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Abstract

Background: Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ)
depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to
initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent
manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.

Methodology/Principal Findings: In this study we used biochemical, cell biological and molecular assays to investigate a
possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin
assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at
AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin
was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin
significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine
phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as
did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into
muscle cells potently inhibited synaptic AChR aggregation in response to innervation.

Conclusion: Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from
agrin/MuSK in facilitating AChR clustering at the developing NMJ.
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Introduction

At the vertebrate neuromuscular junction (NMJ) motor nerve-

secreted acetylcholine (ACh) binds and opens postsynaptic ACh

receptors (AChRs) to initiate excitation along the muscle

membrane and cause contraction. One remarkable feature of

the NMJ is its unfailing postsynaptic response to every nerve-

stimulation, which is made possible by the selective enrichment of

AChRs in muscle within a small membrane domain that apposes

presynaptic ‘‘active zones’’ where synaptic vesicles dock and

release ACh. Whereas ,10,000 AChRs are present per mm2 of the

synaptic muscle membrane, only ,10 AChRs are found per mm2

of the extrasynaptic membrane [1]. Thus, in the assembly of the

NMJ, synaptic AChR clustering is a critical and perhaps also the

most studied step [2].

During development AChRs form aggregates in embryonic

muscle fibers even before motor innervation due to the activation

of the muscle receptor tyrosine kinase MuSK [3,4]. This ‘‘pre-

patterned’’ clustering of AChRs in the central regions of muscle

fibers involves, in addition to MuSK, the transmembrane protein

LRP4 [5] and the adapter dok-7 which enhances MuSK signaling

[6]. Next, during innervation, a nerve-deposited heparan-sulfate

proteoglycan named agrin [7] stimulates MuSK to promote

AChR clustering and stabilization locally at synapses [8,9]. How

agrin activates MuSK has remained unclear because agrin does

not bind to MuSK [8], although recent studies suggest that agrin

interacts with LRP4 and that LRP4 binds to MuSK and facilitates

the aggregation and (trans)activation of MuSK [10,11]. Finally, as

AChRs become accumulated at newly established synapses, the

pre-patterned AChR clusters are disassembled, either by synapto-

genic stimuli or by ACh [12,13,14], which helps the selective

concentration of AChRs at NMJs.

How are AChRs concentrated in the postsynaptic membrane?

It is thought that AChRs diffusing freely on the muscle surface

become clustered at traps generated by synaptogenic stimuli at the

NMJ [15]; this diffusion-mediated trapping of AChRs has recently

been directly visualized through single-molecular tracking with

quantum dots [16,17]. The clustering of AChRs is mediated by the

protein rapsyn, which crosslinks and tethers AChRs to the cortical

actin cytoskeleton [2,12,13,18]. F-actin and several proteins that

bind to it are enriched at the NMJ and at AChR clusters in muscle

cells, and inhibition of actin polymerization blocks the aggregation
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of AChRs in response to synaptogenic stimulation [19,20].

Furthermore, AChR clustering involves signaling by Rho-family

GTPases [21], which regulate diverse actin polymerization-driven

processes [22], p21-activated kinase 1, an effector of the GTPase

Cdc42 [23], and geranylgeranyl transferase, an enzyme which

enhances the membrane association and activation of GTPases

[24]. Conversely, inhibition of PI3 kinase signaling in myotubes

reduces agrin-dependent activation of Rac and Cdc42 GTPases

and impedes AChR clustering [25].

The above findings suggest that Rho GTPases influence AChR

aggregation in multiple ways, but little is known about how the

receptor clustering process is affected by other proteins that also

regulate actin polymerization. The focus of this study is on one

such protein – cortactin – which has been shown to localize at

AChR clusters in cultured muscle cells [19,26], but for which no

functional role in NMJ formation has been described to date.

Initially identified as a major src tyrosine kinase substrate in cells

[27,28], cortactin is today recognized as a modulator of numerous

actin polymerization-dependent processes, ranging from cell

motility to endocytosis to dendritic spine growth and synaptogen-

esis in central neurons [29]. An important target of cortactin is the

Arp2/3 protein complex, which binds to existing actin filaments

and initiates new branch growth [30,31]; association of cortactin

with the Arp2/3 complex enhances Arp2/3-induced actin

polymerization [29,32]. Intriguingly, phosphorylation by src

allows cortactin to be linked by the adapter Nck1 to another

Arp2/3-stimulator, N-WASP, and this tripartite complex com-

posed of phospho-cortactin, Nck1 and N-WASP activates Arp2/3-

dependent actin polymerization better than cortactin or N-WASP

alone [33]. In light of these recent findings related to cortactin and

the importance of tyrosine kinase signaling and actin polymeriza-

tion in AChR clustering, here we asked three specific questions: Is

cortactin’s tyrosine phosphorylation relevant in the context of

AChR clustering in situ? Is cortactin’s phosphorylation in muscle

affected by agrin/MuSK signaling? Does cortactin signaling in any

way regulate synaptic AChR aggregation? The results of our cell

biological, biochemical and molecular assays presented below

suggest that phosphorylation-dependent signaling by cortactin

downstream from agrin/MuSK promotes AChR clustering at the

NMJ.

Results

Localization of Actin-Polymerization Regulators at AChR
Clustering Sites

We previously showed that dynamic F-actin assembly occurs at

sites of de novo AChR clustering and that green fluorescent

protein (GFP)-tagged cortactin is recruited to such sites [19,20].

Because the Arp2/3 complex is a key cellular regulator of actin

polymerization and a target of cortactin, we asked whether

proteins of this complex are localized in muscle cells where AChR

clustering is stimulated. Primary cultures of Xenopus embryonic

muscle cells were labeled with rhodamine-a-bungarotoxin (R-

BTX) to mark AChRs and then stimulated with polystyrene beads

coated with heparan-binding growth associated molecule (HB-

GAM); this procedure enables AChR clusters to be induced

reliably and in a spatiotemporally controlled manner [20].

Labeling of bead-treated cells with affinity-purified antibodies

revealed that Arp2 and p34arc, two members of the Arp2/3

complex, were enriched at bead-muscle contacts where AChRs

were focally clustered (Fig. 1, A–F), but numerous unrelated

proteins were not (data not shown). The distribution of the Arp2/3

complex proteins relative to AChRs resembled that of cortactin

[26], which can directly bind to the Arp2/3 complex [32], and

when bead-treated muscle cells were labeled by the polyclonal

anti-p34arc antibody and a monoclonal anti-cortactin antibody,

p34arc and cortactin were found to colocalize at bead-muscle

contacts (Fig. 1, G–I). However, in non-muscle cells which are

found occasionally in primary muscle cultures, p34arc and

cortactin were detected along the cell periphery but not at bead-

contacts (panels J–K), suggesting that the antibodies against

p34arc and cortactin recognized their targets at AChR clusters in

muscle cells and did not simply mark all sites where beads

contacted cells.

Association of Tyrosine-Phosphorylated Cortactin with
AChR Clusters

Because recent work has shown that tyrosine phosphorylation of

cortactin’s src-target sites enhances the activation of Arp2/3-

dependent actin polymerization [32,33], we tested whether

cortactin phosphorylation is relevant in the context of AChR

clustering. For this the distribution of tyrosine-phosphorylated

cortactin relative to AChR clusters was examined in Xenopus

muscle cells by labeling (separately) with three different antibodies

directed against cortactin phosphorylated on its major src-target

sites (Y421, Y466 and Y482 in mouse cortactin). In quiescent

muscle cells anti-Y482-phospho-cortactin antibody strongly la-

beled pre-patterned AChR clusters (Fig. 2, A–F) and also the edges

of cells (where cortactin is known to localize) but only weakly

labeled other regions of the cells. Y482-phosphorylated cortactin

was detected reliably at pre-patterned AChR clusters (panel C),

although sometimes it appeared more concentrated in certain

regions of the clusters than others (panel F). Data from several

muscle culture preparations showed phosphorylation of Y482-

cortactin at .95% of pre-patterned clusters identified (Table S1,

Supporting Documents).

Antibodies against Y421- and Y466-phospho-cortactin also

labeled AChRs clusters and muscle cell edges, but with these two

antibodies staining was somewhat weaker than with anti-Y482-

phospho-cortactin (not shown). It is possible that these commercial

antibodies have differing affinities for their target sites or that these

sites are phosphorylated and/or accessible to different extents.

Unlike these three antibodies, however, many control antibodies

showed markedly different labeling of muscle cells. For example,

a polyclonal antibody against tyrosine-phosphorylated AChR

b-subunit labeled only AChR clusters, two different polyclonal

antibodies against cadherin complex proteins strongly stained

cell junctions but not AChR clusters, and other polyclonal

antibodies either labeled muscle cells uniformly (such as an anti-

phospho-Shp2 phosphatase antibody) or failed to label the cells

(such as anti-synapsin) (R.M., A.W.S.C., H.B.P., unpublished

observations).

Next we examined whether cortactin is phosphorylated at sites

of new AChR cluster formation. In Xenopus nerve-muscle co-

cultures, AChR clusters developed in muscle cells focally at sites

where the cells were contacted by nerves and these clusters were

strongly labeled by the anti-Y482-phospho-cortactin antibody

(Fig. 2, G–I). Phospho-cortactin’s localization closely matched that

of postsynaptic AChR clusters, but labeling for phospho-cortactin

was weak in presynaptic neurites (which were strongly labeled, as

expected, by antibodies against neuronal markers such as

synapsin; not shown). From several nerve-muscle co-culture

preparations we found phospho-cortactin at .80% of nerve-

induced AChR clusters (Table S1). Moreover, in muscle cultures

stimulated with HB-GAM-beads, phospho-cortactin was found to

be enriched at AChR clusters induced at bead-muscle contacts

(Fig. 3, A–C), with pooled data showing that this was the case at

,95% of such clusters (Table S1), and in agrin-treated muscle cells

Cortactin and NMJ Formation
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phospho-cortactin was accumulated at new AChR clusters (,0.5–

3 mm in diameter) generated across the muscle surface (Fig. 3,

D–F). Interestingly, phospho-cortactin was also detected along

myopodia (panel D–F) generated close to AChR clusters [34] and

was often concentrated at myopodial tips (arrowheads in panel F).

Taken together these results suggested that phosphorylation of

cortactin’s src-target tyrosines is enhanced at sites in muscle where

synaptogenic stimuli such as agrin produce their known functional

effects.

Agrin-Dependent Tyrosine Phosphorylation of Cortactin
To extend the studies described above we tested whether agrin

signaling directly affects cortactin’s tyrosine phosphorylation

through biochemical assays. For this C2 mouse myotubes were

used because such assays cannot be easily performed on the

limited material provided by Xenopus embryonic muscle primary

cultures. Fully differentiated C2 myotubes were exposed to control

or agrin-containing medium for 1 h and then cortactin was

immuno-precipitated from them for analyses. Blotting of immuno-

precipitates with anti-cortactin and anti-phosphotyrosine antibod-

ies (Fig. 4A, top) showed that the anti-cortactin antibody

(mAb4F11) captured cortactin from extracts but the control

antibody did not (‘‘IB:cort’’, upper blot). Significantly, cortactin

immuno-precipitated from extracts of agrin-treated myotubes was

more strongly stained by the anti-phosphotyrosine antibody than

cortactin captured from extracts of control myotubes (‘‘IB: PY’’,

lower blot). From four such experiments we determined the band

intensities of cortactin stained by anti-cortactin and anti-

phosphotyrosine and then divided the latter values by the former

to normalize for cortactin loading in each case. These results

indicated that cortactin’s tyrosine phosphorylation level in agrin-

treated myotubes was more than twice that in control myotubes

(Fig. 4A, bottom).

As discussed in the previous section, three major src-target sites

have been identified in cortactin. To test whether agrin-treatment

of muscle, which activates src signaling [35], triggers the

Figure 1. Localization of Arp2/3 complex proteins and cortactin at AChR clustering sites. Cultured embryonic Xenopus muscle cells
labeled with rhodamine-a-bungarotoxin (R-BTX) were stimulated overnight with polystyrene beads coated with heparan-binding growth-associated
molecule (HB-GAM) (A, D; asterisks) to induce AChR clusters (C, F). Cells were then fixed and labeled with affinity-purified polyclonal antibodies
against the Arp2/3 complex proteins Arp2 (B) and p34arc (E) followed by FITC-linked anti-rabbit secondary antibodies. Separately, bead-stimulated
muscle cells (G) were labeled with anti-p34arc polyclonal (H) and anti-cortactin monoclonal (I; mAb4F11) antibodies and then FITC-conjugated anti-
rabbit and rhodamine-conjugated anti-mouse secondary antibodies. AChRs, Arp2 and p34arc were clustered at bead-muscle contacts (A-F; arrows)
where cortactin localized and overlapped in distribution with p34arc (H and I; arrows). In primary muscle cultures non-muscle cells were occasionally
found (J) and in these cells p34arc (K) and cortactin (L) localized along the cell periphery (arrowheads) but were not clustered at bead-cell contacts
(‘‘b’’ in K and L corresponds to bead indicated by asterisk in J).
doi:10.1371/journal.pone.0008478.g001

Cortactin and NMJ Formation
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phosphorylation of these specific sites, C2 myotube extracts were

immuno-blotted with anti-cortactin and anti-Y421-phospho-cor-

tactin antibodies. Both antibodies stained bands of cortactin’s

expected size and anti-cortactin staining showed equal protein

loading (Fig. 4B); with the anti-phospho-cortactin antibody,

however, cortactin was stained nearly three-times more strongly

in extracts of agrin-treated myotubes than of control myotubes

(Fig. 4B, bottom; data from three experiments). Similarly, a band

corresponding to full-length cortactin was detected with the anti-

Y466-phospho-cortactin antibody and this was enhanced by agrin

as well (not shown), but staining by the anti-Y482-phospho-

cortactin antibody in total extracts was weak and we have been

unable to ascertain whether that staining is altered significantly by

agrin-treatment. Nevertheless, these findings and our in situ

labeling results together supported the conclusion that phosphor-

ylation of cortactin’s src-target sites is enhanced during agrin/

MuSK signaling.

Involvement of Cortactin Signaling in
Agrin/Nerve-Induced AChR Clustering

To investigate whether phosphorylation-dependent cortactin

signaling is involved in the AChR clustering process, we expressed

Figure 2. Tyrosine phosphorylation of cortactin at pre-patterned and nerve-induced AChR clusters. Xenopus muscle cells were labeled
with R-BTX and after fixation with an antibody that specifically recognizes Y482-phospho-cortactin (plus FITC-linked anti-rabbit antibodies) (A-F). In
some cases muscle cells were first co-cultured for 1 d with spinal neurons and then labeled with R-BTX and anti-phospho-cortactin and secondary
antibodies (G-I). In pure muscle cultures (A, D) large ‘‘pre-patterned’’ AChR clusters were present (B, E; arrows) and at these sites staining by anti-
phospho-cortactin was significantly stronger than elsewhere in muscle cells (C, F; arrows). Labeling for phospho-cortactin was detected at almost all
pre-patterned clusters examined (see Table S1), although within the clusters certain regions at times appeared to be more enriched in phospho-
cortactin than others (as in F; arrow versus arrowhead). The anti-phospho-cortactin antibody also labeled muscle cell edges (C, F) where cortactin is
known to be localized. In nerve-muscle co-cultures (G) AChRs were selectively concentrated at synaptic contacts (H; arrows) and these nerve-induced
AChR clusters were also labeled by the anti-phospho-cortactin antibody (I; arrows).
doi:10.1371/journal.pone.0008478.g002

Figure 3. Cortactin phosphorylation at AChR clusters induced by growth factor-coated beads and agrin. R-BTX-labeled Xenopus
muscle cells were stimulated overnight with HB-GAM-beads (A-C) or neural agrin (D-F). In cells exposed to beads (A; asterisks) AChRs aggregated at
bead-muscle contacts (B; arrows) and strong labeling was detected at these bead-induced AChR clusters for Y482-phospho-cortactin (C; arrows).
Treatment of muscle cells with agrin (D) generated numerous small (,0.5-3 mm) AChR clusters (D; arrows) and antibody labeling showed that
phospho-cortactin was enriched at these clusters (E; arrows) and also along myopodia that formed near the AChR clusters (F; arrows and arrowheads).
doi:10.1371/journal.pone.0008478.g003

Cortactin and NMJ Formation
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a dominant-negative, phosphorylation-defective mutant cortactin

and wild-type cortactin in C2 myotubes and examined agrin-

induction of AChR clusters. In the mutant cortactin (3YF-

cortactin), the three major src phosphorylation sites – Y421,

Y466 and Y482 – were eliminated [36], and both the mutant and

the wild-type cortactin proteins were tagged with GFP. The GFP-

tagged cortactin proteins (or GFP alone) were expressed in

myotubes by mRNA transfection, which was carried out in parallel

on myotubes grown on coverslips for analysis of AChR clustering

and in culture dishes for biochemically confirming the expression

of the exogenous proteins.

Myotubes growing on coverslips were incubated overnight with

agrin and labeled with R-BTX (Fig. 5) and transfected cells were

identified by green fluorescence. In these we found that compared

to myotubes expressing GFP (panels A–C) or wild-type cortactin-

GFP (panels G–I), those expressing the phospho-mutant cortactin

had fewer and smaller AChR clusters (panels D–F). Immuno-

blotting of extracts of myotubes transfected with mRNAs encoding

the GFP-tagged cortactin proteins (but not GFP) demonstrated

that anti-cortactin monoclonal antibody 4F11 stained endogenous

cortactin plus the exogenous cortactin proteins, which were

,25 kD larger (Fig. 5J). From five separate transfection experi-

ments the numbers and lengths of AChR clusters in green

fluorescent (transfected) myotubes were determined; for this the

myotubes were examined in their entirety and all distinct clusters

(such as those indicated by arrows in Fig. 5) were counted and

measured. Data pooled from 200 or more (each) GFP-cells, wild-

type cortactin-cells and phospho-mutant cortactin-cells showed

that relative to control (GFP) myotubes, the phospho-mutant

cortactin-expressing myotubes had nearly 60% fewer clusters (4.3/

myotube instead of ,10/myotube) which were nearly 30%

smaller (,19 mm long compared to ,27 mm) (Fig. 5, K–L).

The above results demonstrated that agrin-stimulated AChR

clustering in myotubes was inhibited in the presence of exogenous

phospho-mutant cortactin. Therefore, to directly test whether

endogenous cortactin functions in the AChR cluster assembly

process, we down-regulated its expression in myotubes using RNA

interference (RNAi). C2 myoblasts were transfected with GFP

cDNA mixed with a cocktail of mouse cortactin-specific small

interfering RNAs (siRNAs) or siRNAs against unrelated proteins;

cells were then allowed to differentiate for 4 d before they were

treated overnight with agrin. When GFP-positive cells were

examined after labeling with R-BTX, the results showed that

AChR clustering in response to agrin was impaired in cortactin-

siRNA-transfected myotubes compared to control-siRNA-trans-

fected myotubes (Fig. 6, A–F). Immuno-blotting of total cell

extracts from the same batch of myotubes (in each experiment; see

Methods) confirmed that the cortactin-siRNAs down-regulated the

expression of cortactin but did not produce any noticeable change

in the expression of many unrelated proteins (Shp2, SIRPa1, p120

catenin (p120ctn), Arp2, Arp3, Nck1 and tubulin; not shown,

except tubulin in panel G) and that control siRNAs (against Shp2,

SIRPa1 and p120ctn; p120ctn-siRNA used as control in panel G)

did not affect cortactin levels. AChR cluster numbers and lengths

in control siRNA- and cortactin siRNA-transfected myotubes (150

or more each) were measured (see above) and data from four

separate siRNA-transfection experiments revealed that the average

values of these parameters were reduced by ,40% in myotubes

expressing lower than normal levels of cortactin (Fig. 6, H–I).

Is cortactin signaling involved in AChR clustering at the NMJ in

vivo? To answer this, we injected mRNAs encoding GFP or GFP-

tagged wild-type and mutant cortactin proteins into Xenopus

embryos with the goal of examining NMJs that can be observed

(in a ‘‘chevron’’ pattern) in the developing tail muscle. These

Figure 4. Agrin-dependent enhancement of cortactin tyrosine phosphorylation. Cultured C2 mouse myotubes were exposed to medium
without (-) or with added agrin (+) before preparing extracts for immuno-precipitation (A) with a monoclonal antibody against cortactin (IP: cort) or
an unrelated protein (IP: ctl). When these samples were immuno-blotted for cortactin (IB: cort) and total phosphotyrosine (IB: PY; mAb4G10), cortactin
was found to be captured only by the anti-cortactin antibody (upper lanes), and anti-phosphotyrosine staining showed that cortactin from extracts of
agrin-treated cells was tyrosine phosphorylated significantly more than that captured from control extracts (lower lanes). This increase in cortactin
phosphorylation was quantified from four experiments (A, graph) by measuring band densities, normalizing for cortactin loading (see Methods), and
calculating the phosphotyrosine level change relative to control. B. To test whether the src-target sites in cortactin were phosphorylated in response
to agrin-treatment, myotube extracts were blotted with antibodies against total cortactin and cortactin phosphorylated on Y421. Agrin-treatment did
not alter the amount of cortactin present in extracts (upper lanes) but the staining of cortactin by the anti-Y421-phospho-cortactin antibody (IB:
pCort) was enhanced by agrin-treatment more than two-fold, as shown by quantification from three experiments (B, graph). Positions of pre-stained
MW markers (Bio-Rad) are indicated on the right side of blots, and in the graphs * represents P,0.02 in t-tests.
doi:10.1371/journal.pone.0008478.g004

Cortactin and NMJ Formation
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experiments, however, failed to reveal whether cortactin functions

in AChR aggregation because the embryos injected with mutant

cortactin mRNA died before reaching a stage (,40 or later) when

NMJs can be reliably identified by BTX-labeling. We therefore

adopted an alternative approach for testing cortactin’s function, an

approach that has been successfully used by us [34] and by others

[23] in which myotomal muscle cells and spinal neurons are

isolated from early embryos (,stage 20–22) and plated together.

In these nerve-muscle co-cultures AChR clustering is triggered in

response to innervation, and when nerve and muscle cells isolated

from normal and mRNA-injected embryos are mixed together,

nerve or muscle can be manipulated selectively with exogenous

molecules (Methods). In this experimental system NMJ formation

can be observed and quantified by R-BTX-labeling, which is used

to monitor the focal aggregation of AChRs at nerve-muscle

contacts [34]. When we examined contacts between normal spinal

neurons and muscle cells expressing GFP or the GFP-tagged

cortactin proteins (Fig. 7), robust AChR clustering was detected at

innervation sites in muscle cells expressing GFP (panels A–D) or

GFP-tagged wild-type cortactin (E–H); in contrast, in cells

expressing GFP-tagged phospho-mutant cortactin, often no

synaptic AChR clustering was detected (I–J) or only weak and

loosely organized AChR clusters were found (K–L). We also

observed cases in which the same neurites contacted both mutant

cortactin-expressing cells and normal cells present side-by-side,

and here we found that AChR clustering was strongly induced in

the normal cells but not mutant cells (M–N). In cells expressing

GFP, wild-type and mutant cortactin we identified 168–225 nerve-

Figure 5. Inhibition of agrin-induced AChR clustering by forced expression of phospho-mutant cortactin in myotubes. To examine
the effect of exogenous cortactin proteins on AChR clustering, C2 myotubes were transfected with mRNAs encoding GFP (Ctl) or GFP-tagged
phospho-mutant (3YF) cortactin or wild-type (WT) cortactin. After treating myotubes with agrin overnight, cells expressing exogenous proteins (A, D,
G; asterisks) were identified by green fluorescence (B, E, H) and the AChR clusters present on the surface of these cells were examined by R-BTX-
labeling (C, F, I; arrows). Forced expression of the phospho-mutant, but not wild-type, cortactin reduced the number and lengths of agrin-induced
AChR clusters in myotubes. J. To biochemically confirm the expression of exogenous cortactin proteins in myotubes, extracts prepared from
myotubes transfected with mRNAs encoding GFP, GFP-tagged WT and 3YF cortactin were immuno-blotted with anti-cortactin monoclonal antibody
mAb4F11. Myotubes transfected with GFP mRNA (G) contained full-length endogenous cortactin (arrow on left), but those transfected with WT- and
3YF-cortactin mRNAs contained endogenous cortactin plus a protein (,25 kD larger) corresponding to exogenous, GFP-tagged cortactin (asterisk).
MW marker positions are indicated on the right. K-L. Myotubes transfected with GFP or GFP-tagged cortactin proteins were selected randomly and
the numbers and lengths of the AChR clusters present on their surface were determined; data from five separate transfection experiments were
pooled and normalized relative to values obtained from GFP-tranfected cells. Fewer (K) and smaller (L) AChR clusters were present in myotubes
expressing phospho-mutant cortactin than in cells expressing GFP alone or WT-cortactin-GFP. Mean and SEM values are shown, *P,0.05.
doi:10.1371/journal.pone.0008478.g005

Cortactin and NMJ Formation
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contacts from multiple culture preparations and classified these

innervation sites as those with or without AChR clusters; the

quantified results showed that in mutant cortactin cells, taking into

account even loosely organized AChR clusters (as in L), nerve-

induction of AChR aggregation was only half as effective as that in

GFP and wild-type cortactin cells (Fig. 7O).

Discussion

In this study examining the molecular regulation of AChR

aggregation at the NMJ we obtained these novel results: one,

proteins of the Arp2/3 complex and cortactin (which can together

promote actin polymerization) were co-distributed at AChR

clustering sites (where F-actin assembly occurs). Two, AChR

clusters were enriched in cortactin phosphorylated on its src-target

tyrosine residues, whose phosphorylation enhances Arp2/3-

mediated actin polymerization [33]. Three, treatment of myotubes

with agrin increased the phosphorylation of cortactin on tyrosine

residues, including those known to be targeted by src. Four, forced

expression in myotubes of a cortactin mutant lacking these (three

major) src-target sites inhibited agrin-induced AChR clustering, as

did the depletion of endogenous cortactin in myotubes using

RNAi. And five, disruption of normal cortactin signaling in muscle

cells by expression of the dominant-negative cortactin mutant

inhibited the aggregation of AChRs at innervation sites. We

propose that agrin/MuSK signaling acts on cortactin through src

(and possibly other) tyrosine kinases, and that cortactin, on its own

or with proteins such as Nck1, N-WASP and components of the

Arp2/3 complex, promotes actin polymerization and AChR

clustering at the NMJ (Fig. 8).

Diverse cellular mechanisms collaborate to generate and

maintain high-density AChR aggregates at the NMJ. Muscle-

surface AChRs are selectively clustered in the synaptic region of

muscle, the clustered AChRs are metabolically stabilized, and

AChRs and many proteins that promote their synaptic accumu-

lation are synthesized at high levels in the sub-synaptic domains of

myotubes [2,12,13,37]. The first of these mechanisms – synaptic

AChR clustering – has arguably been studied most extensively and

current evidence supports the following (simplified) view of the

molecular pathway involved: agrin secreted by nerve activates

MuSK through the protein Lrp4 [10,11], and MuSK, together

with binding partners dok-7 [6] and Tid1 [38], triggers

Figure 6. Inhibition of agrin-induced AChR clustering by down-regulation of cortactin expression in myotubes. C2 myotubes
generated from myoblasts transfected with control siRNAs (A-C) or a pool of siRNAs directed against mouse cortactin (D-F) (both mixed with a cDNA
encoding GFP) were incubated overnight in differentiation medium containing agrin before labeling with R-BTX. Transfected myotubes (A, D;
asterisks) were identified by green fluorescence (B, E), and the AChR clusters present on their surface (C, F; arrows) were counted and the lengths of
these clusters were measured. G. To demonstrate that siRNAs against cortactin knocked down cortactin expression, in each experiment extracts were
prepared from myotubes generated from myoblasts transfected in parallel and maintained under conditions identical to those used for examining
agrin-induced AChR clustering. Extracts of cells transfected with GFP cDNA plus control (p120ctn) siRNA (Ctl; left lane), cortactin siRNA (middle lane)
or GFP cDNA alone (right lane) were immuno-blotted with antibodies against cortactin (upper blot) or tubulin (lower blot). The cortactin siRNA
suppressed the expression of cortactin without affecting unrelated proteins (such as tubulin, which is also shown here to demonstrate equal protein
loading), and cortactin’s expression was not affected by control siRNAs or by transfection procedures (where only GFP cDNA was used). From four
transfection experiments AChR cluster data from control (Ctl) and mouse cortactin (msCort) siRNA-transfected myotubes were pooled and
normalized relative to those obtained from cells transfected with the control siRNA. These results showed that agrin-induced AChR cluster numbers
(H) and lengths (I) were significantly lower in myotubes expressing reduced levels of endogenous cortactin compared to those expressing normal
levels of cortactin. Mean and SEM values are shown, *P,0.05.
doi:10.1371/journal.pone.0008478.g006
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downstream signaling through intracellular Ca2+, various kinases

and phosphatases and Rho-family GTPases to direct AChR

aggregation in an actin polymerization-dependent manner

[12,39].

New F-actin synthesis occurs at AChR clustering sites in muscle

cells [19,20] and likely depends on the combined activity of Rho

GTPases and their regulators and effectors that function in agrin/

MuSK signaling [21,23,24,25]. Rho GTPases are potent stimu-

lators of the Arp2/3 complex, which enhances actin polymeriza-

tion in many types of cells [31]. Arp2/3 complex-dependent actin

polymerization is activated by proteins such as WASP/N-WASP

and Scar/WAVE, and the binding of Rac and Cdc42 GTPases

enables WASP/N-WASP and Scar/WAVE to stimulate the

Arp2/3 complex [30,31]. Thus, our detection of Arp2/3 complex

proteins at AChR clusters suggests that GTPase signaling

accelerates Arp2/3-dependent F-actin assembly at synapses

(Fig. 8).

In this study expression of either mutant cortactin or cortactin

siRNAs in muscle cells inhibited agrin/nerve-dependent AChR

aggregation partially rather than fully. Although this could have

been due to incomplete disruption of normal cortactin function in

the muscle cells, it could also be because of cortactin being one of

many Arp2/3 complex/actin-regulators (such as the GTPases) at

the synapse. Our observation that over-expression of wild-type

cortactin in myotubes did not enhance AChR clustering is

consistent with the latter view. It should be of interest to

investigate in future studies the extent to which the inhibition of

both cortactin and Rho-family GTPases blocks agrin-induced

AChR clustering.

We have shown here that cortactin was colocalized with the

Arp2/3 complex at AChR clustering sites. Notably, tyrosine

phosphorylated-cortactin was enriched at AChR clusters and the

phosphorylation of cortactin’s src-target sites was enhanced by

agrin treatment of muscle cells. Although cortactin was originally

identified as a major src kinase-substrate in cells, the influence

of phosphorylation on cortactin-dependent regulation of actin

polymerization long remained unclear [29,40]. An elegant

biochemical study carried out recently, however, has indicated a

Figure 7. Suppression of synaptic AChR aggregation by phospho-mutant cortactin expressed selectively in muscle cells. Xenopus
embryonic muscle cells expressing GFP (A-D) and GFP-tagged wild-type cortactin (WT-cort; E-H) and phospho-mutant cortactin (3YF-cort; I-N) were
co-cultured with spinals neurons for 1 d and then labeled with R-BTX to visualize AChR clusters. Cells expressing the exogenous proteins fluoresced
green and AChR clusters appeared red, as shown in this figure with 2-3 representative examples of nerves contacting muscle cells with GFP or GFP-
tagged cortactin proteins. In the GFP and WT-cort muscle cells (A-H), AChRs were tightly clustered (arrows) along nerve-contacts identified (traced in
white in colored panels) but this was not the case in 3YF-cort cells where nerves often induced no AChR clustering (J) or induced few clusters that
were loosely organized (L; arrowheads). We found cases where the same neurites moved across normal muscle cells and 3YF-cells (M-N) and in such
cases synaptic AChR clustering was robust in the normal cells (arrows) but not mutant cells (arrowheads). O. The percentages of nerve-contacts with
AChR clusters were determined by examining several co-cultures with muscle cells expressing GFP or the GFP-tagged cortactin proteins (see
Methods) and these values were normalized relative to numbers obtained from examining nerve-contacts on GFP-cells. In muscle cells expressing
phospho-mutant cortactin, synaptic AChR clustering was almost halved. Nerve-muscle contacts examined: GFP cells, 168; WT-cort cells, 214; 3YF-cort
cells, 225; mean and SEM shown, *P,0.0001.
doi:10.1371/journal.pone.0008478.g007
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novel mechanism by which phosphorylation of cortactin’s src-

target sites can stimulate F-actin assembly [33]. Using purified

proteins this study showed that phosphorylation of cortactin by src

enables the formation of a complex made up of cortactin and the

SH2 domain-containing adapter Nck1, plus N-WASP or the

WASP-interacting protein, WIP. Consistent with earlier work [41]

cortactin stimulated Arp2/3-dependent polymerization of actin

by its N-terminal acidic region; this activity was enhanced

following src-phosphorylation of cortactin, which promoted

Nck1-binding and through Nck1 the recruitment of WIP [33].

After src-phosphorylation cortactin could also be linked by Nck1

to N-WASP, and this complex (through the ‘‘VCA’’ domain of

N-WASP) more robustly stimulated F-actin assembly by Arp2/3

than cortactin or N-WASP alone. Importantly, a phospho-mutant

(3YF) cortactin was used to demonstrate that src-dependent

enhancement of cortactin’s ability to stimulate Arp2/3 (through

Nck1 and N-WASP or WIP) requires the Y421, Y466 and Y482

sites of cortactin [33]. Forced expression of the same 3YF-mutant

cortactin in myotubes, or the suppression of cortactin expression

using RNAi, inhibited agrin-induced AChR clustering in this

study. It is known that src kinases are rapidly activated by agrin-

stimulation of MuSK and that they phosphorylate MuSK, AChRs

and associated proteins [35]. Moreover, like phospho-cortactin

(this study), activated-src kinases are enriched at AChR clustering

sites in situ [12]. Thus src-cortactin signaling may be spatially

restricted to the synaptic regions of muscle where intimate

coupling of MuSK and src activation could lead to rapid tyrosine

phosphorylation of cortactin; this, in turn, could locally enhance

Arp2/3-dependent actin polymerization to generate ‘‘traps’’ that

capture mobile AChRs.

Currently a role of cortactin at the NMJ in vivo cannot be

directly tested because suitable models – viable animals with global

or muscle-specific cortactin gene deletion – are unavailable.

Moreover, through our own work we noted that Xenopus embryos

which had been injected with the phospho-mutant cortactin

mRNA failed to grow to a stage at which NMJs in the developing

tail could be studied. We were, however, successful in using this

dominant-negative approach to show that interference with

phosphorylation-dependent cortactin signaling in muscle is

sufficient for inhibiting nerve-induced AChR clustering, and by

extension NMJ formation, in culture. Interestingly, others have

studied mice lacking src kinase activity in muscle and have shown

that while NMJs can develop in the muscles of these mice, the

synaptic AChR aggregates found are less stable than their

counterparts in the muscles of normal mice [42]. One explanation

for this observation is that src binds to AChRs and phosphorylates

them, which enhances the cytoskeletal linkage of AChRs through

rapsyn [43,44,45,46]. The results of this study raise the additional

possibility that in the absence of normal src activity, sub-optimal

signaling by cortactin leads to the assembly of synaptic scaffolds

which hold AChRs poorly at NMJs.

Properly balanced src signaling is important for normal AChR

clustering at the NMJ [47], but what all targets of src influence

AChR clustering at the NMJ is incompletely understood. By

uncovering a role of the src-substrate cortactin in AChR clustering

this study suggests a previously unappreciated way by which src

could regulate AChR aggregation at the NMJ. Interestingly, two

other src-substrates we previously identified as targets in agrin/

MuSK signaling produced effects distinct from those described

here for cortactin: p120ctn promoted myopodial induction in

response to agrin [34], whereas signal-regulatory protein a1

(SIRPa1) stimulated the tyrosine phosphatase Shp2 to limit

MuSK-dependent AChR clustering [48] and to also facilitate

the dispersal of pre-patterned AChR clusters by synaptogenic

stimuli [14]. Intriguingly, cortactin can participate in p120ctn

signaling in epithelial cells [49] and can act together with the

p120ctn-relative d-catenin in generating filopodia-like dendritic

protrusions in neurons [50]. Moreover, cortactin itself also affects

dendritic spine morphogenesis and remodeling, with the depletion

of cortactin in neurons causing a reduction in spines [51,52].

Thus, cortactin-dependent actin polymerization triggered by src

could potentially facilitate p120ctn-mediated myopodial assembly

at the NMJ as well as synapse formation in central neurons. And,

although it is not known which phosphatases dephosphorylate

cortactin in muscle cells, the spread of phosphatase activity

initiated by agrin/MuSK [12,14,53] may bring about the

dephosphorylation of extrasynaptic cortactin to maintain efficient

actin polymerization by src-cortactin signaling selectively at

developing NMJs where agrin stimulates MuSK. Future studies

investigating the spatiotemporal control of cortactin’s phosphor-

ylation levels during neuronal synapse development and testing

whether that phosphorylation affects cortactin’s ability to influence

Figure 8. Cortactin signaling in agrin-dependent AChR clus-
tering: a model. Activation of MuSK by agrin induces AChR clustering
in an actin polymerization-dependent manner. This model depicts a
possible way in which cortactin signaling might promote the AChR
clustering process. Initiation of intracellular signaling by the activated
MuSK complex could enhance cortactin’s tyrosine phosphorylation
through src family tyrosine kinases (SFKs) (and possibly other kinases
such as abl), and cortactin, in turn, could increase actin polymerization.
Alternatively, cortactin might trigger actin polymerization by activating
the Arp2/3 complex, either on its own or in concert with WASP-related
proteins (N-WASP, WIP, etc.) to which it could be linked by the adapter
Nck. In parallel, via other signaling intermediates, MuSK could stimulate
Rho-family GTPases and, through them, F-actin assembly. Such
enhanced and dynamic actin polymerization at synaptic sites could
generate a scaffold which ‘‘traps’’ AChRs through rapsyn.
doi:10.1371/journal.pone.0008478.g008
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the formation of structures such as dendritic spines should yield

further insights into cortactin’s functions at CNS synapses and

elsewhere.

Methods

Reagents
Agrin was obtained from the conditioned medium of HEK293

cells transfected with a plasmid encoding neural agrin [54].

Recombinant heparin-binding growth-associated molecule (HB-

GAM) was generously provided by Dr. Heikki Rauvala (University

of Helsinki). Na-pervanadate, a potent tyrosine phosphatase

inhibitor, was prepared by mixing 10 mM Na-orthovanadate

with 1.7% hydrogen peroxide in a 50:1 ratio just before use and

diluting this solution as needed [53]. These reagents were

purchased: rhodamine-conjugated a-bungarotoxin (R-BTX) (Mo-

lecular Probes; Eugene, OR, USA); monoclonal antibodies against

cortactin (4F11) and phosphotyrosine (4G10) and a rabbit

polyclonal antibody against p34arc (Upstate Biotechnology; Lake

Placid, NY, USA); rabbit polyclonal antibodies against cortactin

phosphorylated on Y421, Y466 or Y482 (Cell Signaling

Technology; Danvers, MA, USA); rabbit polyclonal antibodies

against Arp2 and Y390-phosphorylated AChR b-subunit (Santa

Cruz Biotechnology; Santa Cruz, CA, USA); monoclonal anti-

Shp2 and anti-neurexin-1 antibodies (BD Biosciences; San Jose,

CA, USA); monoclonal anti-a-tubulin antibody DM1A (Sigma; St

Louis, MO, USA); rhodamine- and FITC-conjugated secondary

antibodies (Zymed; South San Francisco, CA, USA); horseradish-

peroxidase (HRP)-conjugated secondary antibodies (Jackson Im-

muno Research Laboratories; West Grove, PA, USA); and Triton

X-100 (TX-100) and West Pico enhanced chemiluminescence

(ECL) reagent (Pierce; Rockford, IL, USA).

Cell Cultures
Primary cultures of Xenopus myotomal muscle cells were

prepared from stage 20–22 embryos as described previously [55]

in accordance with HKUST’s established animal handling and

care procedures. Muscle cells were plated on glass coverslips

coated with entactin-collagen-laminin substrate (Upstate Biotech-

nology) and used within one week. For some experiments neural

tubes of stage 20–22 embryos were dissociated and spinal neurons

were seeded on muscle cells plated 3–5 d earlier; these nerve-

muscle co-cultures were examined 1 d later [34]. C2 mouse

myotube cultures were prepared by growing myoblasts (purchased

from ATCC, Manassas, VA, USA) on glass coverslips or in culture

dishes in DMEM containing 20% fetal bovine serum (growth

medium) until confluence and then inducing differentiation by

changing the medium to DMEM containing 2% horse serum

(differentiation medium); fresh differentiation medium was added

each day for 4–5 d [53].

Agrin-Treatment, Cell Extract Preparation,
Immuno-Precipitation/Blotting

Differentiated C2 myotubes in culture dishes were incubated for

1 h in fresh differentiation medium without or with added agrin

(plus 10 mM Na-pervanadate). After rinsing with cold phosphate

buffered saline (PBS), extracts were prepared using a TX-100

buffer (100 mM Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1%

TX-100, 1 mM Na-pervanadate) [53], with 1 ml buffer being

added to a 10 cm culture dish of cells. To clarified extracts anti-

cortactin or control antibodies and Protein A/G agarose beads

(Santa Cruz Biotechnology) were added, and after mixing for 2 h

at room temp the beads were spun down, washed extensively with

Tris-buffered saline containing 0.1% TX-100 and then mixed with

SDS-electrophoresis sample buffer to elute immuno-precipitated

proteins. Samples were electrophoresed, transferred to PVDF

membranes and probed with primary antibodies and HRP-linked

secondary antibodies for ECL-based detection.

Synthesis of mRNAs, Myotube Transfection
Wild-type and phospho-mutant mouse cortactin cDNAs were

gifts from Drs. Tom Parsons (University of Virginia) and Xi Zhan

(University of Maryland), respectively. In the phospho-mutant

cortactin (3YF) construct, three src target sites – Y421, Y466 and

Y482 – were changed to non-phosphorylatable Fs [36]. Both wild-

type and mutant cortactin proteins were tagged with green

fluorescent protein (GFP) by inserting the cortactin cDNAs into

pEGFP-N1 plasmid (Clonetech); the cortactin-GFP sequences

were subcloned into pCS2+ vector [19] and then into pcDNA3.1.

The cortactin-GFP encoding plasmids and pCS2+ vector with an

insert encoding only GFP were linearized and used for mRNA

preparation with the mMessage mMachine mRNA synthesis kit

from Ambion, Inc. (Austin, TX, USA). The mRNAs were diluted

with Opti-MEM I medium (GIBCO) before using Lipofectamine

2000 (Invitrogen) to transfect them into myotubes that had been

maintained in differentiation medium for 4 d; 1 mg mRNA was

used per 3.5 cm dish of cells [48]. Myotubes were incubated in

transfection solutions for 6 h and then transferred back to

differentiation medium before use in experiments.

Cortactin Knockdown by RNA Interference
A pool of four small interfering RNAs (siRNAs) targeting mouse

cortactin and several other siRNAs against unrelated proteins were

purchased from Dharmacon RNA Technologies (Lafayette, CO,

USA); the siRNAs (100 pmol) were mixed with GFP cDNA (1 mg)

and used for transfecting C2 myoblasts (with Lipofectamine 2000)

grown in 3.5 cm culture dishes or on glass coverslips placed within

the dishes. Transfection was carried out (for 6 h) when cells were

,60% confluent, and the cells were then put back in growth

medium to allow them to reach confluence before transferring

them to differentiation medium [53]. After 4 d myotubes were

treated overnight with agrin and used for examining total cortactin

expression (by immuno-blotting extracts prepared from myotubes

growing in dishes) as well as GFP fluorescence and AChR

clustering (after R-BTX labeling of cells growing on coverslips

placed in the same dishes).

Co-Culturing of Xenopus Neurons with Muscle Cells
Expressing Exogenous Proteins

To express GFP-tagged wild-type and mutant cortactin (or

GFP) selectively in muscle cells, mRNAs encoding these proteins

were injected into one cell of 2-4-cell stage Xenopus embryos;

myotomal muscle cells were cultured from the embryos after they

had developed to stage 20–22 [34]. Muscle cells were maintained

for 3–5 d and then spinal neurons from normal (uninjected)

embryos were seeded on them and allowed to spread for 1 d.

Labeling, Microscopy and Quantification of AChR
Clustering

AChRs on Xenopus muscle cells were labeled with R-BTX

either before exposing cells to control medium or medium

containing agrin or HB-GAM beads, or after innervation in co-

culture experiments. To localize Arp2/3 complex proteins,

phospho-cortactin, etc., cells were fixed with cold ethanol, blocked

with PBS containing bovine serum albumin, and labeled with

primary and fluorescent-secondary antibodies. Cells were exam-

ined with a 63X, 1.4 n.a. lens using an Olympus IX70 inverted
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microscope, equipped with a Hamamatsu ORCAII cooled-CCD

camera controlled by MetaMorph software (Universal Imaging,

West Chester, PA, USA).

To analyze AChR clustering in C2 myotubes, cells were treated

with agrin overnight, labeled with R-BTX, fixed with 4%

paraformaldehyde and then mounted on slides. All transfection

assays were carried out multiple times with duplicate or triplicate

samples and AChR clusters were examined in (only) transfected

(green fluorescent) myotubes. After selecting transfected myotubes

randomly, all AChR clusters on those myotubes were counted and

their lengths were measured. Average numbers of AChR clusters

per myotube and the average lengths of clusters were calculated

and normalized relative to values obtained for clusters from cells

expressing GFP only.

In Xenopus nerve-muscle co-cultures, effects of exogenous

proteins on synaptic AChR clustering was quantified as follows: in

R-BTX-labeled live cultures, nerve-muscle pairs were randomly

identified (in phase-contrast) in which nerves directly contacted

muscle cells; then, if the muscle cell was found to be green

fluorescent (indicating the expression of GFP- or GFP-tagged

cortactin proteins), we determined (using the rhodamine filter)

whether or not AChRs were concentrated focally at nerve-muscle

contacts. Co-cultures were prepared using muscle cells from

several separate batches of mRNA-injected embryos and neurons

from normal embryos and in each preparation 3–6 coverslips were

examined. The number of nerve-muscle contacts and the number

of contacts with AChR clusters were determined and the latter

values were divided by the former; pooled data were normalized

using numbers obtained from co-cultures in which muscle cells

only expressed GFP.

Supporting Information

Table S1 Association of phospho-cortactin with AChR clusters.

Found at: doi:10.1371/journal.pone.0008478.s001 (0.03 MB

DOC)
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