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Bandit solutions provide unified ethical models for
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As electronic medical records enable increasingly ambitious studies
of treatment outcomes, ethical issues previously important only to
limited clinical trials become relevant to unlimited whole popula-
tions. For randomized clinical trials, adaptive assignment strategies
are known to expose substantially fewer patients to avoidable
treatment failures than strategies with fixed assignments (e.g.,
equal sample sizes). An idealized adaptive case—the two-armed
Bernoulli bandit problem—can be exactly optimized for a variety of
ethically motivated cost functions that embody principles of duty-
to-patient, but the solutions have been thought computationally
infeasible when the numbers of patients in the study (the “hori-
zon”) is large. We report numerical experiments that yield a heuris-
tic approximation that applies even to very large horizons, and we
propose a near-optimal strategy that remains valid even when the
horizon is unknown or unbounded, thus applicable to comparative
effectiveness studies on large populations or to standard-of-care
recommendations. For the case in which the economic cost of treat-
ment is a parameter, we give a heuristic, near-optimal strategy for
determining the superior treatment (whether more or less costly)
while minimizing resources wasted on any inferior, more expen-
sive, treatment. Key features of our heuristics can be generalized
to more complicated protocols.

evidence-based medicine | multiarmed bandit | statistical sampling |
Bernoulli process | outcomes research

A lthough randomized clinical trials are the gold standard
for establishing the effectiveness of medical treatments,

it is widely recognized that they raise nontrivial ethical issues.
Although they seek to demonstrate an intervention’s effective-
ness at a high level of statistical significance, randomized trials
will always assign some patients to an inferior treatment and they
will often assign patients to a treatment for which there is already
partial evidence of its inferiority. In this respect, clinical trials are
allowed deviations from the physician’s duty, “to do what is best
for the patient” (1). That clinical trials are required to have inde-
pendent data and safety monitoring boards (2) with the power to
review partial data and recommend early termination of the trial
is an indicator of inherent ethical discomfort. The lack of a uni-
form consensus on protocols governing early stopping also points
to unsettled ethical issues, though there is no shortage of sensible
recommendations (3–5).

After a clinical trial is over, the ethical nuances and the
unrecorded discussions of its safety monitoring boards are for-
gotten with time. However, as health outcomes research enabled
by electronic medical records becomes common (6), compara-
tive effectiveness research (CER), which is logically, if not by
name, a kind of clinical trial (7), will extend the duration of ethical
questions, and the number of patients affected by such questions,
almost without bound. It therefore seems worth revisiting these
questions, with a view toward finding approaches that are ethically
and statistically justified in the limit Mh (the “horizon,” or number
of patients in a trial) → ∞.

Response-adaptive trials, often Bayesian in approach, have
long been suggested as statistically more efficient and ethically

better-grounded alternatives to standard experimental designs,
such as equal allocations to experimental and control thera-
pies (8–13). In response-adaptive trials, partial data inform not
just “circuit-breaker” early stopping decisions, but also affect,
by defined statistical protocols, such things as the assignment of
patients to treatments, dosages, and so forth.

In this paper, we take as an idealized model the Bernoulli-
outcome two-armed bandit problem. Multiarmed bandit prob-
lems, named after a metaphorical image of a slot machine with
multiple handles, have been known for many decades (14–17).
Bandit problems exemplify the tradeoff between the cost of
gathering information and the benefit of exploiting information
already gathered—the so-called “exploration versus exploitation
dilemma”.

In the example used in this paper, there are two treatments, A
and B, which have respective (unknown) success probabilities a
and b with 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. In a clinical trial, patients
are assigned in turn to one or the other treatment. The Bernoulli-
valued outcomes for all previous patients, success or failure, are
assumed to be known as each assignment is made. The questions
are how best make the assignments, and, as the central issue for
this paper, what should “best” mean in a context involving both
ethical responsibilities and the limit M → ∞? Generalizations of
this idealized model to more realistic cases (e.g., where the out-
comes are not immediately known) and to cases where the cost of
treatment is also a relevant variable, are discussed in Numerical
Experiments and Heuristics and Discussion.

Methods
State Variables. At any point in time, under the model assump-
tions, our total knowledge consists of four integers, the number
of successes and failures for, respectively, treatments A and B, a
lattice point in four dimensions,

m ≡ (mA, m̄A, mB, m̄B). [1]

Here, bars denotes failures. Our state of knowledge of the
unknown success rates a and b at any time is captured by the
(Bayesian) beta distributions

P(a|m) = 1
B(mA + 1, m̄A + 1)

amA (1 − a)m̄A

P(b|m) = 1
B(mB + 1, m̄B + 1)

bmB (1 − b)m̄B , [2]

where B is the beta function. Eq. 2 assumes uniform priors on a
and b in the absence of any data. The number of patients M treated
at any point is

Author contributions: W.H.P. designed research, performed research, contributed new
reagents/analytic tools, analyzed data, and wrote the paper.

The author declares no conflict of interest.

Freely available through the PNAS open access option.

See Commentary on page 22037.
1E-mail: wpress@cs.utexas.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0912378106/DCSupplemental.

www.pnas.org / cgi / doi / 10.1073 / pnas.0912378106 PNAS December 29, 2009 vol. 106 no. 52 22387–22392

www.pnas.org/cgi/content/full/0912378106/DCSupplemental
www.pnas.org/cgi/content/full/0912378106/DCSupplemental


M ≡ MA + MB ≡ mA + m̄A + mB + m̄B, [3]

where we have also defined totals MA and MB for each treatment.
We may view M as the norm of m. Expressing our knowledge by
means and variances,

μA|m ≡ mA + 1
MA + 2

, σ2
A|m ≡ μA|m(1 − μA|m)

MA + 3
[4]

(and correspondingly for B). Every point m has exactly four pos-
sible successor states, reached by the treatment of exactly one
additional patient, and exactly four predecessor states. We denote
these as m(i±) (see the SI Appendix). We write m0 ≺ m if m is a
successor state of m0 (not necessarily an immediate successor),
and similarly, m0 � m.

Strategies. A strategy tells us how to assign the next patient to
treatment A or B given that our current state is m. It is thus a
labeling of every lattice point by a value r,

rm ≡ Prob (A is assigned | m), 0 ≤ rm ≤ 1. [5]

Although we define r as a probability, it will in most cases turn
out to be either 0 or 1 and thus deterministic. A more symmetric
notation is

sm ≡ 2rm − 1, −1 ≤ sm ≤ +1 [6]

so that r = 0 or 1 corresponds respectively to s = −1 or +1. We
refer to whole strategies as r ≡ {rm} or s ≡ {sm}.

Given a strategy r, and a starting point m0 [often (0, 0, 0, 0) but
not always], and a study size or horizon Mh, a distribution of paths
through the lattice is defined. Namely, at each step along a path,
the strategy r defines whether the next patient is assigned to A
or B, and the probability a or b generates that patient’s outcome.
We proceed by incrementing M while M ≤ Mh, the horizon, then
stop. An increasing path through the lattice is thus the history of a
clinical trial on Mh patients. We denote the probability that a path
that goes through m0 passes through a point m by p(m|a, b, r, m0).

Total and Patient-Specific Cost Functions. For an optimal strategy
to have meaning, we must have a cost function on strategies. We
take this to be the expectation of the sum over patients of a cost
function defined for each patient. We denote this patient-specific
cost function by c(m|a, b, r). Also, we denote expectations over the
product distribution P(a|m)P(b|m) by angle brackets, 〈 〉m. Then
the total cost C of a strategy r for a trial with starting point m0 and
horizon Mh is

C(m0|r, Mh) =
〈M<Mh∑

m
m0

c(m|a, b, r)p(m|a, b, r, m0)

〉
m0

. [7]

Here the outer expectation brackets are necessary because the
values of a and b are unknown, but at each m0 we can know
expectations based on the current state. Already, Eq. 7 is an ethics-
motivated choice, because it excludes the possibility of evaluating
a strategy by anything except its effect on patients (summed and
in expectation). We will say that this kind of cost function is util-
itarian. (We nickname ethical principles in boldface, and specific
cost models, below, in italics.)

Interestingly, it is straightforward, though not always computa-
tionally tractable, to find the optimal strategy r for any patient-
specific cost function c(m|a, b, r), that is, the labeling rm of the
lattice that minimizes C(m0|r, Mh) (18), (see the SI Appendix).
The solution, Eq. S7, has the form of backward recurrence for
the cost C(m0|r, Mh) in terms of the four costs C(m(i+)

0 |r, Mh) with
i = 1, 2, 3, 4. This can be started at the horizon Mh with

C(m0|r, Mh) ≡ 0 when M ≥ Mh. [8]

If at each point we locally choose rm to minimize C, then the recur-
rence guarantees that each point will acquire the globally smallest
cost C to the horizon, so we get an optimal strategy r.

We do not need to start an optimal path at the zero-data origin
(0, 0, 0, 0). By its construction, the same strategy is optimal from
any starting m0. So, we can have our choice of any prior states
of knowledge that are adequately represented by Eq. 2 (Bayesian
conjugate priors).

The computational workload implied by Eq. S7 grows in time
and space as O(Mh

4), although parallelization and other optimiza-
tions are possible (19). However, for cases of interest, we will
adduce from numerical experiment a fast heuristic that closely
approximates the optimal solution for both moderate and very
large horizon Mh. This strategy is in contrast to the previous litera-
ture, in which only the asymptotic behavior of proposed strategies,
themselves not necessarily optimal, is at best rigorously bounded
(20, 21).

Ethical Principles and Specific Models
The imposition of ethical constraints beyond utilitarian constrains
possible choices for the patient-specific cost function c(m|a, b, r).
One principle can be that the cost assigned to a patient should
not depend explicitly on where they are in the study or on the
assignments made for other patients. That is,

c(m|a, b, r) = c(a, b, rm). [9]

This principle excludes, e.g., cost functions that explicitly assign a
lower cost to distant, later failures than to earlier ones and also
cost functions that require explicitly greater sacrifices by earlier
patients. We name this principle equality. Yet another interpre-
tation of Eq. 9 is that it requires the cost function to be “ideal”,
in the sense that it depends explicitly only on the true success
probabilities a and b, even though these are unknown.

Discounting the future exponentially is incompatible with
equality. The considerable body of literature that bears on that
case, especially the Gittins Index and its extensions (14, 22, 23), is
thus not directly applicable here (24).

A more subtle ethical principle is that the assignment probabil-
ity r should enter c(a, b, r) only as an expectation over the decision
between A and B. This principle then requires

c(a, b, r) = rcA(a, b) + (1 − r)cB(a, b)
= ce(a, b) + sco(a, b), [10]

where cA and cB (or their algebraic equivalents ce and co, denoting
“even” and “odd”, cf. Eq. 18, below) are still free for us to choose.
(Recall that s ≡ 2r − 1.) The ethical meaning of this principle,
here termed outcomes, is to require that the cost depend only on
outcomes, as functions of the true values a and b, and not on some
other explicit function of the strategy r.

Taken together, equality and outcomes imply

C(m0|r, Mh) = (Mh − M)〈ce(a, b)〉m0

+
〈

co(a, b)
∑

m

.smp(m|a, b, r, m0)

〉
m0

. [11]

Because only the second term depends on s, we see that the opti-
mal strategy depends only on co(a, b), and not on ce(a, b), an
important simplification. Also, if Eq. 10 holds, then the recur-
rence Eq. S7 depends on rm completely linearly, so the optimal
strategy will always take the extreme values 0 or 1, so it will be
deterministic.

Examples of Cost Functions. We can express some standard cost
functions (24), and others, in the context of Eq. 10. Expected fail-
ures (EF) are costed as 1 − a if A is assigned, or 1 − b if B is
assigned, so
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c(a, b, r) = r(1 − a) + (1 − r)(1 − b)

= (
1 − 1

2 a − 1
2 b

) + 1
2 s(b − a). [12]

Expected successes lost (ESL) are costed only as the difference
in success rates and only when an inferior treatment is assigned.
That is,

c(a, b, r) =
{

(1 − r)(a − b) if a ≥ b
r(b − a) if a < b

= 1
2 |a − b| + 1

2 s(b − a). [13]

Although ESL may seem a “fairer” strategy than EF, we can see
immediately that the two are actually equivalent, because in both
cases co(a, b) = 1

2 (b − a). This “natural” choice for co is the one
that we model in more detail below. EF and ESL satisfy utilitarian,
equality, and outcomes.

Other cost functions are possible: Discounting the future at
some interest rate d was already mentioned. An example is
discounted ESL,

c(m|a, b, r) = 1
2 [|a − b| + s(b − a)] exp(−dM), [14]

which fails equality.
Expected inferior treatments (EIT) assigns a cost that depends

only on the sign of a − b, not its magnitude,

c(a, b, r) =
{

(1 − r) if a ≥ b
r if a < b

= 1
2 + 1

2 s sgn(b − a). [15]

We see that this cost function is not equivalent to ESL or EF but
that it does satisfy equality and outcomes. It fails, however, a dif-
ferent desirable property, indifference, namely that co(a, b) should
go to zero continuously as |a − b| → 0.

Dollar cost of failures (F$) is an example of a cost function
that includes the direct economic cost of treatment. Here each
treatment’s failures are costed at respective prices DA,B,

c(a, b, r) = r(1 − a)DA + (1 − r)(1 − b)DB

= 1
2 [DA(1 − a) + DB(1 − b)] + 1

2 s[DA(1 − a) − DB(1 − b)].
[16]

This function illustrates two further principles by failing both. We
can say that a cost function satisfies best treatment if

sgn[co(a, b)] = sgn(b − a). [17]

This principle says that assigning the better treatment should
always yield the lower patient-specific cost. F$ also fails the level
playing field principle that neither A nor B should be treated pref-
erentially, that is, that interchanging the values a and b should yield
a sign-flipped strategy,

ce(a, b) = ce(b, a), co(a, b) = −co(b, a). [18]

Best treatment and level playing field are separable principles.
For example, an interesting variant of Eq. 16 is the expected cost
of treatment of lost successes (CTLS),

c(a, b, r) =
{

(1 − r)(a − b)DB if a ≥ b
r(b − a)DA if a < b

= 1
2 [|a − b| + s(b − a)] ×

{
DB if a ≥ b
DA if b > a . [19]

This cost function assigns no cost to patients assigned to the supe-
rior treatment, or to successes of the inferior treatment; it assigns
the (dollar) cost of the inferior treatment to that treatment’s lost
successes. CTLS satisfies best treatment, but it does not satisfy
level playing field because it disfavors a treatment that is both
inferior and more costly. We return to CTLS below in the context

of comparative effectiveness research, for which it is a interesting
model.

Numerical Experiments and Heuristics
Consider the case co(a, b) = 1

2 (b − a), which is shared by EF
and ESL and which satisfies all of utilitarian, equality, out-
comes, indifference, best treatment, and level playing field. Eq. S7
easily computes the optimal strategy on a desktop computer for
Mh � 300, and another order of magnitude or so is possible on
a supercomputer (19). The solution for each value Mh labels the
integer simplex (nonnegative lattice constrained by ≤ Mh) with
r values 1 or 0 corresponding to patient assignments of A or B
respectively. A crucial question is What is the topology of the
solution? Are there regions with fine-grained patterns of interpen-
etrating 0’s and 1’s? Or are there large regions of 0’s, separated
from large regions of 1’s by sharp boundaries? And, if the lat-
ter, how many such regions are there, and how sharp are their
boundaries?

The Optimal Solution Has Sharp Boundaries. The perhaps surpris-
ing answer from numerical experiment is that (except possibly
for a set of small measure) the solution consists of a single four-
dimensional region each of 0’s and 1’s, separated by a single sharp
three-dimensional boundary surface. We have two lines of evi-
dence for this claim. First, constructively, we actually find a simple,
parameterized surface that very nearly separates the 0’s and 1’s.
This surface is defined by just two variables (out of three possible,
for fixed M)

t ≡ μA|m − μB|m√
σ2

A|m + σ2
B|m

, w0 ≡ MA − MB

MA + MB
. [20]

The salience of these variables is not unexpected: t is a t-value for
a − b, viewed as a random variable, and measures the statistical
significance with which a treatment is known to be superior; w0 is
the relative imbalance in sample sizes. As an example, Fig. 1 shows
all the optimal assignments for the values M = 50 and Mh = 100.
Simply by trial and error, it is not hard to find a slight modifica-
tion of w0, which even further sharpens the boundary and, as it
happens, also makes it almost a straight line,

w1 = w0

√
4μ′(1 − μ′), [21]

where μ′ ≡ 1
2 (μA + μB). This improved parameterization of the

sharp boundary is also illustrated in Fig. 1, where the best-fitting

Fig. 1. Optimal EF or ESL assignments of patient M = 50 in a clinical trial
with horizon Mh = 100 as a function of t and w0 (Left) or w1 (Right). The value
t measures the certainty with which one treatment is known to be superior,
whereas w0 or w1 parameterizes the imbalance of sample sizes. Blue indicates
assignment to A, red to B. The rather sharp boundary in (t, w0) coordinates is
even sharper, and more linear, in (t, w1) coordinates. A nearly optimal heuris-
tic strategy is to assign the apparently superior treatment (by t-value) unless
it is too overrepresented in the sample (by w1 value). The green line indicates
the divide.
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Fig. 2. A point can have 0–8 nearest neighbors sharing its strategy (of treat-
ment A or B). The relative frequency of each value is indicative of whether
the boundary between the two strategy regions is sharp or fuzzy. Comparing
exact solutions with a heuristic with a known sharp boundary, one sees that
the boundary for the exact solutions is apparently sharp.

straight-line boundary is shown in green. One could of course
locate the true boundary more precisely, but Eqs. 20 and 21 are
good enough for this paper.

A second, quite different line of evidence that the boundary
surface is sharp lies in neighbor statistics: for each point in the
interior of the simplex, we ask how many of its Cartesian near-
est neighbors have the same r value as it has. In four dimensions,
a plane boundary allows only values 4, 5, 6, 7, and 8. Sharp, but
slightly curved boundaries, can have smaller values, but only as
rare perturbations from the plane value 4. However, interpene-
trating 0’s and 1’s can also have values 3, 2, 1, or 0, generically.
Fig. 2 shows the results for a sample case Mh = 100. The first bar
in each group is for the heuristic linear relation between t and w1,
by definition a sharp surface. The second bar is the exact solu-
tion. (The remaining bars are discussed later in this section.) No
evidence of an excess of counts in the range 0–3 is seen, and the
detailed statistics of the exact solution are indeed very close to
that of the sharp-boundaried heuristic. Note that this test, for the
range 1–7, is not biased by the decreasing surface-to-volume ratio
as Mh → ∞.

Heuristic for the Optimal Solution. We have glossed over the step of
finding a fitting function for the slope of the (t, w1) line as a func-
tion of M and Mh, further described in the SI Appendix. For fixed M
and increasing Mh, the dependence is very close to [ln(Mh/M)]0.42

over a wide range of M and Mh. The remaining dependence on M
is then empirically found to be very close to linear in ln(M), and
hence extrapolatable with some confidence to values of M and Mh
much larger than the values used for the fit.

The result of these empirical fits to a sharp boundary is a
heuristic (that is to say, empirically justified) approximation to
the optimal strategy:

assign patient to
{

A if t ≥ tcrit
B if t < tcrit

, [22]

where

tcrit = 0.31 w1 ln(M)[ln(Mh/M)]0.42. [23]

(Note that t and tcrit can each be of either sign.)
To gauge how good is the heuristic approximation, we can com-

pare it with the optimal strategy in the latter’s computationally
accessible region. Simply counting correct vs. incorrect values on

the lattice, one finds that Eq. 22 is correct 99.43% of the time
at Mh = 60, rising slightly to 99.66% at Mh = 280 (which has
about 2.6 × 108 lattice points). A more meaningful comparison is
to compute, by Monte Carlo trials, the mean cost of various strate-
gies from various starting points (priors m0). Table 1 shows results
for ESL costs with horizon sizes Mh = 100 and 200 and for three
priors. One sees that the exact and heuristic strategies are within a
few hundredths of each other. Because the units are lost successes
over the entire trial, approximation errors of this magnitude seem
genuinely negligible.

Table 1 also shows comparable ESL costs for the traditional
strategy of dividing the Mh patients into equal samples MA =
MB = Mh/2. When one or both treatments have initially unknown
efficacy, the lost successes are an order of magnitude larger than
for an adaptive strategy that is anything close to optimal. Also
shown in the table is a popular “local” strategy, play-the-winner,
which assigns the same or different treatment as the immediate
predecessor depending on whether it was a success or failure; it is
seen to be far from optimal. (The entries labeled “scaled horizon”
and “local Bayes” are discussed in the following subsection.)

Infinite Horizon Problem and Scaled-Horizon Strategy. Apart from
solving (if in heuristic approximation) a long-outstanding compu-
tational problem (19), the purpose of Eq. 22 is to allow us to think
quantitatively about the infinite horizon problem. Formally, if we
fix m (and thus M) and let Mh → ∞, then tcrit (Eq. 23) also → ∞,
though only very slowly as a small power of a logarithm. The opti-
mal strategy rm thus formally converges to assigning whichever
treatment is underrepresented, that is, to the traditional strategy
of equal sample sizes for A and B. Although this technically satis-
fies our ethical principles thus far, it is not a useful answer, because
all beneficial exploitation of information has been pushed to the
infinite future. There is no escaping this, except to forbid it by an
additional ethical principle, one that must slightly modify how we
interpret equality.

Consider this principle: Patient number M ’s assignment to A
or B should be no less beneficial to her than as if the horizon
were 2M − 1 rather than ∞. We can call this past-future par-
ity. The ethical justification is that patient M has benefitted from
M −1 predecessors, so she should in turn benefit M −1 successors,
but not be obligated for more. We can apply this principle by the
horizon-independent strategy of assigning to patient M the value
r(m|2M − 1); we refer to this as a scaled-horizon strategy. In Eq.
23, we replace the factor containing Mh by (ln 2)0.42 ≈ 0.857.

The scaled-horizon strategy is not the exact optimization of
any simply stated total cost function. However, given a current
state of knowledge, it assigns to each patient M the treatment that
would have been assigned if the strategy were an optimal equality
strategy for horizon 2M − 1. Whether one chooses to say that a
scaled-horizon strategy “satisfies” equality, or “modifies” it, the

Table 1. ESL costs for various strategies

Starting point m0 = (0, 0, 0, 0) (0, 0, 10, 5) (10, 5, 10, 5)

Horizon Mh = 100
Exact 1.75 1.48 1.64
Heuristic 1.76 1.50 1.65
Scaled horizon 1.84 1.55 1.69
Local Bayes 2.76 2.67 2.52
Play-the-winner 7.69 6.73 3.24
MA = MB ≡ 50 16.6 14.2 6.37

Horizon Mh = 200
Exact 2.24 2.05 2.65
Heuristic 2.28 2.10 2.67
Scaled horizon 2.44 2.31 2.79
Local Bayes 3.53 3.40 4.19
Play-the-winner 15.3 14.6 7.82
MA = MB ≡ 100 33.3 28.4 12.7
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relevant quantitative question is how much cost is actually added
by the scaled-horizon strategy, which is horizon-independent, as
compared with optimal strategies for horizon values Mh known
in advance. Table 1 gives examples for horizon values Mh = 100
and 200. One sees that the added cost is at most the order of
tenths of a lost success in this parameter range, and it should
increase only very slowly with Mh. These numerical results sug-
gest that scaled-horizon strategies can be statistically and ethically
justifiable approaches for Mh → ∞, that is, for arbitrarily large
clinical or comparative-effectiveness trials whose size is not known
in advance, or indeed for standard-of-care recommendations in a
large population.

For comparison with the scaled-horizon strategy, Table 1 also
gives results for a “local Bayes” strategy (called “TAB” in ref. 25).
This strategy assigns a patient to A with probability Prob(a >
b | m). Because the horizon Mh does not enter, it is by definition
horizonless. However, its performance is inferior to the scaled
horizon (see the SI Appendix).

Worth noting is that expected (i.e., mean) costs, as shown in
Table 1, may not be the only quantities of interest. All of the strate-
gies listed in Table 1 produce heavy-tailed distributions, so that
the cost of any one trial may be several times the mean. See the
SI Appendix for more details of the distributions.

Cost of Treatment as a Variable. How should the economic cost of
treatment enter the equation? There is little dispute that com-
parative effectiveness research should seek to find interventions
that are cheaper and more effective than alternatives. Contro-
versy arises in considering how to approach treatments that may
be slightly more effective but significantly more expensive (26, 27).
Then, fears about access to treatment and tension between the
benefit to the patient and the economic cost to society are
unavoidable.

Here we consider only the limited, but ethically less perilous,
case where the costs of treatments A and B are known, but their
effectiveness is not known or only imperfectly known. The goal is
to learn which treatment is superior and then to assign the supe-
rior treatment independent of cost. However, we want to expend
a minimum economic cost in gaining the required comparative
knowledge. In other words, we don’t want to waste resources on
a more expensive treatment that also turns out to be inferior.
CTLS, Eq. 19, was constructed exactly for this situation. CTLS
assigns no cost to patients assigned to the superior treatment, or
to successes of the inferior treatment; it assigns the dollar cost of
the inferior treatment to that treatment’s lost successes. Like EF
and ESL, CTLS satisfies utilitarian, equality, outcomes, indiffer-
ence, and best treatment; it thus deserves serious consideration as
an ethical approach to incorporating the economic cost of treat-
ment into a strategy for clinical trials or comparative effectiveness
studies.

As above, but with the CTLS patient-specific cost function, we
can easily compute exactly optimal strategies up to Mh ∼ 300.
There is one new parameter, namely the cost-of-treatment ratio
DB/DA ≥ 1. (As a convention, we take B to be the more expensive
treatment.) Also as above, we can ask whether the boundaries of
the optimal strategy are sharp. Again, the evidence is that they
are, as shown in Fig. 3 and the yellow and red bars in Fig. 2. One
sees in Fig. 3 that the effect of a cost ratio different from 1 is
to shift the (still quite straight) boundary to the left, so that the
more expensive treatment is allocated only when the t-value more
strongly indicates its superiority.

Numerical experiments indicate that the slope of the boundaries
in Figs. 1 and 3 vary only very slightly with cost ratio and that the
dependence on DB/DA is close to logarithmic. A generalization of
heuristic Eq. 23 is then

tcrit = 0.31 w1 ln(M)[ln(Mh/M)]0.42 − 0.46 ln(DB/DA). [24]

Fig. 3. Optimal CTLS assignments of patient M = 50 in a clinical trial with
horizon Mh = 200 as a function of t and w1, for cost ratios DB/DA = 2
(Left) and 10 (Right). The more expensive treatment (red) requires a more
convincing t-value to justify its assignment.

This is not as good an approximation to the exact solution as was
Eq. 23, but it is good enough for understanding the nature of the
solution. A better fit could be found, as needed.

Discussion
For specificity we have focused on finding, by numerical exper-
iment, near-optimal heuristic solutions to a specific two-armed
bandit problem. This problem models only a very idealized clinical
trial: exactly two treatments, exactly two outcomes, previous out-
comes known as each patient is assigned. However, the solutions
that we found have striking properties that suggest immediate
generalizations to more complicated cases.

In brief, the heuristic solutions have this form: (i) Compute a t-
value that measures the certainty with which a treatment is known
to be superior. (ii) Assign that treatment if the t-value exceeds
some threshold value tcrit. (iii) tcrit increases monotonically (some-
thing like linearly) with the imbalance of previous assignments;
that is, an overrepresented treatment requires a somewhat higher
standard of proof. (iv) tcrit increases slowly (something like log-
arithmically) with patient number M , and even more slowly (as
something like the square root of a logarithm) with horizon size
Mh. These increases ensure that new information will be gathered,
when it is needed, even at late times as M → ∞. (v) If cost of treat-
ment is a relevant variable, then tcrit is additively increased by a
slowly increasing function of the unfavorable cost ratio (some-
thing like logarithmically), so that expensive treatments require
more proof of effectiveness.

For cases more complicated than those considered here, one
could readily search for optimal strategies only within the above
restricted framework, that is, for an optimal or near-optimal for-
mula for tcrit. This is a much easier problem than the optimization
over a general strategy, and susceptible to direct optimization
techniques. One might also try strategies that leverage off the
approximations in this paper. For example, for a clinical trial with
block assignments of N new patients at a time, with the outcomes
of previous blocks available as each new block is assigned, one
might compute (e.g., by Monte Carlo using Eqs. 23 or 24) the
expected number of assignments to each treatment for the next N
patients from any point m. Although the resulting strategy is not
an exact optimization, it should be close to one.

This paper’s specific model also suggests a general utility
for scaled-horizon strategies which allow the horizon Mh to be
unknown or unbounded. Although not exactly optimal, scaled-
horizon strategies are close enough to optimal to be ethically
desirable: They impose much lower expected costs on patients
than fixed allocation strategies like equal sample size, or nonopti-
mal adaptive strategies like play-the-winner. The scaled-horizon
strategy is not the same as exponentially discounting the future,
but the two strategies each have a kind of scale invariance. It seems
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possible that there could be approaches analogous to the Gittins
Index (14, 22, 23) for scaled-horizon strategies.

Finally, we think that the exact role of economic cost of treat-
ment should be mathematically explicit in clinical trials, com-
parative effectiveness studies, and clinical recommendations. We
have given an example of a cost function, CTLS, that completely
avoids the ethical issue of whether an inferior, but less costly,
treatment should be assigned, but which nevertheless minimizes
resources wasted on costly, inferior treatments. Combining CTLS
with a scaled-horizon strategy gives a methodology for choosing

among treatments that is unified and applicable from early clin-
ical trials through to standard-of-care clinical recommendations
affecting potentially unlimited numbers of patients. This method-
ology optimizes resources in a definably ethical way. In particular,
a proposed new treatment that is more expensive but no better
than an existing treatment becomes quickly disfavored under the
CTLS cost function.

ACKNOWLEDGMENTS. I thank Michael Brenner, Sean Eddy, Sallie Keller–
McNulty, and Jeff Hussmann for useful discussions, and Freeman Dyson and
Christine Cassel for welcome encouragement.

1. Royall RM (1991) Ethics and statistics in randomized clinical trials. Stat Sci 6:52–88.
2. Ellenberg SS, Fleming TR, DeMets DL (2003) Data Monitoring Committees in Clinical

Trials: A Practical Perspective (Wiley, Chichester, United Kingdom).
3. Grant A (2004) Stopping clinical trials early. Br Med J 329:525–526.
4. Dignam JJ, Bryant J, Wieand, HS (2006) Early stopping of cancer clinical trials. In Hand-

book of Statistics in Clinical Oncology, J Crowley and DP Ankerst, eds. (CRC Press, Boca
Raton, FL) pp. 227–246.

5. Task Force of the Working Group on Arrhythmias of the European Society of Cardiol-
ogy (1994) The early termination of clinical trials: Causes, consequences, and control.
Circulation 89:2892–2907.

6. Dean BB, et al. (2009) Use of electronic medical records for health outcomes research.
Med Care Res Rev, 66:611–638.

7. Ellis P, Baker C, Hanger M (2007) Research on the Comparative Effectiveness of Medical
Treatments: Issues and Options for an Expanded Federal Role (Congressional Budget
Office, Washington, D.C.).

8. Flournoy N, Rosenberger WF (1995) Adaptive Designs: Selective Proceedings of a 1992
Joint AMS-IMS-SIAM Summer Conference, Lecture Notes Monograph Series (Inst Math
Stat, Hayward, CA), Vol. 25.

9. Rosenberger WF, Lachin JM (2002) Randomization in Clinical Trials (Wiley, New York),
pp. 169–189.

10. Hu F, Rosenberger WF (2006) The Theory of Response-Adaptive Randomization in
Clinical Trials (Wiley, New York).

11. Chow S-C, Chang M (2007) Adaptive Design Methods in Clinical Trials (Chapman &
Hall, Boca Raton, FL), pp. 47–73.

12. Berry DA (2004) Bayesian statistics and the efficiency and ethics of clinical trials. Stat
Sci 19:175–187.

13. Berry DA (2006) Bayesian clinical trials. Nat Rev Drug Discovery 5:27–36.
14. Berry DA, Fristedt B (1985) Bandit Problems: Sequential Allocation of Experiments

(Chapman & Hall, London, United Kingdom).
15. Thompson WR (1933) On the likelihood that one unknown probability exceeds

another in the view of the evidence of the two samples. Biometrika 25:275–294.

16. Robbins H (1952) Some aspects of the sequential design of experiments. Bull Am Math
Soc 58:527–535.

17. Blackwell D, Girshick MA (1954) Theory of Games and Statistical Decisions (Wiley, New
York).

18. Hardwick JP, Stout QF (1995) Exact computational analyses for adaptive designs. In
Adaptive Designs: Selective Proceedings of a 1992 Joint AMS-IMS-SIAM Summer Con-
ference, Flournoy N, Rosenberger WF, eds., Lecture Notes Monograph Series (Inst
Math Stat, Hayward, CA), Vol. 25, pp. 223–237.

19. Stout QF, Hardwick JP (2006) Parallel programs for adaptive designs. In Handbook
on Parallel Computing and Statistics, ed Kontoghiorghes, EJ (Chapman & Hall, Boca
Raton, FL), pp. 347–374.

20. Lai TL, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Adv Appl
Math 6:4–22.

21. Auer P, Cesa–Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit
problem. Machine Learning 47:235–256.

22. Gittins JC, Jones DM (1979) A dynamic allocation index for the discounted multiarmed
bandit problem. Biometrika 66:561–565.

23. Brezzi M, Lai TL (2000) Incomplete learning from endogenous data in dynamic
allocation. Econometrica 68:1511–1516.

24. Hardwick JP (1995) A modified bandit as an approach to ethical alloca-
tion in clinical trials. In Adaptive Designs: Selective Proceedings of a 1992
Joint AMS-IMS-SIAM Summer Conference, Flournoy N, Rosenberger WF, eds.,
Lecture Notes Monograph Series (Inst Math Stat, Hayward, CA), Vol. 25,
pp. 65–87.

25. Berry DA, Eick SG (1995) Adaptive assignment versus balanced randomization in
clinical trials: A decision analysis. Stat Med 14:231–246.

26. American College of Physicians (2008) Position paper: Information on cost-
effectiveness. Ann Internal Med 148:1–6.

27. Comparative Effectiveness Forum (2006) Executive summary. (The Health Industry
Forum, Brandeis University). Available at http://healthforum.brandeis.edu/meetings/
materials/2006-30-Nov./ExecBrief.pdf. Accessed November 30, 2009.

22392 www.pnas.org / cgi / doi / 10.1073 / pnas.0912378106 Press



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 801.000]
>> setpagedevice


