7654-7664 Nucleic Acids Research, 2009, Vol. 37, No. 22

doi:10.1093/nar|gkp779

Published online 7 October 2009

Interaction of the HIV-1 frameshift signal with

the ribosome

Marie-Héléne Mazauric', Yeonee Seolz, Satoko Yoshizawa', Koen Visscher®* and

Dominique Fourmy'-*

Laboratoire de Chimie et Biologie Structurales, FRC 3115 ICSN-CNRS 1 ave de la terrasse, 91190 Gif-sur-Yvette,
France and Department of Physics, University of Arizona, AZ 85721, USA

Received March 14, 2009; Revised September 1, 2009; Accepted September 2, 2009

ABSTRACT

Ribosomal frameshifting on viral RNAs relies on the
mechanical properties of structural elements, often
pseudoknots and more rarely stem-loops, that
are unfolded by the ribosome during translation.
In human immunodeficiency virus (HIV)-1 type B
a long hairpin containing a three-nucleotide bulge
is responsible for efficient frameshifting. This
three-nucleotide bulge separates the hairpin in two
domains: an unstable lower stem followed by a
GC-rich upper stem. Toeprinting and chemical
probing assays suggest that a hairpin-like structure
is retained when ribosomes, initially bound at the
slippery sequence, were allowed multiple EF-G
catalyzed translocation cycles. However, while the
upper stem remains intact the lower stem readily
melts. After the first, and single step of translocation
of deacylated tRNA to the 30S P site, movement of
the mRNA stem-loop in the 5 direction is halted,
which is consistent with the notion that the down-
stream secondary structure resists unfolding.
Mechanical stretching of the hairpin using optical
tweezers only allows clear identification of unfolding
of the upper stem at a force of 12.8 +1.0pN. This
suggests that the lower stem is unstable and may
indeed readily unfold in the presence of a
translocating ribosome.

INTRODUCTION

The ribosome translocates mRNA and bound tRNA
molecules accurately in order to maintain the reading
frame. This process results in movement of the ribosome
along the mRNA by three nucleotides toward the

mRNA’s 3’-end. Translocation of mRNA and tRNAs is
a property of the ribosome itself (1,2), however binding of
elongation factor G (EF-G) and subsequent hydrolysis of
GTP strongly catalyzes it (3). Although the ribosome acts
as its own helicase, stable folded structures within the
coding regions of mRNA affect the rate of translocation,
and more seriously, may trigger a change of reading frame
(4,5). Such frameshifting mRNA elements play a crucial
role in the translational control of viral proteins via —1I
programmed ribosomal frameshifting (-1 PRF) where
the reading frame has shifted by one base toward the
mRNA 5-end. The -1 PRF requires both the mRNA
slippery sequence at the ribosome coding sites as well as
a downstream structural element that resists unfolding,
representing a physical barrier to the mRNA translocation
machinery. While in many cases the downstream barrier
constitutes a hairpin (H)-type pseudoknots (6,7), on a
rare occasion it can also be a simple stem-loop struc-
ture (8—11). It is of interest to note that although these
pseudoknots or stem—loops also trigger ribosomal pausing
at the slippery site, consistent with notion of them acting
as physical barriers, the extent of pausing shows no
correlation with frameshift efficiency (12).

The crystal structure of the ribosome in complex with
mRNA has revealed that the mRNA is in a single-
stranded conformation in the narrow downstream tunnel
(13,14). The ribosome therefore has to unwind mRNA
secondary structure through its mRNA helicase activity
(15,16). A mechanistic basis for mRNA helicase activity
has been proposed involving ribosomal proteins S3, S4, S5
at the mRNA entrance and rotational movement of the
head of the 30 S subunit (13,15). The 9 A and the torsional
restraint models (17) propose that —1 PRF is dependent
on the mechanical tension induced when a pseudoknot
resist unfolding by a moving translating ribosome.
Possible effects of such tension were directly observed
in the cryo-electron microscopic (Cryo-EM) images
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of eukaryotic ribosomes stalled in the process of -1
frameshifting in complex with eEF2, tRNA and a
frameshifting mRNA pseudoknot (18). The opposing
actions of translocation catalyzed by eEF2 and resistance
to unfolding by the mRNA strand generate strain that
deforms the P-site tRNA which may weaken the codon—
anticodon interaction and promote the shift by one
nucleotide into the 5’ direction.

The notion that mechanical stability of mRNA struc-
tural element is crucial for —1 PRF, has triggered mechan-
ical unfolding experiments of individual mRNA
pseudoknot, mutants as well as some of the constituent
hairpins using optical tweezers hairpins (19-21). Some of
these experiments suggest that frameshift efficiencies cor-
relate with unfolding forces rather than the free-energy
difference between the folded and unfolded state (21).
This indicates that —1 PRF is kinetically controlled, as
has been proposed previously (22).

In HIV-1, translational frameshifting leads to synthesis
of the Gag—Pol fusion protein which gives rise to the viral
protease, reverse transcriptase (RT) and integrase.
This HIV-1 RNA frameshifting signal is a potential
target for antiviral therapy (23-26). The exact structure
of this RNA frameshifting signal has been the subject of
debate. Jacks and collaborators initially proposed that
it is a stem—loop structure downstream of the slippery
sequence that is essential for efficient frameshifting
(4). Alternative structures have subsequently been
proposed—reviewed by Brierley and Dos Ramos (27)—
in which the stimulatory RNA folds as a pseudoknot
(28,29); a pseudoknot with an RNA triple helix motif
(30) and two-stem helix containing a three-purine bulge
(8). Recently however, two independent nuclear magnetic
resonance (NMR) studies have shown that, in the absence
of the ribosome, the fold is a long hairpin (Figure 1) with
an internal three-nucleotide bulge (9,10). A more recent
structure—function analysis of the ribosomal —1 FS signal
of two human HIV-1 isolates (31) favors the two-stem
helix model of Dulude et a/l. (8). The internal loop of the
long stem—loop introduces a distinct bend between the
lower and upper helical regions, a structural feature
which, remarkably is also often seen with frameshifting
pseudoknots. It has been proposed that the lower stem
and the bend serve to initiate contacts between the
upper stem-loop and the ribosome. Subsequently the
lower stem melts allowing the slippery sequence to bind
at the decoding site (10,32). Based on the identification of
position +11 as the limit of accessibility of an RNA
double helix approaching the ribosome (15), we previously
proposed that the upper segment of the lower stem and the
bulged region could be structured and/or contact the
ribosomal surface (9). NMR studies also pointed out
that the upper stem, rich in conserved G—C Watson—
Crick base pairs, is highly stable whereas the bulge
region and the lower stem are much less so, and may
readily unfold/melt. We therefore decided to unfold indi-
vidual HIV-1 hairpins using optical tweezers, which com-
plement existing methods, such as thermal denaturing,
chemical probing or NMR spectroscopy, that address
local features within the context of the entire global
RNA structure. In principle, optical tweezers aid in
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applying forces locally to a folded RNA molecule in a
way that may be more similar to in vivo conditions than,
for example, thermal or chemical denaturing. In the case
of a hairpin, the mechanical force will act locally on the 5'-
and 3’-ends of the RNA unzipping the stem base-pair by
base-pair toward the loop. A similar situation may be
found in the ribosome where the translocation movement
will generate a force pulling the 5-end of the mRNA
inside the ribosome.

Questions, however, remain about the structure of the
HIV-1 frameshift signal when ribosomes are present and
bound at or downstream of the slippery sequence. Here,
using Escherichia coli ribosomes, we address this question
and probe possible interactions of the HIV-1 frameshift
signal with the ribosome by using toeprinting and
chemical probing assays. The ability of this eukaryotic
mRNA frameshifting signals to promote —1 PRF in the
prokaryotic translational machinery has been previously
demonstrated (33,34).

MATERIALS AND METHODS
mRNA translocation

The translocation of mRINA was assayed by toeprinting as
described (35,36). mRNA (1 uM) was annealed to primer
(2uM) in 50mM K-Hepes (pH 7.0) and 100mM KClI by
heating to 90°C for 1 min and placing at room tempera-
ture until the temperature reached 45°C. To form the
complexes, tight-couple ribosomes (2-5uM) (37) from
E. coli MREG600 were added to 0.6uM of mRNA in
60mM NHyCl, 10mM Tris—Acetate (pH 7.4) and
20mM MgCl, and incubated at 37°C for 10 min. A first
tRNA (4 uM) was added to fill the P site by incubation at
37°C for 10min and aliquot (0.6pmol mRNA) was
removed to ice for later extension. A second tRNA
(4uM) was added to fill the A site by incubation at
37°C for 10min and aliquot (0.6pmol mRNA) was
removed to ice for later extension. EF-G was added in
buffer (50mM Tris-HCl (pH 7.6), 20mM MgCl,,
100mM NH4CI and ImM DTT, 1.5mM GTP) such
that the final concentrations of GTP and EF-G were 300
and 1 pM, respectively. Reactions were incubated at 37°C
for 10 min, and aliquots (0.6 pmol mRNA) were removed
from each reaction lacking (—G) or containing (+ G) EF-
G. Each of the aliquots was then extended in parallel (38)
with (5-CTTTATCTTCAGAAGAAAAACC-3) primer,
and the product were resolved by 8% denaturing PAGE.

Stepwise translocation

Stepwise translocation experiments were done as
previously described (15). Tight-couple 70S ribosomes
(1uM final concentration) from E. coli MRE600 (39)
were incubated with mSP-HIV-1 mRNA (1 puM) in 30 pl
binding buffer (10 mM Tris—HCI (pH 7.4), 60 mM NH,4CI,
10mM Mg(OAc),, 6mM B-ME) for 10min at 37°C,
followed by addition of tRNAP™ (1 uM) and a further
10 min incubation to fill the P site. Aliquots (5 ul) of this
reaction were then added to separate tubes containing
either GTP (600 uM) (F), GTP + tRNA"™" (1 uM) (LL),
GTP + tRNA™" EF-G (1uM) (L"), GTP + tRNA",
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EF-G + tRNA®Y (1uM) (G), GTP + tRNA™" EF-
G + tRNASY + tRNAD® 1luM)  (K), GTP +
tRNAM" + (RNASY + (RNAD® (K), in binding buffer
(final volume, 10pl). These tubes were incubated for
10min at 37°C and then placed on ice for the primer
extension in toeprinting analysis (4 pl).

Footprints

To footprint, binding of mRNAs was performed by
incubating 70 S ribosome (in the range of 50-750 pmol
according to the mRNA tested) with mRNA
(10-50 pmol) in 50 ul reaction buffer A (20mM MgCl,,
150mM NH4CIl, 80mM potassium cacodylate, pH 7.2)
at 37°C for 10min. A first tRNA (320 pmol) was added
to fill the P site by incubation at 37°C for 10 min. A second
tRNA (320 pmol) was added to fill the A site by incuba-
tion at 37°C for 10 min. mRNA—-tRNA-70S complexes
were then purified by ultrafiltration (MICROCON YM-
100 100000 Da, Fisher scientific LABOSI). The ternary
complex was diluted in 250 pl of buffer A and distributed
into 50 pl aliquots (2 pmol mRNA). Chemical probing (38)
was performed by addition of 2, 4 or 8 ul dimethyl sulfate
(DMS; 1:10 dilution in 95% ethanol), 2, 4 or 8 pl kethoxal
(KE; 19 mg/ml in H>O) on 50 ul aliquot, followed by incu-
bation at 37°C for 10 min. All modification reactions were
stopped by addition of 150 ul 95% ethanol and 5ul 3M
sodium acetate followed by rapid mixing. KE-modified
samples were adjusted to 25mM potassium borate (pH
7.0). The pellets were resuspended in 200 ul of 0.3M
sodium acetate, 2.5mM EDTA and 0.5% SDS (with
addition of 25mM potassium borate for KE samples),
extracted three times with phenol, twice with chloroform
and resuspended in 10 ul H>,O (for DMS samples) or in
10 ul 25 mM potassium borate (for KE samples). Primer
extension reactions were performed as described (38).

Purified tRNAM™S, (RNA™< and tRNAF™ were
purchased from Sigma, tRNA®Y and tRNAM™" were
gracefully donated by Henry Grosjean.

Messenger RNAs were prepared by in vitro transcrip-
tion. Plasmid pGENE32 is pUC118 containing a region of
phage T4 gene 32 (40) from nucleotide position —54 to
+84 (where +1 is the translational start) downstream
of an engineered T7 promoter sequence. The introduction
of slippery sequence in pGENE32 was performed by site-
directed mutagenesis kit (Stratagene). Transcripts with
stem—loop were obtained by in vitro transcription of syn-
thetic genes flanked upstream by T7 RNA polymerase
promoter region and downstream by a BamHI restriction
site. The synthetic genes were constructed by shotgun
ligation of 10 DNA fragments (24-30-mers) covering
both strands and ligated in the Kpnl and BamHI sites
of pGENE32. All transcripts have been purified by
denaturing PAGE.

His-tagged EF-G was purified from pET24b-fusA in
E. coli BL21(DE3) as described (41).

Mechanical unfolding using optical tweezers

RNA was synthesized from a template obtained by
polymerase chain reaction (PCR) from bases 3821 to 628
of the pBR322 DNA plasmid, where the frameshifting

RNA signal from HIV-1 was cloned into the EcoRI and
HindIII restriction sites and a T7 promoter was appended
to the template in the course of the PCR reaction (42). The
DNA components of the handles were prepared by PCR
from pBR322. Handle A (pBR322 bases 3821 to 3) was
biotinylated, and one of the primers used to amplify
handle B (pBR322 bases 30 to 628) was purchased with
a 5 digoxigenin group.

RNA and DNA handles were resuspended in 10 mM
sodium phosphate buffer (pH 6.4), and incubated at a
ratio of ~1:1:1 at 90°C for 1 min and transferred to room
temperature to cool down gradually, and subsequently
diluted to a final concentration (of RNA) of ~1uM.

Five microliters of anti-digoxigenin-coated polystyrene
beads (0.3 nM; diam. 0.49 um) were mixed with 1 pl of the
DNA-RNA hybrid (~1 uM) in binding buffer (10 mM Tris
buffer [pH 7.0], 250 mM NaCl, 10 mM MgCl,, 0.4% w/v
BSA), and incubated at 4°C for overnight on a rotator.

Sample cells were preassembled prior to use. Two thin
strip spacers (thickness ~200 um) were positioned ~5mm
apart on the center of a pre-cleaned microscope slide, and
epoxy applied at the outer edges of the spacers. A
streptavidin functionalized 24 x 40 mm, no. 1.5 coverglass
(Xenopore) was then put on the top of the slide. Before
introducing the bead and RNA mixture, the sample cell
was surface-coated with acetylated BSA by incubation
with binding buffer for 30 min at room temperature and
washed with 1 ml of the binding buffer, to prevent any
sticking of beads to the surface. The bead and RNA
mixture was then introduced into the sample cell, and
incubated for 30min at room temperature, and finally
washed with 1ml of binding buffer to remove any
unbound beads and RNA.

Molecules were stretched in 10 mM Tris buffer (pH 7.0),
250 mM NaCl, 10 mM MgCl,, or alternatively in 10 mM
Tris—acetate (pH 7.4), 60 mM NH,4CIl, 6 mM B-mercapto,
20mM MgCl,. Unfolding/refolding parameters were sta-
tistically indistinguishable for both conditions. The sPring
constant of the optical tweezers was 0.1-0.2pNnm .

The extension of the unfolded single stranded HIV-1
hairpin, xgg was computed as xgg(F) = Ax + Lyp for
convenience, with F = (F,+ F,)/2 the unfolding force
and Ax the increase in extension (Figure S2). The
increase in contour length (expressed in number of
nucleotides) was subsequently computed using the
worm-like chain model for polymer elasticity assuming a
stretching modulus of 1000 pN, a persistence length of
Inm (43,44) and inter-phosphate distance of 0.59 nm.
Alternatively, one may choose to do the computation
taking into account F; and F, explicitly, where it is
found that xgs5(F2) = Ax — (xg(Fy) — xg(F1)) + Lyp.
Then however, one needs to fit the section of the force
versus extension curve up to the unfolding event with a
worm-like chain model in order to compute the extension
of the handles, xy(F>) at F>. When performing this more
laborious analysis on a subset of our data, we only find a
1-2 nucleotide difference in contour length compared to
the analysis that utilizes the applied approximation
F=(F, + F>)/2. Standard free-energies at zero force
were computed for each trajectory according to
AG = FAx — [ Fdx using the worm-like chain model



with persistence length of 1 nm and stretching modulus of
1000 pN (43).

RESULTS

We used a toeprinting assay to monitor the position and/
or structure of the HIV-1 hairpin during the movement of
the ribosome along mRNA. This primer-extension inhibi-
tion assay has been shown to be a powerful tool for
mapping the position of mRNA within 30S and 70S
ribosomal complexes that contain tRNA (45). When RT
encounters the ribosome (a so-called hard-stop), it
terminates cDNA synthesis thereby generating a highly
specific toeprint. Alternatively, RT may also stall at
mRNA structural elements further downstream from the
ribosome that prove too hard for RT to unwind, resulting
in what is generally called an extended toeprint.

Translocation on the HIV-1 slippery sequence

We first demonstrated that under simple experimental
conditions (where tRNA was non-enzymatically delivered
at the ribosomal A site), toeprinting allows localization of
the ribosome on the mRNA containing the wild-type
HIV-1 slippery sequence (mSP-HIV-1) but not the down-
stream hairpin. The sequences and secondary structures of
the mRNA constructs used are derived from T4 gene 32
mRNA in which we introduced the HIV-1 frameshifting
signals as shown in Figure 1. In the case of the mSP-HIV-1
construct, two distinct toeprints are observed at + 15 and
+16 when tRNAP" is bound at the P site (Figure SIA,
lane F), in correspondence with the two possible reading
frames created by the slippery sequence. A third toeprint
at + 17 appears when tRNA™" subsequently binds at the
A site (Figure S1A, lane F’). This is thought to be due to a
conformational change in the ribosomal complex follow-
ing A-site binding so that a single position of the tRNA in
the A site results in a doublet of bands (at positions + 16
and +17) (46,47). It is important to note that the signal at
+ 15 did decrease, indicating that binding of the tRNA™"
at the A site assisted in the positioning of the mRNA with
tRNAPhe preferentially bound to the u,u ,u,3; codon
adjacent to the leucine codon u; 4usa;g.

After EF-G catalyzed translocation of tRNAM" to the
P site (Figure S1A, lane L), the toeprints at +16, +17
were moved to +20 and +21, corresponding to a 4-nt
translocation event. We cannot conclude if a toeprint at
+ 19 exists since this band is also present in the control
lane (without ribosome). However, if it exists, this toeprint
is very weak. When tRNASY is subsequently added to the
EF-G containing reaction mixture (Figure S1A, lane G),
translocation proceeds further giving the expected
toeprints at +22 and +23 for tRNASY bound to P site
and paired with the g ,g 329 codon. A weak toeprint at
+ 24 may indicate a low population of tRNA“Y bound to
P site and paired with the g, ggioao glycine codon
in the +1 frame. The addition of tRNA™® (Figure SIA,
lane K) triggered translocation leading to a toeprint at
+25, which corresponds to a post-translocation complex
with tRNA™"* in the P site bound to the a. 02+ 118+ 12
lysine codon and leaving an empty A site.
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Figure 1. Secondary structure of the mRNAs used in this study. The
tow domains of the HIV-1 hairpin are labeled: lower stem (FSL) and
upper stem (FSU). The slippery sequence is underlined and the Shine-
Dalgarno sequence is boxed. The first nucleotide of codon 1 (position
+1) is labeled. Toeprints that are observed when each codon is
positioned in the ribosomal P-site are shown on the top. Nucleotides
that were mutated are indicated in a box for the mSP-SL-CCC-HIV-1
RNA. The limit of accessibility (position +11) of a RNA double helix
at ribosomal surface (15) is highlighted by a triangle. The spacer
sequence that is expected to be single-stranded in the mRNA tunnel
is indicated by a dashed line.

Extended toeprints with the downstream
frameshifting HIV-1 hairpin

We then applied this assay to a gene 32 message (mSP-SL-
HIV-1), which contains the mRNA frameshifting
signal (Figure 2A). In order to avoid any unnecessary
ambiguity in interpreting the toeprints, we substituted
the phenylalanine codon (u; u4,u+3) for a methionine
codon (a4 uy,g+3) (mSP-SL-HIV-1; Figure 1) to avoid
complications due to the presence of the slippery site. This
allows tRNA binding in only a single unique reading
frame.

When tRNA™® was bound at the P site, a doublet of
toeprints at positions +U16/+ G17 was detected (Figures
S2 and 2A). We note the existence of a stop at position
+17 in the control lane (in the absence of ribosomes).
However, the signal in presence of ribosome is substan-
tially stronger and therefore is interpreted as a ribosomal
toeprinting signal. tRNA™"* was subsequently bound to
the A site (Figures S2, lane 3, and 2A, lane M’) which
resulted in the disappearance of the + 16 toeprint. The
+16 and +17 toeprints are hard stops, independent of
the reverse transcription activity indicating that the
mRNA secondary structure unfolds during cDNA synthe-
sis as previously seen for a stem—loop (48) and
pseudoknots (49). However, in addition to these hard
stops downstream extended toeprints can also exist
indicating that mRNA interactions with the ribosome
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Figure 2. Toeprinting analysis of successive EF-G catalyzed

translocation steps. (A) mSP-SL-HIV-1; lanes are labeled according
to the tRNA species bound to the ribosomal P-site at each step. M,
tRNA™® was bound to the mRNA-ribosome complex followed by
stepwise addition of GTP + tRNA™" (M’), GTP + tRNA™", EF-G
(L), GTP + tRNAM" EF-G + tRNA®Y (G), GTP + tRNA™" EF-
G + tRNASY + tRNAD® (K). (B) Toeprints produced by ribosomal
complexes with mRNAs mSP-SL-CCC-HIV-1. (C) Toeprints
produced by ribosomal complexes with mRNAs mSP-Tyr-SL-HIV-1.

can extend beyond the usual 15 nucleotides buried in the
ribosome-mRNA track (48,50). Unlike hard stops,
extended toeprints are generally dependent upon change
of temperature, RT concentration, or the source of RT.
Therefore, we varied the temperature and also tested dif-
ferent RTs to look for extended toeprints in the case of
mSP-SL-HIV-1. Two additional reverse transcription
stops were identified within the 3’ region of the stem—
loop at positions +47 (very weak) and +43 (Figures 2A
and 3A). These extended toeprints are weak in comparison
to the hard stop at + 17 but are absent in the control lane
(Figure 2A, lane C, in the absence of the ribosome). The
+43 and +47 toeprints indicate that a fraction of the RT
molecules halted when the enzyme approached or
encountered bulge region in the HIV-1 hairpin.

In order to test the contribution of the bulge region to
the extended toeprint, we changed the GGA-bulge by a
CCC-bulge (mSP-SL-CCC-HIV-1, Figure 1). The inten-
sities of both toeprint signals (at +43 and +47) decreased
(Figure 2B) and were reproducibly of lower level than the
RT stops found in the control lane —70 S. Interestingly, the
substitution of the three purines in the bulge by pyrimidines
also decreases frameshifting efficiency (8,32).

Translocation with the downstream frameshifting
HIV-1 stem—loop

We subsequently monitored the position of mSP-SL-HIV-
1 within the ribosome allowing a single or multiple rounds
of EF-G catalyzed translocation. The signal at positions

+43 and +47 disappeared to give a new toeprint at + 39
(Figure 2, lane L, and 3B), indicating that the lower stem
readily gave way upon just a single translocation step. An
identical result was observed in the mSP-SL-HIV-1 RNA
which has a wild-type slippery sequence (first codon is
Usjuyouy3) indicating that codon substitution to a
methionine codon did not affect the observed toeprints
except for the +47 signal that is ambiguous (Figure
S1B). Furthermore upon a single translocation, the
+16/+17 toeprint signals disappeared  without,
however, any occurrence of a new toeprint at position
+19 (lane L). The disappearance of the mSP-SL-HIV-1
+16/+ 17 toeprints upon addition of EF-G is intriguing.
We also observed the same phenomenon with the
construct containing the wild-type slippery sequence
(Figure S1B), and interestingly also with an mRNA con-
taining a pseudoknot (BWYV) bound to ribosome (51).
This phenomenon is characteristic to mRNAs containing
downstream structural elements, however its cause still
need to be elucidated. Ribosomes are known to change
conformation upon EF-G binding (52-55). One may spec-
ulate that this either blocks RT access directly or stabilizes
the mRNA structure.

Any subsequent addition of tRNA®Y (lane G) and
tRNA™* (lane K) in presence of EF-G did not further
affect the position of the extended toeprint, which
remained at +39, indicating that further movement of
the mRNA through the ribosome was impaired.

We next tested an mRNA with an additional codon
between the AUG and the start of the lower stem (mSP-
Tyr-SL-HIV-1 RNA) extending the spacer, which should
at least allow for one round of translocation to be
visualized before the ribosome stalls. The toeprints at
the new positions A+16/U+ 17 were unambiguously
identified (Figure S3), which places the boundary region
contacting the ribosome upstream from the bulge region.
These bases are in the upper stem for the mSP-SL-HIV-1
RNA. In Figure 2C, where experimental conditions were
tuned as to specifically detect the extended toeprints, the
toeprint signals in the region + 17 prove somewhat weaker
than in Figure S3, but are always present. As expected,
with the longer spacer, a band at + 19 appeared upon
addition of EF-G (Figure 2C, lane L). Interestingly, the
extended toeprints did not change and appeared at the
exact same positions at A + 46 and U + 50 (correspond-
ing to the A + 43 and U + 47 in mSP-SL-HIV-1 RNA)
(Figure 2C). Subsequent addition of EF-G and tRNA™"
and tRNASY produced the same changes in the toeprint
pattern as for the mSP-SL-HIV-1 RNA (a shift of 4-nt
from +46 to +42). We note that in this case the + 19
toeprint remains the strongest toeprint in the upper
region of the gel (by comparison with the + 17 toeprint)
(Figure 2C, lanes Y and G) indicating that translocation,
as before, seems to be impaired with the downstream
upper stem.

Chemical probing of mRNA with the downstream
frameshifting HIV-1 stem-loop

Toeprinting assays fail to provide information on more
detailed structural changes that the mRNA might
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undergo upon binding to the ribosome. Therefore, a foot-
print assay was performed to obtain structural informa-
tion upon the interaction of mSP-SL-HIV-1 mRNA with
70 S ribosome-tRNA complexes. In these complexes the
ribosome is positioned with the slippery sequence at
the decoding site. Results of the chemical probing with
KE, I-cyclohexyl-2-morpholino-carbo-diimide-bmetho-p-
toluene sulfonate (CMCT) and DMS are shown in
Figure 4. For free mSP-SL-HIV-1 mRNA the chemical
modification patterns and levels of reactivities are identi-
cal to those previously published (9). Nucleotides in the
apical ACAA teraloop as well as A 43 and A 44 from the
bulge are found to be reactive to DMS (Figure 4), while
nucleotides G, 4; and G 4, were reactive to KE. In the
lower stem most of the guanine, adenine and uracil bases
are accessible to the chemical probes indicating poor sta-
bility (9).

Subsequently, mSP-SL-HIV-1 mRNA was probed in
complex with the ribosome and tRNA. For each
chemical probe tested, bands that were present in a
control lane of unmodified mRNA incubated with

ribosome were not taken into account. In the complex,
the characteristic strong protections at the guanine
nucleotides in the Shine—Dalgarno sequence (G 11, G_j¢)
are clearly seen. Base A, of the methionine codon is
protected from chemical modifications demonstrating, as
previously described %6)7 Watson—Crick pairing with the
anticodon of tRNA™€' Interestingly, nucleotide A, ¢
experienced an increase in reactivity similar to what has
previously been seen for a mRNA containing a hairpin
(selenocysteine incorporation sequence SECIS) in
complex with 30S subunit and tRNA™* (57). In the
spacer and hairpin regions, most of the changes in
chemical reactivities were detected in the lower stem that
is supposed to be close to the ribosomal surface. Bases
G+, Gig and G, 1, were protected from modification
by KE (Figure 4). The reactivity of G.g¢ toward KE
slightly increased in a way similar as A |y toward DMS.

Mechanical unfolding of the HIV-1 RNA hairpin

Since toeprinting experiments suggested reduced struc-
tural stability of the lower stem, we investigated the
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mechanical stability of the HIV-1 hairpins. Individual
hairpins, sandwiched between two differentially end-
labeled hybrid DNA-RNA handles were unfolded using
optical tweezers (42). Molecules were tethered between a
streptavidin-coated glass cover slip and anti-digoxygenin
coated polystyrene beads (diameter 1 pum), and stretched
by moving the piezo-actuated microscope stage while
holding the bead with optical tweezers. Force versus
extension curves were computed taking into account this
experimental geometry (58). Stage velocities were 67 nm/s,
so that the system remained at or close to thermodynamic
equilibrium as confirmed by the overlap of the stretching
and relaxation force versus extension curves (Figure 5B).
In addition, repeated unfolding and folding can be
observed within single force versus extension curves
(Figure 5B), a further indication that the loading rate is
sufficiently low as to assure thermodynamic equilibrium.
The increase in contour length (expressed in number of
nucleotides) upon unfolding was subsequently computed
using the worm-like chain model for polymer elasticity
assuming a stretching modulus of 1000 pN, a persistence

length of 1nm (43,59) and a inter-phosphate distance of
0.59 nm (see ‘Materials and Methods’ section). Results are
summarized in Figure 5C, yielding a mean increase of
25.34+3.4nm (mean=4SD) nucleotides, consistent with
the contour length of the upper stem of the HIV-I
hairpin. The mean unfolding force is 12.8+1.0pN
(mean &+ SD), whereas the standard free-energy change at
zero force was found as AG = 10+£2kcal/mol
(mean £ SD). Refolding statistics are summarized in the
Figures S4 and S5 and yield a decrease of contour length
of 26.0+4.7nm (mean=+SD) at an average refolding
force of 13.1+1.1pN (mean+SD), and AG=
11 £ 3 kcal/mol (mean=+SD), essentially unchanged
from the unfolding statistics, as one would expect when
at thermal equilibrium.

DISCUSSION

Extended toeprints (albeit weak ones) at +43 and +47 in
the pre-translocation state indicate that a fraction of RTs
was incapable of unwinding part of the lower stem and
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bulge region when encountering the HIV-1 hairpin bound
at the ribosome. Since such toeprints do not occur with
free hairpins, contacts with the ribosome (34) may be
responsible for these signals. Extending the spacer
sequence by an extra codon yields an identical toeprint;
not surprising as it is hard to imagine that a longer spacer
would stand in the way of forming ribosomal contacts.
This will be discussed further below. Furthermore, we
showed that these toeprints are dependent on the structure
of the bulged region of the frameshifting signal. The sub-
sequent replacement of the GGA-bulge with a CCC-bulge,
known to reduce —1 PRF efficiency (8,32), practically
erases the +43 and +47 toeprints, indicating such a
mutation affects either contacts with the ribosomes or
stability of the hairpin itself. We tend to favor the
former possibility as mechanical unfolding of free
hairpins indicates the lower stem is fairly weak to begin
with. Certainly it remains possible that contact with the

ribosome can stabilize part of the lower stem. If such sta-
bilization was to occur, it does not prevent further
translocation as a single cycle of EF-G catalyzed
translocation moves the toeprint to +39 providing
direct evidence for melting of the lower stem.
Interestingly, the extended toeprint at + 39 remains even
under conditions where further translocation is allowed.
This suggests that the upper stem is capable of inhibiting
translocation of a sizeable fraction of ribosomes. Our
mechanical unfolding study supports the notion of a
weak lower stem since no transition in the force versus
extension curves indicative of unfolding of solely the
lower stem have been observed. Although on occasion
we suspect such a transition (by visual inspection of the
force versus extension data, typically at forces ~6 pN and
lower), the increase in extension in those cases should be
~4-5nm (by theory), too small to reliably distinguish
from thermal fluctuations at those force levels. We note
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that were these transitions to occur in the steeper part of
the force versus extension curve (F> 6 pN), we should be
able to detect a shift of the curve toward the right consis-
tent with unfolding of the lower stem. However, the
increases in contour lengths (Figure 5C) observed are
consistent with unfolding of solely the upper stem. Not
on any occasions have we observed increases in contour
lengths consistent with simultanecous unfolding of the
lower and upper stems. Since unfolding is hierarchical,
the lower stem has to unfold before the upper stem
does. We conclude that the lower stem therefore has
much reduced mechanical stability compared to the
upper stem. Quantitative assessment of the stability of
the lower stem is currently not possible in the existing
experimental geometry, and requires higher resolution
experimental designs (60), if at all possible. The question
naturally arises how these findings accord with the
observed +43 and +47 toeprint and the dependence of
frameshifting upon the lower stem and bulge regions. It
seems unlikely that tensions as low as a mere 6 pN and
below, can trigger a frameshift (61). Therefore, it is
appealing to consider that unfolding of the hairpin in
the presence of ribosomes will differ significantly from
that when ribosomes are absent. When adhering to a
tension-dependent mechanism of —1 frameshifting this
suggest that contacts with the ribosome’s exterior
surface may indeed stabilize the part of the lower stem
of the hairpin. Single-molecule mechanical unfolding
experiments in the presence of ribosomes are considered,
but beyond the scope of this article.

Our chemical probing experiments provide further
insight into the structure of the HIV-1 frameshift signal
when bound to the ribosome. The chemical reactivity
pattern indicates that almost the entire structure of the
hairpin is maintained. Nucleotides from the ACAA
tetraloop and the GGA bulge region remained reactive
to chemical probes whereas nucleotides in the upper
stem were unreactive. As expected, most of the changes
in chemical reactivity of the bases are concentrated in the
lower stem. The changes observed in the spacer at
positions + 7, +8 are consistent with this segment of the
RNA being engaged in the 30S mRNA tunnel (13).
Further downstream in the spacer sequence, nucleotides
G.9, Ay1o and G, that are expected to be located in
the vicinity or at the ribosomal helicase center indeed
experienced a change in reactivity. In this segment of the
RNA, the DMS reactivity of nucleotide A ;;; remained
mostly unaffected by the presence of the ribosome.
Unfortunately, our chemical probing experiments could
not provide useful information on the 3’ strand of the
lower stem. In summary, the data demonstrate that the
5" region of the lower stem experiences structural
changes when contacted by the ribosome.

A number of other observations, although of no direct
consequence for the interpretation of the extended
toeprints, are of interest. First is the observation of the
occurrence of an apparent 4-nt translocation step during
transfer of tRNA™" from A site to P site. The disappear-
ance and appearance of respectively the +43 and +39
toeprints indicate that the addition of EF-G triggered a
movement of the mSP-SL-HIV-1 RNA inside the

ribosome of four nucleotides. However, we note that
this 4-nt shift is detected on the 3’ strand of the mRNA
hairpin that is located outside the ribosome and therefore
may not necessarily present a 1:1 reflection of what
happened at the coding site. On the other hand, single
translocation cycles with only the slippery sequence
(mSP-HIV-1) also show a 4-nt step. In this experiment
we analyzed the toeprint signals that result from A site,
P site tRNA binding and subsequent EF-G catalyzed
translocation. The mSP-HIV-1 toeprint at +15
corresponds to tRNAF that recognizes the overlapping
codon, one nucleotide upstream (u_ju; u»,). Binding of
tRNAPP to the u ju. u,- codon results in an optimal
spacing of seven bases between the SD sequence and the
start codon (62). The toeprint at + 16 corresponds to
tRNAFPhe paired to codon 1 (u;u,uys3). Interestingly,
overlapping codons u,u;3u44 and u43u44U4 5 are not
pairing with tRNAP" because no toeprints were observed
at +17 and + 18. This is most likely due to unfavorable
spacing between the P-site codon and the Shine-Dalgarno
sequence (47,63). After P-site filling and the first round of
translocation, the toeprint at +19 is the expected signal
for a post-translocation complex with tRNA™" in the P
site bound at the u4u4sa. codon. However, the major
toeprint signal is at position +20 suggesting that in the
post-translocation complex the P site-bound tRNA™" is
interacting with the uysa ¢g7 codon. This corresponds
to a 4-nt translocation event. Subsequent translocation
cycles seem to force the toeprints back into register. It
remains unclear what gives cause to this behavior. We
note that a 4-nt translocation has been observed for
punctuated mRNA with an extra, unpaired nucleotide
between codons (64). Interestingly, Leger and
collaborators proposed that slippage and repairing of P-
site-bound tRNAP™ in the —1 frame would leave an
unpaired nucleotide between the Phe and Leu codons
(32). But this is unlikely at equilibrium in our assay
because A-site binding of tRNA™" mostly repositioned
tRNAP™ into the canonical frame removing any
unpaired nucleotide between Phe and Leu codons.

The P-site tRNA binding triggered a major RT stop at
position + 17 while only a weak signal at position + 16
(the ‘classical toeprint’). Previous toeprinting assays under
identical conditions but with different phage T4 mRNAs
showed a variety of toeprints signals confined to the + 14
to + 17 range (45). Thus toeprinting assays are very sen-
sitive to the type of mRNA tested and we note that the
toeprint signals with the mSP-HIV-1 and mSP-SL-HIV-1
mRNASs respectively at +16 and + 17 fall into this range.
Could the observed difference between the two mRNAs be
attributed to the hairpin? With unstructured mRNA, we
expect a pulling force on the spacer mRNA out of the
ribosome purely based on entropic arguments. Such a
force presumably exposes base + 16 giving rise to the clas-
sical toeprint. In the case of the HIV-1 hairpin, physical
interactions of the ribosome with the hairpin may provide
some sort of strain relieve allowing + 16 to slightly relax
back into the ribosome. On the other hand, how could
such a mechanism be consistent with +16/+ 17 toeprint
obtained when an additional codon was inserted in the
spacer, between the AUG codon and the hairpin? If the



hairpin provides strain relieve would one not expect the
mRNA to recede further back into ribosome, not only
protect +16 but also perhaps +17. However, lacking
any quantitative information about tension in the
spacer, such extra movement may be too small to also
protect +17. These are intriguing possibilities and raise
questions that require the design of new experiments, well
beyond the scope of this work, for answering.
Site-directed mutagenesis and amino-acid sequencing
localized the site of frameshifting to the UUA codon of
the HIV-1 slippery sequence (65). The presence of the GC-
rich upper stem strongly enhances frameshifting
efficiencies. This level of mRNA slippage is enhanced
further by the bulge and lower stem. We show here that
when the slippery sequence is bound at the decoding site,
the ribosome directly influences the spacer sequence in the
lower stem that very likely enters the mRNA track. In
addition, extended toeprints localized in the upper
segment of the lower stem support a physical interaction
between this region and the ribosome. These results are in
agreement with the importance of the lower stem and
bulge regions for the —1 frameshift (8,32,66). It is conceiv-
able that this interaction enhances —1 frameshifting at the
particularly slippery UUUUUUA sequence (67).
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