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ABSTRACT

Transcription factor–DNA interactions are some of
the most important processes in biology because
they directly control hereditary information. The
targets of most transcription factor are unknown.
In this report, we introduce Bind-n-Seq, a new
high-throughput method for analyzing protein–DNA
interactions in vitro, with several advantages over
current methods. The procedure has three steps
(i) binding proteins to randomized oligonucleotide
DNA targets, (ii) sequencing the bound oligonucleo-
tide with massively parallel technology and (iii)
finding motifs among the sequences. De novo
binding motifs determined by this method for the
DNA-binding domains of two well-characterized
zinc-finger proteins were similar to those described
previously. Furthermore, calculations of the relative
affinity of the proteins for specific DNA sequences
correlated significantly with previous studies
(R2= 0.9). These results present Bind-n-Seq as a
highly rapid and parallel method for determining
in vitro binding sites and relative affinities.

INTRODUCTION

In the human genome, there are more than 700 predicted
C2H2 zinc-finger transcription factors (1), but only �10%
of these have known binding motifs (2). There are a
few extant technologies for identifying protein–DNA
interactions. ChIP-chip and ChIP-seq can find the
in vivo genomic binding sites (3). Although highly infor-
mative in many cases, these methods are limited by the
availability of highly specific antibodies (e.g. many of the
C2H2 zinc-finger proteins are related and there may be
cross-reactivity), as well as the number of transcription
factors and accessible binding sites are available in any
particular cell type under any particular environmental

condition. A high-throughput protein-binding microarray
(PBM) approach has been described in which proteins
bind double-stranded oligonucleotides on a microarray
(4). While powerful, this technology is limited by the
number of features that can be placed on the array. The
complete catalog of 10-mers (106 features) is approxi-
mately the limit for array technology today. However,
many DNA-binding proteins have recognition sites
longer than 10 bp due to multimerization, heterologous
binding partners, or, in the case of some zinc-finger
proteins, multiple potential binding sites per protein (5).
While arrays will continue to increase in the number of
features, a 15-mer (�1 billion features) is far beyond the
current capacity. Yeast and bacterial two- and one-hybrid
systems have also been described (6–8). These systems
have the advantage of in vivo selection, with stringency
that can be experimentally manipulated. In principle,
libraries of target sites up to 15 bp long (109 sequences)
could be surveyed; however, usage of libraries larger than
107 has not been reported. In addition, sequencing
throughput is typically low (20–70 sequences). A higher
throughput variation required an even smaller library size
(9). Cyclical Amplification and Selection of Targets
(CAST) and Systematic Evolution of Ligands by
Exponential Enrichment (SELEX) (10–12) can be used
to find the preferred binding sequences in vitro.
However, CAST generally involves several rounds of
amplification and purification for each protein and is
therefore labor-intensive. In addition, the CAST process
tends to select for a few high-affinity binding sites. The
most accurate binding site models require many low- to
medium-affinity sequences (13). Serial Analysis of Gene
Expression (SAGE) can be applied to reduce the cloning
burden and the cost required to obtain large numbers of
sequences (13).
In this study, we introduce Bind-n-Seq, a new high-

throughput method for in vitro analysis of protein–DNA
interactions that takes advantage of next-generation
short-read sequencing technology. The concept is simple:
proteins are incubated with random oligonucleotides, the

*To whom correspondence should be addressed. Tel: +1 530 754 9134; Fax: +1 530 754 9658; Email: djsegal@ucdavis.edu
Correspondence may also be addressed to Ian Korf. Tel: +1 530 754 4989; Fax: +1 530 754 9658; Email: ifkorf@ucdavis.edu

Published online 20 October 2009 Nucleic Acids Research, 2009, Vol. 37, No. 22 e151
doi:10.1093/nar/gkp802

� The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



bound oligonucleotides are sequenced and motifs are
extracted from the sequences. Unlike CAST, multiple
rounds of binding and amplification are not required.
In addition, many binding reactions can be assayed
in parallel with bar coded oligonucleotides. Unlike
microarrays, Bind-n-Seq is not limited to 10-bp binding
sites. In this study, we use a 21-bp binding region.
We show the utility of Bind-n-Seq by analyzing the
DNA-binding domains (DBDs) of two well-characterized
C2H2 zinc-finger proteins, Zif268 and Aart. We found
that we were able to obtain �100 000 reads per sample
while simultaneously analyzing 28 samples, and could
identify the canonical binding site for each protein with
as few as 10 000 reads. The fold of enrichment was found
to be proportional to the relative affinity of the protein for
a previously described set of sequences. These results show
that Bind-n-Seq is a powerful and cost-effective method
for studying protein–DNA interactions.

MATERIALS AND METHODS

Protein purification

The coding regions for the DBDs were subcloned into the
BamHI/HindIII sites of pMAL-c2X (New England
Biolabs). This vector enables bacterial expression of the
proteins as fusions with the maltose binding protein
(MBP). The N-terminal MBP domain improves the solu-
bility of the expressed proteins and allows for rapid one-
step purification over amylose resin (New England
Biolabs). Proteins were over-expressed in BL21 (DE3)
Escherichia coli (Invitrogen) after isopropyl b-D-1-
thiogalactopyranoside (IPTG) induction (0.3mM) at an
OD600 of 0.7–1.0 for 2 h at 37�C. Cells were pelleted and
resuspended in 5ml of Zinc Buffer A [ZBA; 10mM Tris
(pH 7.5), 90mM KCl, 1mM MgCl2, 90 mM ZnCl2, 5mM
DTT] and 50 mg/ml RNAse A. Following sonication,
proteins in clarified lysates were applied to an amylose
resin column, washed with ZBA and eluted with 3ml of
ZBA+10mM maltose. Because we intended to again use
amylose resin to capture the proteins in our binding
reactions, free maltose needed to be removed. Samples in
Slide-A-Lyzer cassettes (Pierce) were dialyzed in 0.5 l of
ZBA+5mM DTT for 2 h at 23�C with stirring,
followed by fresh buffer for 16 h at 4�C. Concentration
and purity was assessed by UV absorption (NanoDrop)
and Coomassi-stained polyacrylamide gel electrophoresis
with sodium dodecyl sulfate (SDS–PAGE) with bovine
serum albumen (BSA) standards. Purified protein was
stored in ZBA+30% glycerol solution at�20�C until use.

Binding reactions

The 93-mer oligonucleotides containing Illumina primer-
binding sites, a 2-nt AA leader, a 3-nt bar code and 21-nt
random region, were synthesized (Sigma). Templates were
made double-stranded by primer extension in a 25 ml
reaction containing 0.88mM of one template, 88 mM
reverse primer, 1�TaqPro Complete (2.0mM Mg2+,
Denville) at 95�C for 2min, 63�C for 1min, 72�C for
4min, then 4�C. To initiate binding reactions, an addi-
tional 25 ml volume was added to achieve a ‘total’

concentration of 0.12mg/ml herring sperm DNA
(Sigma), 100 mM ZnCl2, 5mM DTT, 1% BSA and the
indicated concentrations of KCl and purified binding
protein (see Results section). Reactions were incubated
for 2 h at 23�C.

Resin-based enrichment

To prepare the amylose resin, 50 ml of packed resin was
washed twice (by pelleting and resuspension) with 500 ml
of water, then twice with the appropriate wash buffer
[10mM Tris (pH 8.5), 100 mM ZnCl2, 1mM MgCl2,
5mM DTT and the indicated concentration of KCl]. A
50 ml binding reaction was added to the 50 ml of prepared
resin, mixed and incubated for 30min at 23�C with gentle
mixing for every 10min. The mixture was then washed
three times using the appropriate wash buffer for 10-min
incubations. Protein–DNA complexes were eluted by a
10-min incubation in 50 ml of elution buffer [10mM Tris
(pH 8.5), 10mM maltose], pelleting the resin, then care-
fully transporting the supernatant to a new tube. An
addition round of pelleting and transport resulted in
cleaner samples with less resin contamination.

In the second run of Bind-n-Seq (see Results section),
four additional parameters were examined. Long wash
(lw): washed six times using 1ml of buffer with 10-min
incubations. Extra round of selection (+r): output DNA
from the first round was amplified by polymerase chain
reaction (PCR) using Illumina primers Pr4-f and Pr3-r
(95�C for 15 s, 63�C for 15 s and 72�C for 30 s). The
reaction was monitored periodically until 10 ml produced
a visible band on agarose gel (�11 cycles). This material
was used as input for a subsequent round of enrichment.
Ficoll (f): purified proteins were stored in 30% ficoll as an
alternative to glycerol (14). Salt concentration: 200mM of
KCl was examined because insufficient sequences were
obtained when 500mM was used in the first run.

Gel shift-based enrichment

A 50 ml binding reaction was loaded on a 5% tris-borate-
ethylenediaminetetraacetic acid (TBE) [9mM Tris (pH
8.3), 9mM boric acid, 0.2mM ethylenediaminetetraacetic
acid (EDTA)] polyacrylamide gel (Bio-Rad). Control
binding reactions (Zif268 protein with 6-carboxy-
fluorescein (FAM)-labeled Zif268 oligonucleotide targets)
were also loaded to indicate the mobility of the protein–
DNA complexes. The gel was run for 30min at 120V in
0.5� TBE. Gels were imaged without drying on a Storm
860 (Molecular Dynamics). Bands containing protein–
DNA complexes were excised and the DNA eluted over-
night at 23�C in 400ml of 0.5M ammonia acetate, 10mM
magnesium acetate and 0.1% SDS. The liquid was trans-
ferred to a new tube and the DNA precipitated by the
addition of 800 ml 100% ethanol at �80�C for 20min,
and centrifugation for 20min at 4�C. The pellet was
washed with 500 ml of ethanol, pelleted, dried and
resuspended in 50 ml of elution buffer.

Output DNA normalization and quantification

Real-time PCR (RT-PCR) was used to determine the
number of cycles required to amplify all output samples
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to equal concentrations that would be sufficient for
sequencing. Samples were analyzed on a DNA Engine
Opticon 2 System (MJ Research) using 20 ml reactions
containing 1 ml output DNA, 0.5 mM each of primers
Pr4-f and Pr3-r and the SYBR Green PCR Master Kit
(Applied BioSystems) (50�C for 2min, read, 90�C for
10min, 40 cycles of 95�C for 15 s, 63�C for 1min, read
every cycle, melting curve 40–95�C, hold for 3 s and read
every 0.7�C). A standard curve was generated using
template DNA at 300, 30, 3 and 0.3 nM.

Bioinformatics

All Perl scripts and raw sequence files are freely available
at http://korflab.ucdavis.edu/BnS. Sequencing reads were
filtered and sorted with htsAnalysis.pl. Filters included:
only A, C, G, T letters allowed; valid bar code and
constant regions and unique random regions.

An overview of the bioinformatics processing of motif
finding is shown in Supplementary Figure S1. The pipeline
included several Perl scripts (names ending in .pl)
and multiple em for motif elicitation (MEME) (15).
Motif finding was performed with MEME 3.5.7 with
parameters: -dna -revcomp -nmotifs 5. To produce inter-
mediate motifs, we added -minw 9 -maxw 10 for Zif268
and -minw 10 -maxw 15 for Aart. To produce the final
motifs we set -mod oops or -mod zoops and P< 1e�100.
Reads were scored for the presence of a motif using
motif_mapper.pl. The threshold score corresponded to
a P-value of 0.001 in a simulation of 1 million random
21-mers.

The relative affinities for 15 sequences (10-mers) were
calculated with seqMapper.pl. Fold enrichment score was
calculated by as the ratio of reads that contained a partic-
ular 10-mer sequence in protein-containing reads to no-
protein control reads.

Sequencing

Sequencing was performed with the Illumina Genome
Analyzer. Both runs employed version 1 sequencing
reagents. The first run was on a GA I, pipeline 0.3 and
the second run was on a GA II, pipeline 1.0.

RESULTS

Experimental design

An overview of Bind-n-Seq is shown in Figure 1. In each
binding reaction, a purified protein was mixed with
double-stranded Bind-n-Seq target oligonucleotides
(DNAs), which contained a bar code, a binding region
consisting of 21 random bp and flanking primer-binding
sites. A randomized region of 21 bp contains 4.4� 1012

members (421). Each binding reaction contained a 3-fold
over-representation of each possible 21-mer, correspond-
ing to 22 pmol or 440 ng of single-stranded 93-mer
oligonucleotides (see ‘Materials and Methods’ section).
Hence, each binding reaction contained more than 107

copies of each possible 10-mer or more than 102 copies
of each possible 18-mer. Double-stranded DNAs
were created by primer extension. After incubation, the

protein–DNA complexes were separated from unbound
and low-affinity DNAs and then the bound DNAs were
released and quantified. The DNAs from several different
experiments were combined in approximately equal
concentrations and massively parallel sequencing was per-
formed using an Illumina Genome Analyzer. After
sequencing, bar codes were used to sort the DNAs into
their respective experiments. Common sequence patterns
(motifs) were identified using a combination of MEME
(15) and custom Perl scripts.
Massively parallel sequencing has a higher error rate

than traditional Sanger sequencing and many of the
errors are not simply low frequency point mutations.
Regardless of the source of the erroneous reads (possibly
technical artifacts or contaminants), some quality control
measures are required for any de novo sequencing appli-
cation. In Bind-n-Seq, one can be assured that sequences
are derived from a binding reaction by observing the
primer-binding site B on the 30-side (Figure 1). Two
fixed nucleotides, AA, in addition to the bar code were
used to determine valid sequences on the 50-side. We used

Figure 1. Bind-n-Seq overview. The Bind-n-Seq substrate is an oligo
containing constant regions (Primer A and Primer B) a 3-nucleotide bar
code (BC) and 21 bp random region. Bar coded oligonucleotides are
mixed with various proteins, washed to remove unbound DNA, pooled
and sequenced with short read technology. Reads are sorted by their bar
codes and processed through several bioinformatics procedures that
result in motifs corresponding to the DNA binding sites of each protein.
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the AA dinucleotide to estimate sequencing error rate near
the bar code and found that the error rate was <0.1% at
both positions (data not shown). Bar code mis-assignment
was therefore quite rare.

Bind-n-Seq reactions

An important goal of our initial binding experiments was
to establish reaction conditions that would be stringent
enough to provide a significant single-step enrichment of
preferred binding sequences, while still allowing enough
bound DNA to be recovered for subsequent sequence
analysis. One of the attractive features of Bind-n-Seq is
that bar coding allows one to combine several binding
reactions into a single sequencing reaction. We used this
feature to examine several different binding conditions for
the DBD of two zinc-finger proteins: the 3-finger Zif268
[aa 349–421, (16)] and the 6-finger engineered Aart (14).
We surveyed protein concentrations of 0.05, 0.5, 5 and
50 nM, which cover and exceed the reported KD values
for Zif268 and Aart [6 nM and 50 pM, respectively
(14,16,17)]. The proteins were expressed in bacteria as
fusions with the MBP, which improves solubility and
allows for rapid one-step purification over amylose resin.
We compared two enrichment methods: affinity capture
of proteins in solution (resin) and separation on a
polyacrylamide gel (gel shift) (see ‘Materials and
Methods’ section). For the resin-based enrichment
method, amylose resin was added to the binding reactions
at equilibrium to capture the proteins, then washed three
times with a parameter-specific wash buffer. Buffer salt
concentrations ranging from no additional salt (0mM
KCl) to 500mM KCl were surveyed. For the gel shift
method, fluorescently labeled control binding reactions
allowed gels to be scanned without drying. We simultane-
ously examined nine reaction conditions for each protein

in the first Bind-n-Seq experiment and four additional
reactions for each protein in the second experiment.

Evaluating Bind-n-Seq with known motifs

After quality control procedures (see ‘Materials and
Methods’ section), we obtained a ‘clean’ data set con-
taining �100 000 reads for each bar code (Supplementary
Tables S1A, S1B and Figure S2). The various reads,
separated by their bar codes, were used to compare the
success of each binding condition above. Established
position weight matrices (PWMs) for Zif268 and Aart
(14,18) were used to calculate how many reads contained
the expected binding motifs (see ‘Materials and Methods’
section). It was found that 5 nM protein, 100mMKCl and
the long wash conditions provided the optimal enrichment
for both Zif268 and Aart (Figure 2). Under these
conditions, the Zif268 expected motif was found in 7.7%
of the Zif268-enriched reads compared to 0.42% in the no-
protein control. Similarly, 2.0% of the Aart-enriched reads
contained the expected motif compared with 0.34% in the
control (Supplementary Figure S3).

De novo motif finding with MEME

We used MEME to perform de novo motif analysis
(see ‘Materials and Methods’ section and Supplementary
Figure S1) on Zif268 and Aart reads under optimal
conditions. The computational costs to analyze the
complete data set with MEME are prohibitive.
Therefore, our overall strategy was to split the reads
into five non-overlapping sets of 10 000 sequences, derive
intermediate motifs using MEME and merge sequences
corresponding to the intermediate motifs in a final appli-
cation of MEME. For each non-overlapping set, of 10 000
sequences, each run of MEME produced slightly different
but highly similar motifs (Supplementary Figure S4).

Figure 2. Motif enrichment. The fold-enrichment of known motifs in various binding reactions is shown for Zif268 (blue) and Aart (red). Y-axis:
fold-enrichment of a motif in a binding reaction over control (no-protein). Reaction conditions: z, Zif268; a, Aart; protein concentration is shown
in nM, salt (KCl) concentration is shown in mM, gs, gel shift; lw, long wash; +r, extra round of selection; f, ficoll. Error bars show the range of
values for replicated experiments.
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Among these motifs were low complexity patterns such as
poly-A or poly-G/T. These were likely the result of imper-
fect randomness in the original oligonucleotide library (see
‘Discussion’ section). To filter off the low complexity
patterns, we demanded that all motifs be enriched 4-fold
over background (Supplementary Figure S5). To merge
the five experiments, we collected all reads that match
the intermediate motifs and ran MEME on this subset
to arrive at the final motif(s) (Figure 3).

Calculating relative affinities

The relative enrichment of individual k-mers should
correspond to the affinity of the protein–DNA interaction,

since DNA sequences with higher affinity are expected
to be more highly enriched than lower affinity sequences.
Liu and Stormo (11) reported previously the relative
affinity of Zif268 for 15 different DNA sequences using
a quantitative multiple fluorescence relative affinity
(QuMFRA) assay. To determine if Bind-n-Seq would be
a similarly useful method for measuring relative affinities,
we examined the fold-enrichment of the same 15 sequences
(10-mer) (Supplementary Figure S6) and found an excel-
lent correlation with the results of the previous study
(R2=0.9 under optimal reaction conditions, Figure 4).

DISCUSSION

Our results demonstrate that Bind-n-Seq can identify
reasonable in vitro binding site motifs and relative
affinity information from a one-step enrichment of an
oligonucleotide library containing 1.3� 1013 21-mer
sequences. Motifs were derived from �100 000 potential
binding sites, which should contain examples of the high-,
medium- and low-affinity sequences required for an
accurate binding site model (13). The methodology is
rapid, and the use of bar coding and massively parallel
sequencing allows multiple protein samples to be
analyzed simultaneously. This conclusion is supported
by the observation that reasonable motifs were identified
in each of the non-overlapping sets of 10 000 reads. These
results suggest that Bind-n-Seq could be parallelized even
further, with 256 samples using four nucleotide bar codes.
Bind-n-Seq was able to determine de novo binding

motifs that were similar to those described previously
for both the 3-zinc finger Zif268 and 6-zinc finger Aart
DBDs. These proteins have very different binding
characteristics. Zif268 has a G-rich binding motif (18)
and binds the sequence 50-GCG-TGG-GCG-T-30 with an

Figure 3. Comparison of CAST and Bind-n-Seq motifs. Intermediate motifs are the result of several non-overlapping sets of reads. Final motifs
use reads matching intermediate motifs.

Figure 4. Comparison of relative affinities determined by Bind-n-Seq
and QuMFRA. Bind-n-Seq relative affinity is calculated as the fold-
enrichment of the 15 sequences (10-mer) (Supplementary Table S2)
compared to a no-protein control. All reactions are 5 nm protein and
100mM salt. Squares are run 1, circles are run 2, triangles are long
wash. The relative affinity for the same 15 sequences (10-mer) assessed
by QuMFRA is taken from Liu et al., 2005.
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affinity of about 6 nM (16,17). Aart has a more A-rich
binding motif (14) and binds the sequence 50-ATG-
TAG-GGA-AAA-GCC-CGG-30 with an affinity of
50 pM (14). Both sets of found motifs agree with
previous in vitro target site selection experiments that
not all base pairs seem to be equally involved in the
binding of these proteins.
When determining the binding site for a novel protein,

the length of the binding site may be unknown. In
addition, some polydactyl zinc-finger proteins have been
shown to use different combinations of zinc fingers to bind
to different sequences (19–22), in which there may be more
than one binding site. For these reasons, it is useful to
look for multiple long motifs. To derive the final motif
for Zif268, we began with a 12 bp site and up to five
motifs. This resulted in one motif, but each end of the
motif included one non-specific position (Supplementary
Figure S7) indicating that the binding site was actually
10 bp. The final motif was then produced by setting the
pattern length to 10 bp. For Aart, we began with a 15 bp
site and up to five motifs, and this produced three motifs
with a few 50- or 30-non-specific positions. Reducing the
length to 12 bp resulted in two motifs corresponding to
either a longer 50- or 30-end. Although the Aart CAST-
derived pattern is 15 bp, 10–11 bp is apparently enough for
Bind-n-Seq. These results are consistent with a recent
survey of the in vitro DNA binding specificity of 104
murine proteins using the PBM methodology, which
found that roughly half of the proteins recognized
multiple different sequence motifs (23).
A significant advantage of Bind-n-Seq over other

common methods for binding site determination is the
large number of potential binding sites recovered in each
experiment. This data can then be mined in various
ways to gain additional insights into the protein–DNA
interaction. In this study, we demonstrated that k-mer
fold-enrichment can be used to estimate relative affinities.
The relative affinity of Zif268 to 15 different 10-mer DNA
sequences was calculated with an accuracy similar to that
of other quantitative methods (11). As expected, the
accuracy was greatest for high-affinity sequences, with
low-affinity sequences clustering more generally near the
no-protein control (Figure 4). This analysis would not
have been possible with the relatively few sequences
obtained from a standard SELEX experiment (�20–40
sequences). Compared to PBMs, which can also provide
a measure of relative affinity, Bind-n-Seq can sample
longer binding sites.
A somewhat surprising finding was that similar experi-

mental conditions (long wash) provided optimal enrich-
ment for both Zif268 and Aart (Figure 2). Also
unexpected was that the motif for the lower affinity
protein could be recovered more frequently than that of
the higher affinity protein; however, this may have been
due in part to the difference in binding site length. Shorter
sequences appear more frequently in the library than
longer ones. The long wash condition proved more strin-
gent than higher salt or one additional round of selection,
suggesting that the most critical parameter in these
experiments was the dissociation rate of the complexes
(koff). The observation that these conditions were useful

for proteins differing in affinity by 100-fold provides
optimism that these are a limited set of conditions that
can be used to analyze many diverse proteins simultan-
eously. Of course, many proteins bind DNA with affinities
lower than those used here and it is possible that their
binding motifs could not be determined by this or any
other target site selection methodology. However, many
low-affinity proteins show cooperativity with neighboring
binding factors and the long binding region of the Bind-
n-Seq DNAs may be useful for their analysis.

In principle, a variety of sequencing platforms are
appropriate for Bind-n-Seq. Short-read sequencing
technologies are ideal because the sequenced region is
only 35 bp. We found that the longer read 454 technology
would require significant software modification to provide
binding calls on short oligonucleotide sequences. Another
important consideration is the quality of the oligonucleo-
tides. The Bind-n-Seq method relies on the ability to detect
protein-dependant binding motifs from a background of
random sequences. However, if the background is not
perfectly random, motifs could appear to arise due to
the background bias. To determine if our oligonucleotide
library contained sequence biases, we purchased Bind-
n-Seq oligonucleotides from several vendors and
sequenced the 21-mer random region to determine if
they contained non-random features. All vendors had
general compositional biases such that the frequency of
each nucleotide was not 25% (Supplementary Figure
S8). This was true even with the ‘hand mix option’.
Sigma oligonucleotides appeared to have a strong
neighbor effect, which could be seen from dinucleotide
compositions (Supplementary Figure S9). All Sigma
oligonucleotides had a low-complexity bias (Supple-
mentary Figure S10), which could explain the low-
complexity motifs found by MEME. The Bind-n-Seq
reactions in this study employed Sigma oligonucleotides.
We do not know if the differences among manufacturers is
due to differences in synthesis technology, chemical
batches or other factors. Although Bind-n-Seq was able
to identify known binding sites in this study, we expect it
to perform better with unbiased oligonucleotides. For this
reason, we think it would be best to examine the
randomness and use the most random oligonucleotides
available.

We envision Bind-n-Seq to be useful in variety of basic
research and biotechnology settings. One important appli-
cation is in characterizing transcription factors with
unknown binding sites. In the human genome alone,
there are more than 700 zinc-finger proteins, most of
which have unknown targets. Identifying these targets is
not only useful from a discovery perspective, it also brings
a wealth of new data to those seeking to model the zinc-
finger binding code. A simple-recognition code currently
exists but is based on a small number of protein–DNA
interactions and is thus incapable of accurately predicting
uncharacterized proteins (24–28). An accurate zinc-finger
binding code would not only allow the prediction of
binding sites, it would also improve the design of engi-
neered domains to target a desired specific sequence
(29,30). Bind-n-Seq can also be used to examine the
intended and unintended in vitro targets of engineered
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zinc-finger proteins. Although this study focused on zinc-
finger proteins because they are the best understood DBD,
we expect Bind-n-Seq should be useful for investigating
other families of DNA-binding proteins.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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