow for the use of nucleophiles other than methanol, other solvents
were evaluated. We were encouraged to find that both THF and toluene led to increased
enantioselectivity, albeit with a decrease in rate and product yield (entries 5 and 6). A 1:1
mixture of THF: toluene was also found to be a viable solvent system (entry 7). Improvements
in rate and yield were observed when using CuCl instead of CuCl2, potentially due to a decrease
in the [Cl−] or a change in oxidation potential (entry 9).8

With these optimized conditions, the scope of the alkene difunctionalization reaction was
evaluated. In addition to methanol, n-butanol can be used as exogenous nucleophile (Table 2,
3b) where the use of toluene as solvent was found to give slightly improved yields.9 Alcohols
containing a functional group are also well tolerated, including 3-butenol, 2-methoxyethanol,
and 2-chloroethanol (entries 3c-3e). Ethers with the potential for deprotection are formed using
benzyl alcohol and trimethylsilylethanol, with the latter giving an excellent er of 99:1 (3f &
3g). A relatively complex chiral alcohol, (−)-myrtenol, was employed successfully (3h),
demonstrating the potential to couple two chiral partners. To enhance miscibility, tert-
amylalcohol was employed for the addition of water, yielding the free secondary alcohol
product with excellent enantioselectivity (3i). This solvent was found to be preferred for other
polar nucleophiles, such as ethylene glycol (3j). Excitingly, the use of sodium azide
demonstrates that an exogenous nitrogen nucleophile is viable (3k). While low
diastereoselectivity is observed, the diastereomers are readily separable. In examining what
other ring systems can be accessed, it was found that both tertiary and primary alcohol
substrates cyclize to yield tetrahydrofuran (3l) and tetrahydropyran (3m) containing
compounds. A 1,4-dioxane is formed (3n) in modest yield and good enantioselectivity.

(1)

While the incorporation of an o-phenol in the substrate is a mechanistic necessity at this stage,
it can be used as a synthetic handle for further functionalization. To demonstrate this, the phenol
was oxidized using PhI(OAc)2 to access p-benzoquinone ketals 3 and 4 with no loss of
diastereomeric purity (eq. 1).10

To extend the scope of this process to carbon nucleophiles, we submitted an enol ether, a classic
inverse electron demand Diels-Alder partner with quinone methides,11 to the reaction
conditions. To our delight, the Diels-Alder products 5a and 5b are isolated in good
diastereoselectivity and excellent enantioselectivity.12 This complexity generating reaction
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sets four contiguous stereocenters and allows access to novel functionalized chroman
derivatives, an important pharmacophore.13

(2)

In conclusion, we have developed a highly enantioselective Pd-catalyzed alkene
difunctionalization reaction involving the addition of two distinct nucleophiles, a process
which allows for the formation of complex chiral molecules from relatively simple starting
materials. Future work will focus on expansion of the scope to include other types of
nucleophiles and Diels Alder partners, improvement of reaction conditions to reduce the
required amount of the second nucleophile, and development of a deeper understanding of the
mechanistic details of the reaction.
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Scheme 1.
Avoiding β-hydride elimination to develop Pd-catalyzed alkene difunctionalization reactions.
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Table 2

Evaluation of scope.

Reaction conditions: 4 mol% Pd(MeCN)2Cl2, 8 mol% CuCl, 14 mol% (S)-iPrQuinox, 40 mol% KHCO3, 50 eq. NuH, balloon O2, rt, 0.1 M, 0.50 mmol

scale. er for major diastereomer determined by GC, HPLC or SFC using a column equipped with a chiral stationary phase. dr determined by GC or 1H
NMR. Major diastereomer confirmed by single crystal X-ray analysis of entry 1 and absolute configuration determined by Mosher ester analysis of entry
9.

a
25 eq. of NuH.

b
4 mol% Pd[(S)-iPrQuinox]Cl2, 8 mol% Cu[(S)-iPrQuinox]Cl2, 10 mol% NaHCO3.

c
30 °C, 2 eq. of NaN3.

d
er of minor diastereomer is 92:8.

e
1 eq. NaHCO3
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