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A B S T R A C T

Purpose
As a result of the questionable risk-to-benefit ratio of adjuvant therapies, stage II melanoma is
currently managed by observation because available clinicopathologic parameters cannot
identify the 20% to 60% of such patients likely to develop metastatic disease. Here, we
propose a multimarker molecular prognostic assay that can help triage patients at increased
risk of recurrence.

Methods
Protein expression for 38 candidates relevant to melanoma oncogenesis was evaluated using
the automated quantitative analysis (AQUA) method for immunofluorescence-based immuno-
histochemistry in formalin-fixed, paraffin-embedded specimens from a cohort of 192 primary
melanomas collected during 1959 to 1994. The prognostic assay was built using a genetic
algorithm and validated on an independent cohort of 246 serial primary melanomas collected
from 1997 to 2004.

Results
Multiple iterations of the genetic algorithm yielded a consistent five-marker solution. A favorable
prognosis was predicted by ATF2 ln(non-nuclear/nuclear AQUA score ratio) of more than –0.052,
p21WAF1 nuclear compartment AQUA score of more than 12.98, p16INK4A ln(non-nuclear/nuclear
AQUA score ratio) of � �0.083, �-catenin total AQUA score of more than 38.68, and fibronectin
total AQUA score of � 57.93. Primary tumors that met at least four of these five conditions were
considered a low-risk group, and those that met three or fewer conditions formed a high-risk group
(log-rank P � .0001). Multivariable proportional hazards analysis adjusting for clinicopathologic
parameters shows that the high-risk group has significantly reduced survival on both the discovery
(hazard ratio � 2.84; 95% CI, 1.46 to 5.49; P � .002) and validation (hazard ratio � 2.72; 95% CI,
1.12 to 6.58; P � .027) cohorts.

Conclusion
This multimarker prognostic assay, an independent determinant of melanoma survival, might be
beneficial in improving the selection of stage II patients for adjuvant therapy.

J Clin Oncol 27:5772-5780. © 2009 by American Society of Clinical Oncology

INTRODUCTION

Adjuvant therapy is the standard of care for many
low-stage cancers that can be completely resected
with tumor-free margins. However, for some
other cancers, the lack of effective and safe adju-
vant therapy leads to an excess of mortality di-
rectly related to the development of metastatic
disease in patients assumed to have undergone a
complete resection of their malignancy. One im-
portant example is cutaneous malignant mela-
noma, the sixth most common cancer in the
United States.1 Although more than 80% of new
cases are still localized to the skin1 where a wide
local excision should be curative in the setting of a

negative sentinel lymph node biopsy, the unfavor-
able risk-to-benefit ratio of available adjuvant
regimens advocates caution when administering
such agents to individuals with stage I to IIA and
even stage IIB or IIC disease, where high-dose
interferon alfa-2b is currently approved by the US
Food and Drug Administration in the adjuvant
setting.2 Consequently, 20% of these patients will
develop metastases and die of their disease within
10 years, with more than 30% 10-year mortality
among patients with T3 and T4 tumors.3 Devel-
opment of a prognostic tool that could selectively
triage the subset of stage II patients at high risk of
recurrence for adjuvant therapy could potentially
lower the burden of untreatable metastatic cancer
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and enable us to selectively treat those patients who are more likely
to develop distant metastatic disease.

Nine clinicopathologic prognostic markers have been identified
and incorporated into clinically validated outcome risk stratification
models.3,4 However, these do not account for all of the observed
variability associated with melanoma-related survival. Immunohisto-
chemistry (IHC) is a widely accepted and well-documented method
for characterizing patterns of protein expression in formalin-fixed,
paraffin-embedded samples while preserving tissue and cellular archi-
tecture.5 Although no IHC marker has become standard of care, new
work may suggest the inclusion of Ki-67.6 Our recent systematic
review of melanoma IHC data shows that individual contributions
of IHC markers to overall prognosis are of narrow statistical sig-
nificance and thus unlikely to demonstrate broad clinical utility7 or
see wide adoption.

Here, we describe the generation of an independently significant,
multimarker prognostic model for melanoma using genetic algo-
rithms on a subset of 38 candidate proteins assessed on a cohort of 192
primary melanomas. Our model shows two prognostic groups (low
risk and high risk), created from five markers, that were successfully
validated as significant independent prognostic factors in a second
cohort of 246 primary melanomas. These data demonstrate the poten-
tial for multimarker assays in improving melanoma prognostic assess-
ment and warrant a prospective, randomized, controlled melanoma
prognostic study. This test could be a valuable tool to help determine
which sentinel node–negative stage II melanoma patients should seek
adjuvant therapy or other aggressive management strategies.

METHODS

Patients and Tumor Samples

Seven hundred thirty-seven tumor samples from three nonoverlapping
series of patients with cutaneous melanoma were analyzed for protein expres-
sion. The Yale Melanoma Discovery Cohort consisted of 192 white patients
who underwent resection of a primary invasive cutaneous melanoma at Yale-
New Haven Hospital during 1959 to 1994 for whom the surgical specimen was
not exhausted during diagnosis and for which follow-up information is avail-
able. The Yale Melanoma Validation Cohort included 246 patients with serial
Clark level III to V cutaneous melanoma who underwent sentinel lymph node
biopsy by a single surgeon during 1997 to 2004.8 The Yale Metastatic Series
includes 299 unique subcutaneous metastases, lymph node metastases, or
visceral metastases occurring in patients previously diagnosed with cutaneous
melanoma and surgically removed at Yale-New Haven Hospital during 1959
to 1994 (n � 198) or during 1995 to 2002 (n � 101). For the primary
melanomas, clinical data describing patient demographics, date of diagnosis,
clinical course, and follow-up through August 1, 2007 were obtained after a
comprehensive review of the medical record, the archives of the Connecticut
Tumor Registry, and, if applicable, the State of Connecticut Vital Records. This
study was approved by the Yale Human Investigations Committee.

Tissue Microarray Construction, IHC, and Automated Image

Acquisition and Analysis

Formalin-fixed, paraffin-embedded blocks were retrieved from the Yale
Pathology Archives, and 0.6-mm tissue microarrays (TMAs) were con-
structed according to the published method.9 The discovery TMA included
single cores from the 192 primary melanomas, the 299 metastases, and a series
of controls. The validation TMA included two-fold redundant cores in sepa-
rate blocks from the 246 patients plus a random selection of 60 individuals
from the discovery series to facilitate normalization of the validation array.
Fluorescence-based immunohistochemical staining was performed by using
the automated quantitative analysis (AQUA) technology as previously de-

scribed.10,11 Using this method, target antigen expression is automatically
determined, blinded to any a priori clinical information, as the sum of inten-
sities from the Cy5 channel in all pixels within a compartment defined by S100
staining divided by the number of pixels within that compartment (see Ap-
pendix, online only, for details).

Statistical Analysis

Cores whose tumor mask covered less than 5% of the total histospot area
were dropped from further analysis. For individuals represented by multiple
cores on the TMA, AQUA scores were averaged before analysis. To normalize
the AQUA scores between the discovery and validation cohorts, a regression
equation was calculated for the set of 60 samples spotted on both arrays, and
the mean values for the validation cohort were adjusted according to the
regression equation.

To develop a multimarker prognostic model from the discovery cohort
data, a genetic algorithm using standard methodology12,13 within the X-tile
software suite14 was used (see Appendix). Bivariate and survival analyses were
performed using SAS version 9.1.3 and Statview 5.0 (SAS Institute, Cary, NC),
and adjustments for multiple comparisons were performed using the standard
Bonferroni method.

RESULTS

Patient Characteristics

The distribution of demographic and clinicopathologic charac-
teristics for both the discovery and validation cohorts is presented in
Table 1. In addition to the longer follow-up time (P � .0001), the
discovery cohort displayed overall thicker tumors (P � .01), a more
balanced sex distribution (P � .04), a higher prevalence of ulcerated
melanomas (P � .01), and fewer superficial spreading melanomas
(P � .04) than the validation cohort.

Clinicopathologic Correlates of Candidate

Marker Expression

Thirty-eight unique protein markers were assayed by AQUA on
the discovery cohort (n � 192) and, for comparison, the metastatic
series (n � 299). Exclusion of individual tumors as a result of random
failure for individual histospots and attrition of samples as a result of
exhaustion of the arrayed tumor core resulted in less than 100% of
tumor samples available for analysis from each assay. Only the subset
of 20 markers with missingness completely at random was included in
subsequent analyses.

Associations between levels of protein expression and tumor
progression were evaluated by the Mann-Whitney U test (Appendix
Table A2, online only). After adjustment for multiple comparisons,
levels of fibronectin, Ki-67, and p21WAF1 and the ratios for both ATF2
and p16INK4A were significantly elevated, whereas Hey1, HDM2,
N-cadherin, nuclear p16INK4A, and non-nuclear ATF2 were signifi-
cantly decreased among the metastases compared with the primary
tumors (P � .0025).

To determine the independent crude and adjusted effects of each
marker on melanoma-specific mortality, the AQUA scores or calcu-
lated ratios were divided into quartiles, and the hazard ratios and the
associated P values were calculated using Cox proportional hazards
modeling (Appendix Table A4, online only). Using these cut points,
five markers, one that increased risk with increasing value (p16INK4A

ratio, P � .04) and four that decreased risk with increasing value
(ATF2, P � .001; �-catenin, P � .04; N-cadherin, P � .001; p16INK4A,
P � .047), were significant at P � .05 on univariate analysis, but only
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two markers, ATF2 and N-cadherin, remained significant after adjust-
ment for multiple comparisons (P � .0025).

Multivariable Cox proportional hazards modeling included ad-
justment for age at diagnosis, sex, Breslow thickness (millimeters),
stage at diagnosis, presence of microsatellitosis, sun exposure to ana-
tomic site, and receipt of systemic therapy. Two of the five markers
significant on univariate analysis (�-catenin, P � .04; p16INK4A,
P � .04) retained both their significance at P � .05 and directionality
of effect after adjustment for clinicopathologic parameters. Three
additional markers that were not significant on crude analysis became

significant at P � .05 on multivariable analysis (�-catenin, p27/KIP1,
and tenascin-C).

Constructing a Genetic Algorithm–Based Multimarker

Prognostic Model

Because the power of multiplexed biomarker assays is thought to
be greater than that obtainable with any single marker, we sought to
identify a robust prognostic indicator by combining information from
all 20 available markers, regardless of whether a significant indepen-
dent association with progression or prognosis was obtained, using

Table 1. Demographics and Clinical Characteristics of the Yale Melanoma Discovery and Validation Cohorts

Characteristic

Discovery Cohort
(n � 192)

Validation Cohort
(n � 246)

PNo. % No. %

Follow-up time for censored individuals, years � .0001�

Mean 9.50 4.05
Standard deviation 9.14 2.12

Breslow thickness, mm .01�

Mean 2.42 1.95
Standard deviation 2.01 1.78

Age at diagnosis, years .34
Mean 57.77 59.28
Standard deviation 15.65 16.76

Sex .04�

Male 96 50.0 147 59.8
Female 96 50.0 99 40.2

Stage at diagnosis NA
Localized 160 84.2 246 100
Regional spread 16 8.4 0 0
Distant metastases 14 7.4 0 0

Ulceration .01�

Absent 135 70.3 198 80.5
Present 57 29.7 48 19.5

Tumor-infiltrating lymphocytes .09
Nonbrisk 150 78.5 208 84.9
Brisk 41 21.5 37 15.1

Histologic subtype .04�

Superficial spreading 127 66.1 132 73.7
Nodular 30 15.6 24 13.4
Lentigo maligna 8 4.2 4 2.2
Acral lentiginous 11 5.7 1 0.6
Other 16 8.3 18 10.1

Chronically sun-exposed anatomic site† .14
No 95 49.7 105 42.7
Yes 96 50.3 141 57.3

Received any nonsurgical therapy .37
No 153 79.7 201 83.1
Yes 39 20.3 41 16.9

Microsatellitosis NA
Absent 149 77.6 0 0
Present 43 22.4 0 0

Positive sentinel lymph node biopsy NA
No 0 0 211 87.6
Yes 0 0 30 12.4

NOTE. Numbers may not sum to total because of missing values; percentages may not sum to 100% as a result of rounding.
Abbreviation: NA, not applicable.
�Significant at P � .05.
†Anatomic location was dichotomized as chronically sun exposed (face, scalp, neck, arms, legs, and nonacral lentiginous lesions of hands and feet) and

non–chronically exposed (chest, back, abdomen, groin, and hand and foot acral lentiginous lesions).
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genetic algorithms. Our selected model, obtained in each of the five
independent iterations, yielded a log-rank �2 of 24.27 (P � 1.5 �
10�6) and consisted of the following five markers and associated cut
points: ATF2 ratio more than –0.052, �-catenin more than 38.68,
fibronectin � 57.93, p16INK4A ratio � –0.083, and p21WAF1 more
than 12.98.

The Kaplan-Meier curves for the four classes obtained from the
genetic algorithm are presented in Figure 1A. On the basis of the
similar survival experiences of the groups with � two or three condi-
tions and those with four or five conditions, we further simplified our
model to the following two groups: a low-risk group with four or five
marker conditions being met and a high-risk group with less than four
marker conditions being met (Fig 1B). Crude and multivariable sur-
vival estimates were calculated for the multimarker predictor and the
clinicopathologic covariates using Cox proportional hazards model-

ing (Table 2). In our final multivariable model, the high-risk group
demonstrated a nearly three-fold increased risk of mortality
(P� .002) compared with the low-risk group. Other variables remain-
ing significant in the multivariable model included stage at diagnosis
and receipt of nonsurgical therapy (P � .01), with Breslow thickness
trending toward significance (P � .06).

Assessment of Multimarker Model Reproducibility in

the Validation Cohort

To determine the prognostic breadth and strength of our genetic
algorithm-based multimarker predictor, we performed the assay on
the independent validation TMA, normalizing the two builds as de-
scribed. Complete AQUA data were obtained for 226 of the 246
eligible individuals, with 76 individuals (33.6%) meeting criteria for
the low-risk group and 150 (66.4%) belonging to the high-risk group.
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Fig 1. Kaplan-Meier estimates of
melanoma-specific mortality among the
129 Yale Melanoma Discovery Cohort par-
ticipants with complete data across the
five markers comprising the genetic algo-
rithm (GA) –based multimarker prognostic
assay according to algorithm-derived prog-
nostic score. (A) Survival curves drawn
according to number of prognostic condi-
tions met. (B) Survival curves for the di-
chotomized model describing low-risk
(four to five conditions met) or high-risk
(� three conditions met) groups.

Table 2. Crude and Multivariable-Adjusted Melanoma-Specific Mortality Hazard Ratios for the Genetic Algorithm–Based Multimarker Predictor in the Yale
Melanoma Discovery Cohort

Parameter

Univariate Analysis Multivariate Analysis

Hazard Ratio 95% CI P � Hazard Ratio 95% CI P

Genetic algorithm-based predictor � .0001† .002†
Low-risk group (4 or 5 conditions met) 1.00 1.00
High-risk group (� 4 conditions met) 3.88 2.16 to 6.94 2.84 1.46 to 5.49

Breslow thickness, mm 1.28 1.14 to 1.43 � .0001† 1.14 0.99 to 1.31 .06
Age at diagnosis, years 1.01 0.99 to 1.03 .41 1.01 0.99 to 1.03 .39
Sex .14 .14

Male 1.00 1.00
Female 0.68 0.41 to 1.14 0.66 0.38 to 1.14

Stage at diagnosis
Localized 1.00 1.00
Regional spread 3.54 1.72 to 7.30 .0006† 4.67 2.08 to 10.47 .0002†
Distant metastases 5.05 2.35 to 10.94 � .0001† 3.32 1.31 to 8.39 .01†

Chronically sun-exposed anatomic site .03† .24
No 1.00 1.00
Yes 0.56 0.33 to 0.95 0.70 0.39 to 1.26

Microsatellitosis .047† .63
Absent 1.00 1.00
Present 1.73 1.01 to 2.96 1.16 0.64 to 2.11

Receipt of nonsurgical therapy .0005† .008†
No 1.00 1.00
Yes 2.54 1.50 to 4.30 2.31 1.25 to 4.26

�P values were calculated according to the Wald method.
†Significant at P � .05.
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Notably, our predictor was independent of both Breslow thickness
(P � .41) and sentinel lymph node status (P � .52; Table 3). Our
predictor trended toward, but did not achieve, significance for
melanoma-specific mortality in univariate analysis (Table 4). How-
ever, multivariable modeling that adjusted for Breslow thickness, age
at diagnosis, anatomic site, sentinel lymph node biopsy status, and
receipt of nonsurgical therapy revealed a significantly increased
melanoma-specific mortality for the high-risk group (adjusted hazard
ratio � 2.72; 95% CI, 1.12 to 6.58; P � .027; Table 4), consistent with
the possibility of negative confounding by clinicopathologic parame-
ters in the validation set. Our predictor is independent of sentinel
lymph node status, and the interaction between multimarker assign-
ment and sentinel lymph node status was not significant (P � .78).

Although the multivariate analysis of the validation set is
statistically significant (Table 4), the Kaplan-Meier analysis of the
validation set is not (Fig 2A) most likely because of the confound-
ing effect of nonuniform treatment. McShane et al,15 in the Report-
ing Recommendations for Tumor Marker Prognostic Studies
(REMARK) guidelines, point out the value of the multivariate
analysis over the log-rank assessment performed on the Kaplan-

Meier data. This work is an example of the multivariate analysis
adjusting for confounding to show significance, as anticipated by
the REMARK criteria. However, the Kaplan-Meier plot is shown to
help convey the data in a more simple form related to the envi-
sioned utility of the test in sentinel node–negative patients. In this
population, the high-risk group has only a 60% 10-year survival
rate compared with a 10-year survival rate of more than 90% in the
low-risk group (Fig 2B, log-rank P � .09).

DISCUSSION

Over the last few years, multimarker molecular models have been
constructed to supplement available clinicopathologic parameters for
refining prognosis in some tumor types. Here, we report on a multi-
marker melanoma prognostic assay with potential for translation into
the clinic that may be especially useful for identifying the subset of
stage II melanoma patients most appropriate for supplemental ther-
apy. Presently, up to 40% of patients with stage IIA or IIB melanoma
will die of their disease within 10 years of diagnosis.3,16 Because of the
poor risk-to-benefit ratio and toxicity of current adjuvant therapy
regimens,2 these are not often administered in this population. We
believe there is a significant clinical need to stratify this population at
the time of diagnosis into a subset of stage II patients with the highest
risk for recurrence and a lower risk group. The goal of this stratifica-
tion, using the test described here, would be to offer adjuvant inter-
vention or at least aggressive follow-up screening to high-risk stage II
patients. We believe this would improve the overall survival of these
vulnerable patients without exposing the remaining patients to the
risk of excessive toxicity; thus, this test has the potential to alter the
standard of care for management of melanoma. However, such an
approach would require prospective validation in the target (sentinel
node–negative) population.

To our knowledge, only one other prognostic multimarker mo-
lecular classifier for primary melanoma has been described specifying
a 254-gene classifier obtained from differential mRNA expression
profiling on a series of 83 snap-frozen samples.17 Although protein
expression by IHC was confirmed for the 23-gene subset with com-
mercially available antibodies, the authors only reported on their
marginal univariate and multivariate prognostic relationships. Al-
though this study is valuable, to date, the multimarker classifier has
not been validated on a second population. Additional molecular
classifiers of melanoma phenotype that integrate either somatic mu-
tation18 or gene expression information19 have been reported but have
not been evaluated for prognostic relevance. Efforts that use hierarchi-
cal clustering, which is valuable for classification, suffer from the
inabilities to both calculate error associated with a clustering run and
prospectively assign new patients to existing clusters without re-
executing the clustering, which risks reorganizing cluster assignment.
Assignment of new patients according to our genetic algorithm pro-
file, as demonstrated in our validation strategy, only requires simulta-
neous AQUA analysis of selected reference standards.

Assignment to the low-risk group requires elevated levels of over-
all �-catenin and nuclear p21WAF1, decreased levels of fibronectin, and
distributions that favor nuclear concentration for p16INK4A but cyto-
plasmic concentration for ATF2. Each of these assignments is consis-
tent with the previous literature for melanoma. Our data, as well as

Table 3. Bivariate Associations Between the Genetic Algorithm–Derived
Prognostic Indicator and Clinicopathologic Correlates of Melanoma

Outcome for the Yale Melanoma Validation Cohort

Parameter

Low-Risk
Group

(n � 76)

High-Risk
Group

(n � 150)

PNo. % No. %

Breslow thickness, mm .41
Mean 1.86 2.08
Standard deviation 1.73 1.89

Age at diagnosis, years .08
Mean 57.17 61.14
Standard deviation 15.66 16.57

Sex .12
Male 41 54.0 97 64.7
Female 35 46.1 53 35.3

Ulceration .39
Absent 63 82.9 117 78.0
Present 13 17.1 33 22.0

Tumor-infiltrating lymphocytes .94
Nonbrisk 64 84.2 126 84.6
Brisk 12 15.8 23 15.4

Histologic subtype .43
Superficial spreading 45 76.3 76 72.4
Nodular 7 11.9 16 15.2
Lentigo maligna 2 3.4 1 1.0
Acral lentiginous 1 1.7 0 0.0
Other 4 6.8 12 11.4

Chronically sun-exposed anatomic site .99
No 33 43.4 65 43.3
Yes 43 56.6 85 56.7

Received any nonsurgical therapy .50
No 60 80.0 123 83.7
Yes 15 20.0 24 16.3

Sentinel lymph node biopsy .52
Negative 64 85.3 129 88.4
Positive 11 14.7 17 11.6

NOTE. Numbers may not sum to total because of missing values; percent-
ages may not sum to 100% as a result of rounding.
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data from others,20,21 support that increased nuclear p16INK4A expres-
sion significantly improves melanoma prognosis in multivariable
modeling, consistent with its role in cell cycle inhibition.22 Although
specific cytoplasmic p16INK4A expression has been confirmed by mul-
tiple high-resolution imaging technologies,23,24 little is known about
its functional role or prognostic implications. Our data suggest that
a ratio that favors nuclear abundance contributes to improved cell
cycle control. A similar rationale can be suggested for elevated
nuclear p21WAF1; however, neither we nor others have shown a
significant effect for the marginal effects of nuclear p21WAF1 on
univariate25,26 or multivariate20,27 analysis. The requirement for a
higher proportion of cytoplasmic ATF2 is supported by the observa-
tion that although ATF2 possesses both nuclear export and nuclear
localization signals and shuttles between both locations, nuclear
heterodimerization with c-Jun and subsequent phosphorylation
of both subunits by MAP kinases are required for transcriptional
activation activity.28,29 Although we did not distinguish between
membranous cadherin-associated and cytoplasmic/nuclear Wnt
signaling–associated �-catenin, our association between improved

prognosis and elevated �-catenin is consistent with others.30,31 Finally,
our requirement for reduced fibronectin supports both tissue- and
cell-based observations that increased tumor-derived expression facil-
itates melanoma cell invasion and metastasis.32-34

This work suffers from a number of limitations. Perhaps the most
significant limitation is the relatively limited set of available markers
eligible for our analysis. Unlike nucleic acid arrays where tens of
thousands of genes can be interrogated in each experiment, we can
only assess one gene product at a time (although we have the advan-
tage of assessing hundreds of patients per experiment). Furthermore,
more than half of the markers initially considered for this study were
ultimately eliminated from our genetic algorithm as a result of
preferential attrition of longer surviving (typically thinner) mela-
nomas as a result of exhaustion of their tissue cores with higher cuts
of the TMA. Future replication of these results on parallel blocks of
the discovery TMA may both fill gaps and also provide useful
information regarding heterogeneity of marker expression. Al-
though we selected a broad range of candidate targets, the inherent
limitation of the candidategene approach omitted sufficient markers

Table 4. Crude and Multivariable-Adjusted Melanoma-Specific Mortality Hazard Ratios for the Genetic Algorithm-Based Multimarker Predictor in the Yale
Melanoma Validation Cohort

Parameter

Univariate Analysis Multivariate Analysis

Hazard Ratio 95% CI P � Hazard Ratio 95% CI P

Genetic algorithm-based predictor .14 .027†
Low-risk group (4 or 5 conditions met) 1.00 1.00
High-risk group (� 4 conditions met) 1.75 0.83 to 3.72 2.72 1.12 to 6.58

Breslow thickness, mm 1.20 1.11 to 1.31 � .0001 1.14 1.01 to 1.29 .029†
Age at diagnosis, years 1.03 1.00 to 1.05 .027 1.04 1.01 to 1.07 .007†
Sex .07 .10

Male 1.00 1.00
Female 0.51 0.25 to 1.06 0.52 0.24 to 1.14

Chronically sun-exposed anatomic site .20 .11
No 1.00 1.00
Yes 1.55 0.79 to 3.04 1.96 0.87 to 4.44

Sentinel lymph node biopsy status � .0001 .017†
Negative 1.00 1.00
Positive 4.41 2.23 to 8.71 2.78 1.20 to 6.47

Receipt of nonsurgical therapy � .0001 .0001†
No 1.00 1.00
Yes 7.09 3.60 to 13.96 4.65 2.11 to 10.24

�P values were calculated according to the Wald method.
†Significant at P � .05.
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melanoma-specific mortality for the di-
chotomized model describing favorable or
unfavorable profiles among (A) all 226
participants of the Yale Melanoma Valida-
tion Cohort scored completely for the mul-
timarker prognostic assay, and (B) the 193
members of the Yale Melanoma Valida-
tion Cohort who are sentinel lymph node
negative (stage II melanoma).
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from some cancer progression pathways such as evading apoptosis,
sustained angiogenesis, orinsensitivity to antigrowth signals.35 Addi-
tionally, several proteins previously shown by others to have signifi-
cant independent marginal associations with melanoma outcome,
such as MMP-2,36,37 osteopontin,38 MCAM/MUC18,39,40 and AIB-
1,41 were not assayed (in some cases because of antibody validation
failure). Another theoretical weakness of this approach is that our
genetic algorithm equally weighted each protein’s individual contri-
bution. This is in contrast to a commercially available breast cancer
diagnostic (Oncotype DX; Genomic Health, Redwood City, CA)
where individual marker contribution is weighted according to its
relative marginal contribution to the overall model.42 The genetic
algorithm approach risks bias in group assignment should the pres-
ence or absence of one specific marker disproportionately drive as-
signment into one of the algorithm states. However, as shown earlier,
we found that this bias did not occur in our discovery phase.

Strengths of our approach include the use of equally large and
robust, yet completely independent, training and validation study
populations as well as choice of a computational method that
supports the prospective evaluation of new patients according to
its calculated criteria. Given that we were able to replicate a signifi-
cant, independent association between our multimarker prognostic
assay and melanoma-specific mortality after adjustment for relevant
clinicopathologic covariates in our independently collected valida-
tion set, we believe these data could support the use of this test to
assist management of patients with sentinel node–negative mela-
noma. For example, a high-risk test result in a sentinel node–negative
patient might prompt that patient to choose adjuvant therapy. Al-
though the data on the efficacy of adjuvant interferon are controver-
sial,43 other adjuvant therapies such as ipilimumab and vaccine
therapies are currently under investigation, and these studies typically
include only stage III patients. However, high-risk stage II patients
identified by improved prognostic assays such as this should also be
considered for these studies. Prospective validation is planned in a
broader geographic constituency to determine whether this method

should become part of the routine work-up for patients with malig-
nant melanoma.
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37. Väisänen AH, Kallioinen M, Turpeenniemi-
Hujanen T: Comparison of the prognostic value of
matrix metalloproteinases 2 and 9 in cutaneous
melanoma. Hum Pathol 39:377-385, 2008

38. Rangel J, Nosrati M, Torabian S, et al: Os-
teopontin as a molecular prognostic marker for
melanoma. Cancer 112:144-150, 2008

39. Pacifico MD, Grover R, Richman PI, et al: De-
velopment of a tissue array for primary melanoma with
long-term follow-up: Discovering melanoma cell adhe-
sion molecule as an important prognostic marker.
Plast Reconstr Surg 115:367-375, 2005

40. Pearl RA, Pacifico MD, Richman PI, et al:
Stratification of patients by melanoma cell adhesion
molecule (MCAM) expression on the basis of risk:
Implications for sentinel lymph node biopsy. J Plast
Reconstr Aesthet Surg 61:265-271, 2008

41. Rangel J, Torabian S, Shaikh L, et al: Prognos-
tic significance of nuclear receptor coactivator-3
overexpression in primary cutaneous melanoma.
J Clin Oncol 24:4565-4569, 2006

42. Paik S, Shak S, Tang G, et al: A multigene
assay to predict recurrence of tamoxifen-treated,
node-negative breast cancer. N Engl J Med 351:
2817-2826, 2004

43. Ascierto PA, Kirkwood JM: Adjuvant therapy
of melanoma with interferon: Lessons of the past
decade. J Transl Med 6:62, 2008

■ ■ ■

Melanoma Model to Predict Recurrence

www.jco.org © 2009 by American Society of Clinical Oncology 5779



Glossary Terms

Confounding: Confounding variables are extraneous vari-
ables in a statistical model that are associated/correlated with
both the independent and dependent variables but are not on the
causal pathway between independent and dependent variables.
When confounding variables are present, crude (unadjusted)
statistical models describing the association between independent
and dependent variables are biased (i.e., wrong) as the risk esti-
mate includes the effect of the confounding variable as well (Type
1 error). As a result, to properly describe the relationship between
independent and dependent variables, a multivariable model that
includes both the independent variable and all relevant con-
founding variables as predictors must be executed.

Immunofluorescence: Refers to laboratory methods that
combine the use of antibody reagents to detect the presence of
specific biomolecule antigens in situ with a detection system that
uses fluorescent molecules to visualize the localization of the tar-
get antigen/antibody complex.

Proportional hazards: Semiparametric approach to sur-
vival analysis developed by Cox in 1972. Unlike product-limit
(Kaplan-Meier) survival analyses that are restricted to categorical
predictor variables and do not produce a risk estimate, propor-
tional hazards models can accommodate continuous and ordinal
variables as well as allow for the inclusion of multiple predictor
variables to compute adjusted risk estimates. Proportional haz-
ards models are based on the fundamental premise that all indi-
viduals have the same baseline hazard that varies as a function of
time [�(t)] but that exposure to the independent variable changes
the hazard by a fixed value [h(x)]. What is parameterized in the
model is the value of this fixed effect per unit increase of the pre-
dictor variable whereas the value of �(t) remains uncharacterized.

Sentinel lymph node: The lymph node that is anatomically
located such that it is the first site of lymph drainage from the
location of the primary tumor. It is suspected and assumed that if
a malignancy is going to disseminate via the lymphatic system,
metastases will first be evident in the sentinel lymph node. In this
manner, this lymph node is said to stand guard or sentinel over
the metastatic state of the tumor. For many cancers, the sentinel
lymph node is biopsied as part of the staging process and pres-
ence of macro- or micrometastases in the sentinel lymph node is
a negative prognostic factor.

Genetic algorithm: Genetic algorithms are a type of iterative
mathematical modeling technique used to find the optimal com-
binatorial state given a set of parameters of interest. Usage of the
term “genetic” refers to the mechanism of the algorithm where,
through the process of iteration, individual models “evolve” over
time and compete with each other in a Darwinian fashion

where the fittest model emerges as the solution, similar to how chromo-
somes evolve to create speciation. Given a set of parameters of interest, a
baseline model is fit from a subset of the eligible variables, each dichoto-
mized about a random cut point. Then, through successive iterations,
the model is altered by either swapping one of the included parameters
(a crossover) or by changing the dichotomization cut point for an in-
cluded parameter (a mutation) and the model’s fitness is reassessed.
After several million iterations, the model with the best goodness of
fit is selected.

Immunohistochemistry (IHC): The application of antigen-
antibody interactions to histochemical techniques. Typically, a tissue
section is mounted on a slide and is incubated with antibodies (poly-
clonal or monoclonal) specific to the antigen (primary reaction). The
antigen-antibody signal is then amplified using a second antibody
conjugated to a complex of peroxidase-antiperoxidase (PAP), avidin-
biotin-peroxidase (ABC) or avidin-biotin alkaline phosphatase. In
the presence of substrate and chromogen, the enzyme forms a col-
ored deposit at the sites of antibody-antigen binding. Immunofluo-
rescence is an alternate approach to visualize antigens. In this
technique, the primary antigen-antibody signal is amplified using a
second antibody conjugated to a fluorochrome. On UV light absorption,
the fluorochrome emits its own light at a longer wavelength (fluorescence),
thus allowing localization of antibody-antigen complexes.

Prognostic marker: A marker that predicts the prognosis of a
patient (eg, the likelihood of relapse, progression, and/or death) in-
dependent of future treatment effects. A factor can be both prognos-
tic and predictive.

Prognostic factor: A measurable patient characteristic that is
associated with the subsequent course of disease (whether or not
therapy is administered). The identification of a prognostic factor
does not necessarily imply a cause-and-effect relationship. However,
within a suitable outcome model, the measurement of a prognostic
factor contributes to an estimate of an outcome probability (eg, the
probability of disease-free survival within a given time interval).

Tissue microarray (TMA): Used to analyze the expression of
genes of interest simultaneously in multiple tissue samples, tissue
microarrays consist of hundreds of individual tissue samples placed
on slides ranging from 2 to 3 mm in diameter. Using conventional
histochemical and molecular detection techniques, tissue microar-
rays are powerful tools to evaluate the expression of genes of interest
in tissue samples. In cancer research, tissue microarrays are used to
analyze the frequency of a molecular alteration in different tumor
type, to evaluate prognostic markers, and to test potential
diagnostic markers.
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