Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1962 May;83(5):1005–1009. doi: 10.1128/jb.83.5.1005-1009.1962

CITRATE TRANSPORT SYSTEM OF STREPTOCOCCUS DIACETILACTIS

R J Harvey 1, E B Collins 1
PMCID: PMC279400  PMID: 13905110

Abstract

Harvey, R. J. (University of California, Davis) and E. B. Collins. Citrate transport system of Streptococcus diacetilactis. J. Bacteriol. 83:1005–1009. 1962.—The uptake of citrate by Streptococcus diacetilactis is mediated by a transport system that was distinguished from passive diffusion by inducibility and kinetics of uptake. In these characteristics the system is similar to the β-galactoside permease of Escherichia coli. The citrate transport system of S. diacetilactis differs from β-galactoside permease by requiring metabolic energy for operation under conditions that do not permit intracellular accumulation of the substance transported.

Full text

PDF
1005

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRETT J. T., LARSON A. D., KALLIO R. E. The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J Bacteriol. 1953 Feb;65(2):187–192. doi: 10.1128/jb.65.2.187-192.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  3. BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
  4. CLARKE P. H., MEADOW P. M. Evidence for the occurrence of Permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa. J Gen Microbiol. 1959 Feb;20(1):144–155. doi: 10.1099/00221287-20-1-144. [DOI] [PubMed] [Google Scholar]
  5. COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GERHARDT P., MAC GREGOR D. R., MARR A. G., OLSEN C. B., WILSON J. B. The metabolism of brucellae: the role of cellular permeability. J Bacteriol. 1953 May;65(5):581–586. doi: 10.1128/jb.65.5.581-586.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HARVEY R. J., COLLINS E. B. Role of citritase in acetoin formation by Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol. 1961 Dec;82:954–959. doi: 10.1128/jb.82.6.954-959.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KOGUT M., PODOSKI E. P. Oxidative pathways in a fluorescent Pseudomonas. Biochem J. 1953 Dec;55(5):800–811. doi: 10.1042/bj0550800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEACH F. R., SNELL E. E. The absorption of glycine and alanine and their peptides by Lactobacillus casei. J Biol Chem. 1960 Dec;235:3523–3531. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES