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Abstract
Auditory neurons can be characterized by a spectro-temporal receptive field, the kernel of a linear
filter model describing the neuronal response to a stimulus. With a view to better understanding the
tuning properties of these cells, the receptive fields of neurons in the zebra finch auditory fore-brain
are compared to a set of artificial kernels generated under the assumption of sparseness; that is, the
assumption that in the sensory pathway only a small number of neurons need be highly active at any
time. The sparse kernels are calculated by finding a sparse basis for a corpus of zebra-finch songs.
This calculation is complicated by the highly-structured nature of the songs and requires
regularization. The sparse kernels and the receptive fields, though differing in some respects, display
several significant similarities, which are described by computing quantative properties such as the
seperability index and Q-factor. By comparison, an identical calculation performed on human speech
recordings yields a set of kernels which exhibit widely different tuning. These findings imply that
Field L neurons are specifically adapted to sparsely encode birdsong and supports the idea that
sparsification may be an important element of early sensory processing.

1 Introduction
It has long been established that the firing rate behaviour of many cells in the primary visual
and auditory areas can be predicted by a linear filter model. Any discussion of this prediction
must be undertaken with several caveats: the accuracy of the prediction is modest (Machens
et al. 2004; Eggermont et al. 1983; Theunissen et al. 2000; Sen et al. 2001) and there are
numerous non-linear effects which make the calculation of the kernel dependent on the corpus
of stimuli (Margoliash 1983; Theunissen et al. 2001; Theunissen and Doupe 1998; deCharms
et al. 1998). Furthermore, the model predicts only the spike rate and provides no information
about spike timing. Nonetheless, these linear models do associate a particular kernel to a given
cell and it is obviously interesting to ask what determines the selection of these kernels.

This question is perhaps unusually well-specified in the case of song birds. Since song birds
are adept at distinguishing between different con-specific songs, these songs can be considered
an important class of natural sounds. Ideally, sensory processing is studied using stimuli whose
statistics reflect those of the natural environment (deCharms et al. 1998). A guiding principle
in neural coding is that sensory systems should efficiently encode such stimuli, and in fact,
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there is already evidence from the study of the visual system, that the linear kernels of visual
neurons are related to a sparse code for natural images (Vincent et al. 2005; Olshausen and
Field 1996; Vinje and Gallant 2000). Furthermore, modelling of auditory systems (Lewicki
2002) has shown that the tuning properties of cochlear hair cells are well predicted by a sparse
code for natural sound waveforms. The aim of this paper is to extend these ideas to the avian
auditory system. The methods used are similar to those employed in these previous studies,
however, additional difficulties arise because birdsong does not well-sample the entire
frequency-time domain.

The male zebra finch sings; along with a variety of simple calls, such as warning cries, the
male bird has a single, identifying song, which develops under the tutelage of an adult male.
The female finch does not sing, however, both the male and female birds are able to distinguish
songs. Songs usually begin with a series of introductory notes, followed by two or three
repetitions of the motif: a series of complex frequency stacks known as syllables, separated by
pauses. Syllables are typically about 50ms long, with songs lasting about two seconds.
Although perhaps discordant to the human ear, zebra finch songs have a very rich and complex
structure. Importantly, the zebra finch auditory system is believed to be highly tuned to detect
and recognise this song structure (Margoliash 1983; deCharms et al. 1998; Theunissen et al.
2000).

Just as the behaviour of V1 cells in visual cortex is decribed by a linear model which convolves
the stimulus image with a receptive field (Jones and Palmer 1987), the stimulus-response
properties of auditory neurons are often described in terms of a linear filter model (Aertsen
and Johannesma 1981; Theunissen et al. 2001). The spectro-temporal receptive field (STRF)
is a linear kernel relating the spectrogram of the stimulus to the firing rate response of the
neuron. While linear in the spectrogram, the STRF model is non-linear in the stimulus due to
a non-linear transformation in the calculation of the spectrogram. This static non-linearity is
thought to mimic the behaviour of cochlear hair cells at the earliest stage of auditory processing.
Such a linear mapping from spectrogram to response is rather naive and, not surprisingly, gives
an incomplete description of neuronal behaviour (Machens et al. 2004; Eggermont et al.
1983; Theunissen et al. 2000; Sen et al. 2001). Nonetheless, the model does provide a good
approximation for some cells, and a description of how information is processed and encoded
in the primary auditory areas should account for this linear behaviour.

As described in several previous studies, (Theunissen et al. 2001; Machens et al. 2004; Sen et
al. 2001), it is possible to calculate STRFs for auditory neurons from electrophysiological
recordings. In particular, the STRFs of Field L neurons in the zebra finch auditory forebrain
have been calculated and parameterised by a number of quantitative measures such as the
location and width of the time and frequency peaks. These STRFs are also characterised by a
number of distinctive spectral and temporal features such as narrowband selection and on-off
switching. We investigate whether these properties of simple neurons can arise naturally from
a sparse coding strategy for natural sounds. Specifically, we consider optimal strategies for the
encoding of an ensemble of 20 zebra finch songs and generate a set of optimal kernels which
sparsely encode this ensemble using an Olshausen-Field type algorithm (Olshausen and Field
1996). This learning algorithm has been succesfully used to calculate sparse bases for natural
images. Here, we adapt it for use with highly correlated, ill-conditioned data, and apply it to
the birdsong spectrograms.

2 Spectrotemporal Receptive Fields
As described in (Theunissen and Doupe 1998), we consider a spectrographic representation of
the songs, where the spectrogram represents the log amplitude of the stimulus in frequency
and time, obtained from a time-windowed Fourier transform of the song waveform. Here,
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spectrograms are represented by a combination of nf = 32 narrowband signals, {sf(t)}, with
centre frequencies between 250 and 8000Hz (Fig. 1).

According to the linear filter model, an approximate firing rate is calculated by convolving the
spectrogram with a kernel hf(s):

(1)

In practice, this integral is taken over a biologically relevant interval, on the order of 100ms,
effectively restricting the support of hf(s). The linear kernel is chosen so that the predicted
firing rate r͂(t) gives the best possible approximation to r(t), the instantaneous firing rate
response of the neuron to the stimulus at time t. The firing rate r(t) is estimated from the
poststimulus time histogram of the neuron, averaged over several presentations of the stimulus
and smoothed with a Hanning window (Blackman and Tukey 1959).

The prediction error is usually defined by the L2 measure

(2)

and the kernel hf(s) chosen so as to minimize ε. Although the formula for ε has the appearance
of an integral, time is, in practice, discretized into δt =1ms bins and the convolution is rewritten
in matrix form with time indices τ and σ corresponding to t = τδt for time and s = σδt,
corresponding to the temporal support of the STRF. Hence temporal arguements are replaced
by indices

(3)

and the STRF model equation, (1), is now

(4)

where σ = 1 … ns where T = nsδt is the temporal width of the STRF. The error is now given
by

(5)

where L = ntδt is the length of the experiment, one second here.

Differentiating with respect to Hfσ gives the usual least squares fit solution

(6)
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It is possible to use the discrete Fourier transform to solve this equation by deconvolution
(Theunissen et al. 2001; Sen et al. 2001); however, here, for simplicity, it will be solved by
noting that this is just a matrix equation disguised by the large number of different indices. To
make this clear the indices σ and f are vectorized so that I = (f −1)ns + σ and J = (g − 1)ns +
ρ and hence SτI = Sτ−σ,f and, for example, HJ = Hgρ. Now, the equation becomes

(7)

where CI = ΣτRτSτ−σ,f and, for clarity, the shorthand

(8)

has been used for the square matrix. Now, HJ, and therefore the STRF, is recovered by inverting
STS.

In practice, however, this precise solution does not give the best STRF estimate, and the STRF
calculated in this way will, in fact, give a poor prediction of the response to novel stimuli not
used in the calculation. This is a consequence of overfitting to the training data.

As discussed above, to realistically characterise neural responses, we must use stimuli which
provoke a strong response in the neurons of interest (deCharms et al. 1998; Theunissen et al.
2000; Theunissen and Doupe 1998). In fact, the existence of an easily specified ensemble of
natural stimuli is a key advantage of using song birds in studies of the auditory system.
However, there is a disadvantage: natural sounds such as birdsong have a high degree of
temporal and spectral auto-correlation, and so the majority of the information in the stimulus
is contained in a relatively small number of significant dimensions. As a result, there exist
dimensions within the stimulus space along which the variance is extremely low and in which
noise becomes significant. Since the least squares solution gives equal weighting to all
dimensions in the stimulus, this results in the STRF being fitted to the noise in these dimensions.
In other words, the stimulus autocorrelation matrix STS is generally ill-conditioned. This
problem must be overcome by a process of regularisation.

In these calculations, the autocorrelation matrix STS has a number of very small eigenvalues,
corresponding to low variance dimensions. These become very large on inversion, and have
the effect of amplifying noise in the experimental data. As in (Theunissen et al. 2000; Sen et
al. 2001) a regularized solution is obtained by removing the contributions of these low
eigenvalue directions, and thus projecting the song data down onto a subspace of significant
dimensions. Hence, if

(9)

is the spectral decomposition of STS over its eigenvalues λα and eigenvectors Eα then the
regularization is achieved by taking the Moore-Penrose pseudoinverse (Penrose 1955)

(10)
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The tolerance value, ε, is chosen so as to give the most accurate prediction of the response to
novel stimuli. This is achieved by means of cross-validation. A subset of the data, known as
the validation set, is put aside and the kernels are calculated using the remainder of the data,
known as the training set. The kernels are then used to predict the response to the validation
data. The tolerance value is chosen as that which miniminses the prediction error for the
validation set.

3 Sparse Coding
According to the sparse coding hypothesis for sensory systems, only a small subset of the
neurons in a sensory pathway need be strongly active while accurately encoding a given
stimulus (Olshausen and Field 2004, 1996; Field 1994; Atick 1992). From an information
theoretic point of view, an ideal sparse coding regime is one in which the neuronal firing rates
are statistically independent (Atick 1992; Lewicki 2002; Olshausen and Field 1996) and
individual cells favour either low or high activity. Here, neurons are identified with kernels or
STRFs, so each neuron corresponds to one direction in a stimulus space. In this section, we
calculate an optimal set of linear kernels which sparsely encode zebra finch song.

Using the same vectorized notation as in the previous section, SτI can be thought of as a patch
of the stimulus spectrogram with the same temporal width as the STRFs, ending at the time t
= τδt. The spectrogram patch is decomposed at fixed time τ over a basis BnI where n is a
component index. Hence, let

(11)

where A is the matrix of components. Assuming that the basis B is invertible, it is possible to
choose the component matrix A so that S͂τI = S͂τI by setting

(12)

Where each row of B is a basis vector associated with the neuron n. In this way, the nth column
of the inverse basis B−1 is equivalent to the STRF, HI, of the neuron n and Aτn is equivalent to
the firing rate of that neuron at time t = τδt. However, in an efficient coding regime, we must
also require that the firing rates be sparse. This is achieved by placing a constraint on A and
allowing a trade off between the sparseness of the representation and the accuracy of the
stimulus reconstruction S͂. Furthermore, as with the STRFs, it will be neccessary to regularize
the calculation.

Following the method of Olshausen and Field (Olshausen and Field 1996) we seek to minimise
an energy function, E(A, B; μ) for the sample at each time τ:

(13)

where the first term represents the reconstruction error in the representation, and where C(·) is
some sub-linear cost function which penalises redundancy in the coding for a given sample. A
typical choice (Olshausen and Field 1996) which is used here, is
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(14)

which favours representations having fewer non-zero coefficients, since

 for all xi. μ is a positive constant which determines the relative
importance of sparseness and reconstruction accuracy.

To find the minimum a two-step iterative method is used: E(A, B; μ) is first minimised with
respect to the components Aτn by conjugate gradient descent, averaged over many samples.
The basis functions are then updated by

(15)

where η > 0 is the learning rate. Beginning with a random basis set, this algorithm converges
after several thousand iterations to a matrix B of optimal basis functions which allow an
accurate sparse encoding of the stimulus. Figure 2 shows the increase in the sparseness of the
system after learning. The optimal kernels are now given by B−1. Hence, B must be required
to be invertible and well conditioned.

Difficulties arise in this calculation due to the highly correlated nature of the data used. Such
difficulties are dealt with in many studies (Olshausen and Field 1996; Bell and Sejnowski
1997) by a process of whitening, or sphering the data. However, in this case, in order to allow
for the inversion of our basis, and the direct comparison of our sparse kernels with auditory
STRFs, we proceed by means of dimensionality reduction, as used in the calculation of STRFs.
As we have described in Section 2 above, the regularized STRF is calculated by removing the
contributions due to low variance dimensions in the stimulus, and projecting the songs onto a
sub-space of high-variance dimensions. Hence, if, as above

(16)

and anything with an I index can be decomposed over the eigenbasis

(17)

Substituting these into the energy function, and using ∑I EαIEβI = δαβ,

(18)

To project the problem onto the significant stimulus dimensions, we need only restrict the range
of α. We write (ε) for the set of α such that λα > ε, where ε is a cut-off value seperating the
high-variance dimensions of the songs - the ones that will be preserved - from the noise. The
energy function now becomes
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(19)

and we minimize over bnα rather than BnI. BnI can be reconstructed as

(20)

To obtain a set of optimal kernels, B must now be inverted. If a complete representation is
chosen, where the number of basis elements N is the same as the number of dimensions in the
stimulus; N = | (ε)| then the matrix b is square and

(21)

Alternatively, an overcomplete representation can be considered where N > | (ε)|, in which
case b−1 must be replaced by the Moore-Penrose pseudoin-verse, b+ (ε).

The eigenvalue cut-off, ε, is often expressed in terms of the tolerance factor ε/λ1, where λ1 is
the largest eigenvalue. In STRF calculations the optimal tolerance factor is determined through
cross validation. Here, we have used a tolerance value of 0.004. This is within the range of
tolerance values used in the calculation of actual Field L STRFs (Theunissen et al. 2000; Sen
et al. 2001) and gives 20 dimensions: | (ε)| = 20, (see Fig. 3). This value is sufficient to remove
noise while still allowing an accurate reconstruction of the stimulus, with more than 90% of
stimulus variance explained.

It should also be noted that | (ε)| is dependent on the length of the samples chosen, since
longer samples will display a higher degree of temporal auto-correlation, and hence will have
a higher proportion of noisy, low-eigenvalue dimensions. Figure 4 shows the proportion of
dimensions above threshold as a function of sample length.

4 Results
We apply these methods to an ensemble of 20 zebra finch song spectrograms, each of one to
two seconds duration. For suitable choices of ε and μ, we obtain a set of optimal kernels sharing
many of the observed characteristics of STRFs in the zebra finch auditory forebrain.

Figure 5 shows the set of optimal kernels of length 50ms calculated for N = | (ε)| = 20. We
observe a number of similarities with actual neuronal STRFs for Field L neurons. There are
excitatory and inhibitory peaks on similar scales to those found in Field L STRFs, with both
excitatory and in-hibitory regions having similar amplitude, and kernels are localized in space
and time, though possibly not as markedly localized as some STRFs of experimentally observed
cells. Many of the sparse kernels show sensitivity to complex features such as frequency stacks,
which are a common feature of zebra finch song. These kernels are qualitatively similar to
many found in Field L of the zebra finch forebrain, though it should be noted that the multiple
peaks obseved in these kernels are not common to the majority of Field L STRFs. Importantly,
though these kernels display some differences from Field L STRFs, it appears that those
similarities which are observed increase with sparsification of the system, and are not observed
in non-sparse filters.
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Furthermore, we can quantitatively characterise the sparse kernels using a number of spatial
parameters, and compare these values to those obtained from auditory STRFs. Parameters
commonly used to characterise STRFs include the width of the largest peak in both time and
frequency directions, Wt and Wf; the peak frequency, Fpeak; the time to the largest peak
Tpeak; the quality factor, Q; the best modulation frequency, BMF and the spectral-time
separability, SI.

These values, as calculated from the sparse kernels, agree well with those found in several
studies of the avian auditory forebrain (Zaretsky and Konishi 1976; Muller and Leppelsack
1985; Heil and Scheich 1991; Theunissen et al. 2000) (See Table 1). The observed range of
peak frequencies, Fpeak closely matches that found in Field L STRFs, as do the seperability
index, SI, and quality factor, Q.

The sparse kernels exhibit fine spectral tuning with localized peaks of average width Wf =1.1
kHz, and temporal tuning with Wt typically in the range of 10 – 20ms (mean value 14.2ms).
The kernels show little variation in peak widths, and Wf appears largely independent of peak
frequency. Interestingly, Wf is seen to decrease as a function of the sparseness parameter, μ,
as shown in Figure 6 suggersting that localized kernels arise as a result of sparsification.

The sharpness of the spectral tuning is measured by the quality factor, Q, defined as the ratio
of the peak frequency to the width: Q = Fpeak/Wf. Values of Q are in the range 1 – 5 (mean
value 2.9), matching the findings of Theunissen et al. (2000).

The best modulation frequency, BMF, is a measure of the AM frequency to which a neuron is
best tuned, and is obtained from the Power Spectral Density of the linear kernel. The BMFs of
individual sparse kernels were in the range 0 – 40Hz, with 90% of sites having BMF ≤ 20Hz
(resolution 20Hz), indicating a strong preference for low frequency amplitude modulations, as
seen in auditory STRFs (Sen et al. 2001). The overall BMF of the set of optimal kernels was
obtained by concatenating peak timeslices of all the sparse kernels. This gives an overall BMF
value of 8Hz (resolution 1Hz).

Spectral-temporal seperability is measured by the SI value, obtained from the Singular Value
Decomposition (SVD) of the STRF (Sen et al. 2001). It is

(22)

where , and ρi is the ith singular value. As in Sen et al. (2001), we choose n = 4 since
the majority of features in the sparse kernels are accurately reconstructed from the first three
singular values. As is the case with actual Field L neuronal STRFs, kernels are obtained with
a wide variation in separability, ranging from relatively complex inseparable kernels to simpler,
roughly separable kernels. Values of SI are in the range 0.43 – 0.84, with a mean value of 0.59
for the kernels shown in Figure 5. In general, we observe that the average separability of the
sparse kernels increases as a function of the sparseness parameter, μ, (Fig. 7) indicating that
separability arises as a consequence of sparse coding.

For comparison, we also calculated a set of non-sparse kernels by setting μ = 0 (Fig. 8). These
kernels exhibit significantly broader tuning than our sparse kernels and more closely resemble
PCA kernels than auditory STRFs. Peak frequencies, Fpeak are not restricted to low frequencies,
occuring over the range (250 – 7750Hz), while peaks are broader in both time and frequency
directions, with mean values Wf = 1.7kHz, Wt = 20ms and Q = 1.4. In addition, in order to rule
out ensemble effects, the calculation of the sparse basis was repeated using new song recordings
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not used in the initial calculation. The inclusion of this new song data was found to have no
significant effect on the results. Furthermore, we applied our algorithm to an ensemble of low
noise human voice recordings and calculate the corresponding sparse kernels. As with the non-
sparse filters mentioned above, these filters differ significantly in their tuning from those
calculated for birdsong and from Field L STRFs. This disimilarity further supports the
hypothesis that the tuning of Field L neurons is specifically adapted to encode con-specific
song. To better illustrate this, we calculate the standard deviation of the distributions of SI and
Q for each of our three filter sets, and use this to quantify the deviation of the Field L filter
mean from the mean of each of these sets. As can be seen, the deviation for our sparse filters
is significantly smaller than for our two control filter sets. However, we currently lack a suitable
statistical model by which to further analyise the significance of our prediction.

Table 1 below summarises the tuning properties of each of the filter sets. Table 2 shows the
deviation of the field L mean values for Q and SI from the mean of each calculated filter set.

5 Discussion
The modified Olshausen-Field type algorithm described above identifies a sparse structure of
dimension | (ε)| within the song spectrograms. We generated a system of STRF-like linear
kernels which accurately and efficiently encode this structure. The similarity between these
kernels and neuronal STRFs from the zebra finch suggests that the zebra finch auditory pathway
is well adapted to encode this structure. In particular, the fine spectral tuning and localized
peaks characteristic of many Field L STRFs are seen to arise in the sparse kernels as a
consequence of sparsification. Similarly, greater separability is seen to arise from increased
sparsification of the system. By comparison, both the set of non-sparse kernels and the sparse
kernels calculated for human speech differ significantly in their tuning parameters from zebra
finch auditory STRFs. This supports our hypothesis that the tuning is specifically optimised
to encode conspecific song.

The main result here is the comparison of the sparse kernels with experimentally measured
STRFs. In order to make this comparison, it is necessary to regularize the calculation. There
are three reasons for this. Firstly, the biologically relevant timescale appears to be quite long,
at about 50ms: as shown in Figure 4, longer samples possess a lower proportion of significant
dimensions. Secondly, the corpus of stimuli we consider is limited to bird songs. It would be
tempting to add other natural sounds to sample other stimulus dimensions, however, since
sensory neurons are non-linear (Margoliash 1983;deCharms et al. 1998;Theunissen et al.
2000), the sparse kernels would be less relevant to the electrophysiological experiments which
were performed using clean songs in an acoustically isolated environment (Sen et al. 2001).
Finally, the sparse kernels are computed by inverting the sparse basis, potentially allowing
noise to dominate the result.

Efficient or sparse coding certainly seems to be one of the primary goals of early visual
processing (Bell and Sejnowski 1997; Olshausen and Field 1996; Vincent et al. 2005) and there
is reason to believe that the same is true for auditory systems. Lewicki (2002) for example,
considered a sparse basis for an ensemble of natural sound waveforms composed of animal
vocalizations and environmental noises. Interestingly, for a specific mixture of sounds he found
that this sparse basis has similar tuning properties to the fibres of the auditory nerve. Since the
focus is on an earlier stage of sound processing, far shorter, 8ms, samples are used and the
basis is not inverted; for this reason regularization is not required and so this calculation differs
from ours, though the conclusion is very much in the same spirit. Furthermore, Smith and
Lewicki (2006) have shown that such sparse codes yield extremely efficient representations
of acoustic signals.
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In the specific case of birdsong, the idea that the receptive fields are adapted to song is supported
by (Woolley et al. 2005), where there is a comparison between the tuning properties of cells
and the statistical structure of the songs themselves. Recent modelling of avian auditory areas
(Blatter and Hahnloser 2008) also suggests that sparse coding in Field L could play a role in
higher level avian auditory processes such as song selection.

The results presented here suggest that there does in fact exist such a sparse coding in Field L,
and imply the existence of a sparsifying interaction between Field L cells. However, the nature
of this interaction is unknown. It seems unlikely that a direct gradient descent of the type
described here could be implemented in a realistic neural network. Instead, sparsification is
assumed to come about as a result of a locally inhibitory interaction between cells. An
interesting avenue for further research would be to model this interaction in a biophysically
realistic manner.

Acknowledgments
The authors thank John Kane and Christer Gobl of the Department of Clinical Speech and Language Studies, Trinity
College, for their invaluable assistance in obtaining the voice recordings used in this study. C.H. thanks the
International Human Frontiers Science Program Organisation for a short-term fellowship and the Department of
Biomedical Engineering, Boston University for hospitality. C.H. and G.G. are supported by Science Foundation Ireland
grant 08/RFP/MTH1280, G.G. is also grateful to Mathematics Applications Consortium for Science and Industry for
support. D.B. was supported by an Irish Research Council for Science, Engineering and Technology studentship and
is grateful to the Wellcome Trust for support through grant 082914/Z/07/Z. K.S. was supported by NIH grant RO1
DC007610.

References
Aertsen AMHJ, Johannesma PIM. The spectro-temporal receptive field. Biological Cybernetics

1981;42:133–143. [PubMed: 7326288]
Atick JJ. Could information theory provide an ecological theory of sensory processing? Network

1992;3:213–251.
Bell AJ, Sejnowski TJ. The independent components of natural scenes are edge filters. Vision Research

1997;37(23):3327–3338. [PubMed: 9425547]
Blackman, RB.; Tukey, JW. The Measurement of Power Spectra, from the Point of View of

Communications Engineering. Dover: 1959.
Blatter, F.; Hahnloser, R. Poster at Society for Neuroscience Meeting. Washington D.C.: 2008. A

sparseness hierarchy models song selectivity.
deCharms RC, Blake DT, Merzenich MM. Optimizing sound features for cortical neurons. Science

1998;280:1439–1443. [PubMed: 9603734]
Eggermont JJ, Aertsen AM, Johannesma PI. Prediction of the responses of auditory neurons in the

midbrain of the grass frog based on the spectro-temporal receptive field. Hearing Research
1983;10:191–202. [PubMed: 6602800]

Field DJ. What is the goal of sensory coding? Neural Computation 1994;6:559–601.
Heil P, Scheich H. Functional organisation of the avian auditory cortex analogue. i. topographic

representation of isointensity bandwidth. Brain Research 1991;539:110–112. [PubMed: 2015496]
Jones JP, Palmer LA. The two-dimensional spatial structure of simple cell receptive fields in cat striate

cortex. Journal of Neurophysiology 1987;58:1187–1211. [PubMed: 3437330]
Lewicki MS. Efficient coding of natural sounds. Nature Neuroscience 2002;5(4):356–363.
Machens CK, Wehr MS, Zador AM. Linearity of cortical receptive fields measured with natural sounds.

Journal of Neuroscience 2004;24:1089–1100. [PubMed: 14762127]
Margoliash D. Acoustic parameters underlying the responses of song-specific neurons in the white-

crowned sparrow. Journal of Neuroscience 1983;3:1039–1057. [PubMed: 6842281]
Muller CM, Leppelsack HJ. Feature extraction and tonotopic organization in the avian auditory forebrain.

Experimental Brain Research 1985;59

Greene et al. Page 10

Network. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Olshausen BA, Field DJ. Energence of simple-cell receptive field properies by learning a sparse code for
natural images. Nature 1996;381:607–609. [PubMed: 8637596]

Olshausen BA, Field DJ. Sparse coding of sensory inputs. Current Opinion in Neurobiology 2004;14(4):
481–487. [PubMed: 15321069]

Penrose R. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society
1955;51

Sen K, Theunissen FE, Doupe Allison J. Feature analysis of natural sounds in the songbird auditory
forebrain. Journal of Neurophysiology 2001;86:1445–1458. [PubMed: 11535690]

Smith EC, Lewicki MS. Efficient auditory coding. Nature 2006;429:978–982. [PubMed: 16495999]
Theunissen FE, Doupe AJ. Temporal and spectral sensitivity of complex auditory neurons in the nucleus

hvc of male zebra finches. Journal of Neuroscience 1998;18(10):3786–3802. [PubMed: 9570809]
Theunissen FE, Sen K, Doupe AJ. Spectral-temporal receptive fields of nonlinear auditory neurons

obtained using natural sounds. Journal of Neuroscience 2000;20(6):2315–2331. [PubMed:
10704507]

Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation
in Neural Systems 2001;12:289–316.

Vincent BT, Baddeley RJ, Troscianko T, Gilchrist ID. Is the early visual system optmised to be energy
efficient? Network: Computation in Neural Systems 2005;16:175–190.

Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual cortex during natural vision.
Science 2000;287:1273–1276. [PubMed: 10678835]

Woolley SMN, Fremouw TE, Hsu A, Theunissen FE. Tuning for spectro-temporal modulations as a
mechanism for auditory discrimination of natural sounds. Nature Neuroscience 2005;8:1371–1379.

Zaretsky MD, Konishi M. Tonotopic organization in the avian telen-cephalon. Brain Research
1976;111:167–171. [PubMed: 953697]

Greene et al. Page 11

Network. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A sample spectrogram of one of our zebra finch song recordings. Amplitude is shown on a
colour scale from blue (lowest) to red (highest) The temporal resolution of the spectrogram is
1ms, and the spectral resolution is 250Hz
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Figure 2.
A Distribution of weights for learned basis functions (dotted line) compared to those for a
random basis (solid line) averaged over all filters. The large peak and heavy tail of the
distribution for learned basis functions is characteristic of a sparse response. B: The kurtosis,
K, of the distribution of weights for learned basis functions increases as a function of the
sparseness parameter.
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Figure 3.
(ε) is the set of α such that λα > ε. Here ε = 0.004λ1. The contributions due to low-eigenvalue

dimensions are ignored.
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Figure 4.
Proportion of dimensions above tolerance as a function of sample width (ε = 0.004). Longer
samples contain a higher degree of temporal correlation, and so have proportionally fewer high
variance dimensions. Here | (ε)| is the number of significant dimensions, and nfns is the total
number of dimensions in the stimulus space.
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Figure 5.
Set of 20 learned optimal filters calculated using a complete representation with μ = 150, 000
and tolerance value 0.004. Amplitude is shown on a colour scale from blue (lowest) to red
(highest).
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Figure 6.
Average spectral peak width, Wf as a function of sparseness parameter. Sharp spectral tuning
arises from increased sparseness in the system.

Greene et al. Page 17

Network. Author manuscript; available in PMC 2009 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
The average separability of the 20 sparse kernels increases with the sparseness parameter μ.
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Figure 8.
A set of non-sparse filters for our ensemble of birdsong. B: Sparse filters calculated for an
ensemble of human voice recordings. These recordings were made using a Pearl CC 30
microphone in a semi-anechoic chamber, at a sampling rate of 44,100Hz. The text used was
Jonothan Swift’s A Modest Proposal. This text is in the public domain. Both the text and the
original WAV files can be found at http://www.maths.tcd.ie/~mnl.
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Table 1

The range of STRF parameter values obtained from each of the three sets of calculated kernels, compared to
those for Field L STRFs as given in Theunissen et al. 2000, (Fpeak) and for subregion L3 STRFs as given in Sen
et al. 2001, (Q, SI, BMF). Mean values are shown in parentheses. Note: Tpeak is also given in Sen et al. 2001.
However, we cannot compare this value to Tpeak obtained from predicted kernels as the predicted values do not
incorporate latencies determined by the auditory pathway.

Parameter Field L Sparse Non-Sparse Voice

Fpeak (Hz) 375–5125 750–5250 250–7750 250–3750

Q 0.4–7.8 (2.5) 1.4–4.8 (2.9) 0.3–3.9 (1.4) 0.3–3.0 (0.93)

SI 0.49–0.83 (0.66) 0.43–0.84 (0.59) 0.38–0.67 (0.5) 0.41–0.75 (0.52)

BM F (Hz) 5–30 (15) 0–40 (8) 0–20 (10) 0–40 (10)

Wf (Hz) n/a 850–2200 (1100) 700–2750 (1700) 250–3750 (1300)

Wt (ms) n/a 10–20 (14.2) 11–37 (21.4) 3–9 (6.6)
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Table 2

The deviations, ΔQ and ΔSI of field L mean parameter values from predicted mean values for our three filter
sets. In each case, σ is the standard deviation in the given parameter for the corresponding filter set.

Parameter Sparse Non-Sparse Voice

ΔQ 0.4 = 0.3σ, σ = 1.3 1.1 = 1.1σ, σ=1 1.57 = 1.4σ, σ = 1.1

ΔSI 0.07 = 0.6σ, σ = 0.11 0.16 = 2.3σ, σ = 0.07 0.14 = 1.2σ, σ = 0.12
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