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ABSTRACT

Gene expression is regulated by combinations
of transcription factors, which can be mapped to
regulatory elements on a genome-wide scale using
ChIP experiments. In a previous ChIP-chip study of
USF1 and USF2 we found evidence also of binding
of GABP, FOXA2 and HNF4a within the enriched
regions. Here, we have applied ChIP-seq for these
transcription factors and identified 3064 peaks of
enrichment for GABP, 7266 for FOXA2 and 18783
for HNF4a. Distal elements with USF2 signal was
frequently bound also by HNF4a and FOXA2. GABP
peaks were found at transcription start sites,
whereas 94% of FOXA2 and 90% of HNF4a peaks
were located at other positions. We developed a
method to accurately define TFBS within peaks,
and found the predicted sites to have an elevated
conservation level compared to peak centers;
however the majority of bindings were not evolu-
tionary conserved. An interaction between HNF4a
and GABP was seen at TSS, with one-third of
the HNF4a positive promoters being bound also
by GABP, and this interaction was verified by
co-immunoprecipitations.

INTRODUCTION

In each cell type the expression of genes is regulated by the
action of a large number of transcription factors (TFs),
but so far we have only a rudimentary knowledge of the
location of the regulatory elements. Some are located
upstream of genes but it is also well known that enhancers,
silencers, locus control regions and boundary elements are

frequent in the genome and can regulate the transcription
of genes over large distances. It is also becoming clear that
most genes have alternative promoters (1). Sequences that
take part in gene regulation are characterized by open
chromatin, and recent studies in CD4+ T-cells (2) have
identified 95 000 such sites by mapping the sensitivity for
DNaseI digestion. This finding is also supported by
analyses in 1% of the genome which indicate that most
types of cells have in the order of 100 000 sites of open
chromatin (3). Which proteins that binds to these regula-
tory units is virtually unknown but can now be determined
genome-wide in a systematic way in vivo using chromatin
immunoprecipitation and high-resolution arrays (ChIP-
chip) or direct sequencing of enriched fragments (ChIP-
seq) (4–6).

In a recent genome-wide ChIP-chip study, we identified
the binding sites for the TFs USF1 and USF2 (7) in
HepG2 liver cells. In most cases USF1 and USF2 bind
together at transcription start sites (TSS) but one
striking finding was that sequences bound only by USF2
were mostly at distal positions and contained motif
sequences for the hepatocytic nuclear factors HNF4a
and FOXA2 (HNF3b). Furthermore, the recognition
sequence for GABP (also called nuclear respiratory
factor 2, NRF-2) was found to be overrepresented at
TSS bound by the USFs. The nuclear receptor HNF4a
is a major regulator of the hepatocytic phenotype and
regulates genes involved in the control of lipid
homeostasis (8). Mutations in HNF4a can cause
maturity onset diabetes of the young (MODY1) (9), and
single nucleotide polymorphisms (SNPs) in its promoter
have been associated to type II diabetes (T2D) (10–12).
FOXA2 has the ability to function as a pioneering factor
during development by opening up compacted chromatin.
It is also important for the normal function of several cell
types, including the liver where it regulates the expression
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of genes involved in gluconeogenesis. To get a better
understanding of which genes these factors regulates and
to characterize the USF2-HNF distal regulatory regions
we used ChIP-seq in HepG2 cells.

One inherent advantage of ChIP-seq over array based
methods is the high resolution achieved by sequencing the
ends of intact immunoprecipitated fragments, where
ideally the random shearing around the bases bound by
the TF can lead to true base pair resolution. However, in
practice it is often not possible to define the exact binding
sites from the aligned fragments if for example multiple
binding sites for the TF are located close together or if too
few fragment ends are sequenced. We developed a de novo
motif finding algorithm which uses the expected enrich-
ment of transcription factor binding sites (TFBS) in
peak centers (5,13) in order to independently identify the
most overrepresented motifs and thus predict the bases
bound by the TFs.

We found a large overlap between the GABP and
HNF4a peaks at TSS, indicating an interaction between
these two TFs. We further investigated this using
co-immunoprecipitations and found that these TFs are
indeed in the same complexes within the cells. We also
suggest that annotating the genome with ChIP-seq will
help identify potential regulatory SNPs from genome-
wide association studies (GWAS), since bindings of
HNF4a and FOXA2 was found close to several SNPs
associated to metabolic disorders.

MATERIALS AND METHODS

ChIP and sequencing

Chromatin immunoprecipitaation was performed essen-
tially as described before (7) on 107–108 cells per reaction
using antibodies sc-6554, sc-6556 and sc-13442 (Santa
Cruz Biotechnology), see Supplementary Methods
section for details. Sequencing was done on an Illumina
1G instrument according to the manufacturer’s protocol.
For IgG and the first FOXA2 replicate libraries with insert
sizes 50–150 and 250–450 bp was made, all other libraries
had inserts of 100–300 bp. Antibodies for ChIP-PCR
verifications were sc-101102 for NRF-1 and for GABP
the monoclonal antibody sc-28312 was used. Sequences
are available through MIAMExpress (http://www.ebi.ac.
uk, E-MTAB-115).

Alignment and peak finding

The Eland software (Illumina) was used repeatedly to
align reads with up to two mismatches against the hg18
reference genome, starting at 32 bases and shortening un-
aligned reads by three bases at the 30-end until the
remaining alignments were 23 bases long. After evaluation
of enrichment in aligned reads of different length we
selected only reads aligning at 29 or 32 bases for the
final analysis in order to minimize the number of false
positive peaks introduced by misalignments. All aligned
positions that were present in both the IgG and TF
datasets were removed, as were all alignments within
1Mb of the centromeric gaps. Some sequence libraries
were found to have an unexpectedly high percentage of

reads aligning to the same positions, indicating PCR
artifacts or too deep sequencing for the library, thus for
each library we collapsed reads on the same position
and strand. Extended fragments of varying lengths
were created by matching reads on opposing strands by
identifying the nearest unmatched forward read facing
each sorted reverse read, requiring a minimum of 100
bases between matched reads. If no unmatched read was
found within the size limits in the library the read was
allowed to extend to the maximum size in the sequencing
library.
Peaks of enrichment was defined as groups of reads

for which the fragments overlapped. The maximum
overlap was used to define peak height, with the peak
center taken as the midpoint for positions with
maximum overlap. Each peak was given a mismatch
score based on the average number of mismatches in
the alignments contributing to the peak maximum, with
the addition of one mismatch for each truncation step.
Peaks were annotated with repeats by matching to the
RepeatMasker table from the UCSC genome browser
(14). SNPs within peaks were identified from the dbSNP
database and the sequence around these positions was
extracted from the aligned reads. Based on comparison
with IgG peaks we removed all peaks that were either
in satellite or rRNA repeats or had a mismatch score
above 2.
To calculate overlaps between datasets (Table 1) we cal-

culate the number of peaks in each dataset located within
500 bp of an entry in the other datasets. UCSC genes were
used to define TSS positions, and CAGE-tag clusters were
downloaded from the RIKEN database (15).

Quantitative PCR validations

To define a cut-off for positive peaks we first calculate an
FDR level of 10�4 based on a similar approach as used by
Robertson et al. (13) (Supplementary Data), and then for
each factor the enrichment of �20 regions with ChIP-seq
signal was tested by qPCR using SYBR Green. We
randomly picked peaks to cover the range of peak
heights for each TF, including peaks below the FDR-
based cut-off level and additionally included regions
either unique or common for the different TFs. New
ChIP material was prepared and all reactions were
performed in triplicates. A quantitative value was
calculated from a standard curve of input dilutions. As a
background, four to six regions without ChIP-seq signal
were run, and the quantitative values for each region was
divided by the mean +2.5 SD of the negative regions.
Fold enrichments �1.5 were considered significant.

Motif finding and conservation of TFBS

Each k-mer located within 150 bp of peak centers was
given a score based on its frequency, average distance
from peak center and enrichment in a window of 100
bases centered over the peak, with positions 100–150 bp
on both sides of peak centers as a background. Repeats
were selected against by only considering the outermost
location of each k-mer in each sequence. Motifs were con-
structed from k-mers with at least 3-fold enrichment, and
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for each enriched k-mer a motif score was calculated by
taking the sum of all scores for k-mers with one or two
mismatches. For FOXA2 and GABP we used 8-mers
with one mismatch, and for HNF4a we allowed two
mismatches in 9-mers to better capture both halves of its
motif. The top scoring motif was selected and all peaks
with a match within 100 bp were removed, and the proce-
dure was repeated until <5% of the peaks had been
removed. Motifs were visualized and compared to the
Transfac and Jaspar databases using STAMP (16). For
additional motif discovery in masked sequences a two-
fold enrichment of 8-mers was used allowing one
mismatch from the core motif sequence. The conservation
scores for the predicted TFBS and peak centers were col-
lected from the UCSC phastCons28placMammal dataset
for the 500 highest and lowest peaks with a TFBS located
within 50 bp of peak center.

Gene Ontology and expression analysis

The distribution of Gene Ontology (GO)-annotations
for protein coding genes (PCG) annotated to different
peak fractions were compared to the distribution of GO-
annotations for all the genes from the PCG-categories.
The two-sided p-value for each GO-term was calculated
using a Fishers’ exact test. The p-values were corrected for
multiple hypotheses testing using Benjamin and Yekutieli
(17) correction. Expression data from (18) and from
GSE10021 was downloaded from Gene Expression
Omnibus (NCBI) to compare expression levels for
bound genes and for different cell types. A distance of
1 kb was used to associate bindings with expression and
GO. All GO results are available in Supplementary file
2 and at http://www.anst.uu.se/stenr451/goseq/goseq/.

Co-immunoprecipitations

Nuclear extracts from HepG2 was incubated with TF
antibodies or IgG and the immunoprecipitates were
analyzed by western blot (details in Supplementary
Methods section).

RESULTS

Alignment errors can affect ChIP-seq datasets

We used massively parallel sequencing to obtain ChIP-seq
reads from chromatin immunoprecipitated with anti-
bodies directed against HNF4a, FOXA2 and GABP and
IgG. To maximize the number of usable reads we tested
both reads with high and low quality scores for enrich-
ment, and found that reads falling below the quality
thresholds on the instrument were often correctly
aligned at known binding sites. The number of uniquely
aligned reads could further be increased substantially after
truncation of the 30-ends. However, we also found that the
shorter alignments were more likely to be falsely placed
over certain types of repeats and can thus increase the
noise in ChIP-seq datasets (Supplementary Figure S1).
We therefore required at most two mismatches to the ref-
erence in the first 29 bases of a read, which gave 3–7
million alignments for the different transcription factors.

Although the negative control (IgG) gave fewer align-
ments, enrichment of the IgG alignments were seen in
many locations. Most of these alignments were found to
have a high number of mismatches to the reference and
often to be located to satellite and rRNA repeats. We
filtered the TF datasets based on this information and
found that the removed peaks were not enriched for the
TF motifs (Figure 1C, removed peaks).

Since the aligned reads represents the ends of enriched
sonicated DNA, the TFBS are expected to be centered
between reads from the forward and reverse strands. We
found that using a fixed read extension to create virtual
ChIP fragments, as was done in some of the first ChIP-seq
studies (13), can lead to a shift in peak maxima if two
binding sites are present at a short distance while other
methods that scan for changes in strand preferences of
reads (19) are prone to give too many peak calls in such
situations (Supplementary Figure S2). We used the strand
separation of read to create shorter fragments in peak
centers by simulating paired-end reads within the size
range defined by the sequencing libraries. This was
found to give a better separation of close peaks and an
estimation of peak height (overlaps) that better reflects the
actual number of reads from each peak in simulated
datasets.

To define a set of significantly enriched peaks we first
calculated an FDR level of 10�4 at five overlaps for
GABP, seven for FOXA2 and eight for HNF4a. Next,
we tested enrichment around the cut-off using quantitative
PCR and found a good correlation between enrichment
and peak height, but several peaks for GABP and HNF4a
close to the initial cut-off level were not enriched in the
qPCR (Supplementary Figure S1D). Based on these
results we required a minimum overlap of 11 for GABP,
eight for FOXA2 and 15 for HNF4a in order to get lower
false positive rates. This gave 3064 peaks for GABP,
7266 for FOXA2 and 18783 for HNF4a (Table 1). The
datasets are presented as genome-wide overlap profiles
to be visualized in the UCSC genome browser (14)
(Supplementary Dataset 1).

De novo motif discovery in ChIP-seq datasets

A ChIP-seq experiment often leads to the identification of
a very high number of enriched regions, and given the high
resolution each TF target sequence can be expected to
be enriched in peak centers. It is further possible that
unspecific binding of the antibody or binding of a TF
together with different partners could lead to enrichment
of different motifs in subsets of peaks. We developed an
algorithm to identify motifs which are independently
enriched in peak centers, and validated our method by
re-analyzing published ChIP-seq datasets from Valouev
et al. (20). For the serum response factor SRF, we
identified both motifs highly similar to the SRF motif as
well as the ETS.1/GABP motif (Supplementary Figure
S3), in concordance with the reported results from the
de novo motif finding program MEME. For GABP we
analyzed a larger dataset and found the expected motif
in more than 12 000 peaks, which is almost twice the num-
ber of reported peaks in the original article. This shows
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that the addition of motif discovery to peak detection
will allow identification of true binding sites also in
sequences with low enrichment. Additionally, we found
the method applicable also to lower resolution ChIP-
chip data from the USF study (Supplementary Figure
S3C and D).
We identified several variants of the expected motifs for

FOXA2 and HNF4a (Supplementary Figure S4), and the
combined motifs were found to be highly similar to the
established motifs in the Transfac database (Figure 1B).
Although HNF4a and FOXA2 in many cases are enriched
in the same regions we were able to identify their indi-
vidual binding sites, as exemplified in Figure 2C for the
HNF1a promoter where exact matches to two previously
reported (21) HNF4a sites and one FOXA2 site was
found. Surprisingly, for GABP we could identify two
equally enriched motifs, one that matches the expected
motif for GABP/NRF-2 and one motif for the related
factor NRF-1 (22). Although a large number of peaks
contain both the NRF-1 and NRF-2 motif, the NRF-1
sites had a very tight distribution around peak centers
and were present also in peaks without the NRF-2 motif
(Figure 1A and B). Thus, this motif is likely representing
the bound sequences in a subset of the GABP peaks rather
than being identified by co-localization with NRF-2
motifs. We therefore divided the GABP peaks into two
groups, NRF-1 and NRF-2, for further analysis.

Co-identified motifs in peaks correspond to in vivo binding

For HNF4a a relatively large number of peaks (29%)
remained without a match to the motif (Figure 2D). We
further analyzed these sequences using more relaxed
settings and found the majority of these peaks to
contain variants of the forkhead motif and also that
subsets of peaks were enriched for HNF6 and GABP
motifs. PPARg-RXRa motifs were also identified;
however, these sequences are highly similar to the
HNF4a motif and could be direct targets of HNF4a.
FOXA2 and HNF6 are both known to bind together
with HNF4a which indicates that this subset of peaks is
either due to indirect binding or binding to sequences that
are more divergent from the consensus or less well
centered in peaks. Additionally, we searched for motif in
peaks where the identified HNF4a sequences had been
masked and found both the FOXA and HNF6 motifs to
be enriched close to the HNF4a sites, and further
identified motifs for C/EBP and CDP which are also
known to interact with HNFs (23,24). Almost 50%
of the HNF4a regions with the FOXA2 motifs
were overlapping with peaks in the FOXA2 dataset,
compared to 22–26% for the HNF6 and RXR motifs
and 20% of all HNF4a peaks. For the GABP motifs in
HNF4a peaks, 63% were also found in the GABP ChIP-
seq dataset. We therefore conclude that motifs identified
in this way are likely to correspond to binding in vivo.
Analysis of masked FOXA2 sequences revealed
HNF4a and C/EBP motifs, and GABP motifs were
found to co-localize with SP1 and AP-2 motifs (Supple-
mentary Figure S5).

Figure 1. (A) Enrichment of the identified motifs in a 300 bp interval
over peak centers, with the core sequences for each motif shown below
the plot. (B) Sequence logos for the identified motifs and for the most
similar motif from the Transfac database. (C) Fraction of peaks with at
least one motif sequence within 50 bp of the center at different peak
heights. Dotted lines indicate average motif content in removed peaks,
starting at the significance threshold for each factor. (D) All identified
motifs are significantly enriched for conserved bases compared to the
centers of the same peaks.
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We also matched a collection of 66 known binding
sequences for HNF4a from human studies (25) to our
peaks and out of these, 50 were present at least once in
the peak centers and 34 were present in the list of pre-
dicted binding sites. Interestingly, the sequences that
were not common in the peaks had a lower information
content (Supplementary Figure S4D), indicating that
many of these sequences are not direct HNF4a targets in
vivo. We also found that some known binding sites were
present in peaks below our cut-off which led us to test to

what extent lower signals could be due to direct binding of
the TF. To do this, we searched for the most enriched
sequences at each peak height below the cut-off and
were able to identify the target sequences already in
peaks with as few as three to six overlapping reads for
the different factors. Although enrichments are low in
these peaks (Figure 1C) the high total number of peaks
at these heights means that the full repertoire of binding
sites in HepG2 cells are larger than the number of signif-
icant peaks presented here. However, it is possible that

Figure 2. Motifs in HNF4a and FOXA2 peaks. (A) Overlaps between HNF4a, FOXA2 and USF2 homodimers. (B) Distance between HNF4a and
FOXA2 motifs in overlapping peaks. (C) The close location of FOXA2 and HNF4a sites are exemplified with identified motifs in the HNF1a
promoter, with arrows indicating the positions of three sites taken from the literature. (D) Identification of co-localized motifs in HNF4a peaks.
Peaks with a match within 100 bp to any of the two 9-bp motifs (blue circle, numbers indicate the number of peaks with the motifs) were reanalyzed
after motif masking and found to contain HNF6, C/EBP, CDP and forkhead motifs (right panel). Reanalysis of the 5381 peaks with no match to the
HNF4a using less stringent settings revealed motifs for HNF3, HNF6 and GABP (left panel).

Table 1. Number of significant peaks and overlaps between data sets

FOXA2 HNF4a GABP TSS USF1
n=2420

USF2
n=1314

USF2-homo
n=240

FOXA1
n=7881

FoxA2
n=8677

FOXA2 7266 3564 125 454 183 208 72 1549 573
HNF4a 3546 18 783 690 1873 457 431 123 1051 880
GABP 125 699 3064 2609 162 125 17 31 108

FOXA1 results are from MCF-7 cells (29) and FoxA2 from mouse livers (26).
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bindings to motifs below our threshold are transient and
therefore not as likely to give rise to biologically meaning-
ful interactions.

Some binding sites are evolutionary conserved

We then asked whether the sequences bound by the tran-
scription factors were shared with other species, thereby
suggesting evolutionary constraint in transcription factor
positioning in the genome. We analyzed the conservation
scores for the predicted TFBS as well as the overlap
between FOXA2 binding sites identified by ChIP-seq
in human and mice. The TFBS for all factors were
significantly more conserved than the corresponding
peak centers, indicating that the identified motif positions
to a large extent are true binding sites (Figure 1D).
Additionally, we found a significant increase in conserva-
tion for motifs in the lowest scoring peaks (not shown),
indicating that also many of the peaks close to our cut-off
level also have an evolutionary conserved function.
However, the majority of predicted binding sites for
HNF4a and FOXA2 had low conservation scores. To
further characterize the level of conservation between
species we compared the FOXA2 binding sites to those
presented by Wederell et al. in a recent ChIP-seq study
of FoxA2 binding sites in mouse livers (26). This dataset
was obtained using the same antibody and peaks were
found to contain the same motifs in similar numbers,
thus these datasets should be well suited to study evolu-
tionary differences in the FOXA2 binding patterns. We
used the UCSC liftOver program to convert coordinates
from mouse to human and found 577 FOXA2 and 860
HNF4a sites to overlap with the converted FoxA2 peaks
(Table 1). The signal for FOXA2 in HepG2 was
significantly higher for the sites where an orthologous
signal was found in mouse, indicating that higher peaks
are more likely to have a functional role which has been
conserved between the species. One example of such a
binding is found upstream of the HNF4a gene, where
both experiments identified the same TGTTGAC target
sequence (Supplementary Figure S6). Next we used
ChIP-seq results from a different mouse strain (27) to
define a set of high-confidence sites and further restricted
this dataset by only include sites for which the same motif
sequence was found also at the converted location in the
human genome. Although a larger proportion of these
sites were common between human and mouse, the
majority (two-third) were not, showing that there is a
large variation in binding sites between the species.

Most FOXA2 and HNF4a peaks are far from TSSs

We found that only six and ten percent of all FOXA2 and
HNF4a peaks respectively were located within 500 bp of a
TSS (UCSC genes, Table 1). This is in line with what was
found in the ENCODE regions in an earlier study (28).
However, the increased resolution and coverage achieved
by ChIP-seq allowed us to identify that both factors are
enriched at positions �200 to +50bp from the TSS
(Supplementary Figure 3A). To investigate if the distal
sites are in part due to binding to less well characterized
TSS we mapped the peaks that were not found at a known

TSS to the RIKEN CAGE-tag dataset. This revealed a
similar pattern with an additional 255 peaks for FOXA2
and 651 for HNF4a located within +50 to �200 bp of a
CAGE-tag cluster indicating that some novel transcripts
or TSSs are regulated by these factors. To further charac-
terize the distribution of binding sites, we considered
bindings associated to genes if it were in a region from
�10 to +1kb of the gene body. Even with this broad
definition only 60% of the peaks for the TFs were
associated to genes, with 33% of all unique gene
symbols associated with HNF4a binding and 16% with
FOXA2. We have previously seen a difference in motif
content for HNF4a binding sites in promoters (28) and
in this study we found not only that fewer peaks at TSSs
contain the motif but also that the average height for the
peaks at TSS are lower, contrary to what is found for the
other factors in the study (Supplementary Figure S7D).
This is caused by the peaks without motifs, which
indicates an indirect binding to these sites. We found
that almost half of the FOXA2 peaks were co-localizing
with HNF4a, often at a very close distance and with both
motifs present (Figure 2B) and 20% of the FOXA2 peaks
were close to sites bound by FOXA1 in MCF-7 cells (29),
indicating that a large proportion of binding sites are
shared between different FOXA proteins and used in
different cell types.

HNF4a and FOXA2 but not GABP binds genes
with liver-specific expression

To investigate if the TFs regulate the activity of nearby
genes we matched binding sites within 1 kb of a TSS to the
respective gene expression level in HepG2 (18). All factors
were found to be associated with elevated gene expression,
and genes with more than one factor at the TSS generally
have a higher expression level (Figure 3C). To test if the
bound genes have a liver-specific expression pattern we
also compared the expression levels for the bound genes
in 16 different cell lines (Figure 3D). Genes bound by
HNF4a and FOXA2 have a significantly higher expres-
sion in HepG2 compared to in non-liver derived cell
lines, and the average peak heights were higher for these
TFs at genes with elevated expression in HepG2. GABP
on the other hand did not show any significant difference
in expression levels in different cell types. We also found
the association with expression to be strongest for peaks
close to the TSS (Supplementary Figure S8).
In a recent study, RNAi against HNF4a was shown

to decrease the expression level of several genes (30).
We observed HNF4a signal within 10 kb of all the
reported genes, often with multiple sites throughout the
gene body (Figure 4). A prominent example of this is
the CDKN1A gene, where we could verify one of the
reported binding sites in the CDKN1A promoter, but
interestingly the strongest HNF4a signal in this locus
was seen close to the last exon, in a region bound also
by FOXA2.
We extracted the GO (31) annotations for genes

that were within 1 kb of a ChIP-seq signal and tested the
distribution of these against all GO-annotations in all
protein coding genes. GABP peaks were divided into
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two groups with either the NRF-2 or the NRF-1 motif,
and the GABP/FOXA2, GABP/HNF4a and FOXA2/
HNF4a combinations were tested. These results indicate
that FOXA2 is binding close to genes involved in cellu-
lar organization and biogenesis, various metabolic
processes and signal transduction. For peaks within
500 bp of TSS genes involved in response to stress and
DNA repair were overrepresented. GABP was found to
be involved in macromolecule metabolic processing,
and some clear differences were seen between NRF-1
and NRF-2 peaks, e.g. only NRF-1 was found to be

involved in apoptosis and cell death, a function that has
previously been associated to NRF-1 overexpression in
serum-depleted cells (32).

USF2 homodimers co-localize with FOXA2 and HNF4a

In a recent study, we investigated the genome-wide
locations of USF1 and USF2 in HepG2 cells using high
density oligonucleotide arrays (7). The binding sites for
USF1 and USF2 were mostly shared but in 240 out of
1351 cases USF2 bound as a homodimer. In addition,

Figure 3. Distribtion of peaks around TSSs and expression levels of bound genes. (A) All factors are enriched upstream of known TSS (UCSC
genes) and a similar pattern (B) is seen around CAGE-tags for peaks that were not at a UCSC gene. (C) Genes bound by FOXA2, HNF4a and
GABP have a higher expression than the average gene in HepG2, and genes where all factors are bound have the highest expression levels (P<< 0.01
for all combinations). Horizontal line shows the median of all genes on the array. (D) Expression levels differ in HepG2 compared to non-liver
derived cell lines for genes bound by HNF4a and FOXA2 but not for GABP.

Figure 4. HNF4a and FOXA2 peaks in genes down-regulated by RNAi against HNF4a. The table shows the number of peaks and maximum
overlaps within 10 kb of target genes. In most cases several binding sites with high enrichment were seen. The profile over the CDKNA1 locus
illustrates that in many cases the binding sites are intragenic.
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these binding sites were located further away from TSSs
than the USF1–USF2 heterodimers. Based on motif
searches it was found that some HNFs could bind these
regulatory elements, which was experimentally verified
at selected locations. In the present study we find that
more than 50% of the USF2 homodimers were close
to HNF4a and FOXA2 (Figure 2A) and that peaks for
FOXA2 and HNF4a were higher when USF2 was
present (Supplementary Figure S8), indicating cooperative
binding to these regions.

GABP peaks with the NRF-2 motif co-localize with
HNF4a peaks at TSSs

For the GABP dataset 85% of the peaks were within
500 bp of an UCSC gene and 95% were within 500 bp of
either an UCSC gene or a CAGE-tag cluster. The identi-
fication of both NRF-1 and NRF-2 motifs in the GABP
dataset was intriguing. Although pre-ChIP controls had
been made by Western blot, the possibility remains that
the polyclonal antibody recognizes both GABP (NRF-2)
and NRF-1 in vivo. We therefore analyzed peaks contain-
ing NRF-1 or NRF-2 motifs separately and found the
subsets to have distinct characteristics. Firstly, we found

an enrichment of HNF4a peaks close to GABP only
when the NRF-2 motif was present (Figure 5A).
Secondly, peaks containing only the NRF-2 motif were
closer to the TSS than those with only the NRF-1 motif
(Figure 5C). We next compared our results to the GABP
signals from Jurkat cells (20), where a monoclonal
antibody directed towards the N-terminal part of the
protein was used. Valouev et al. found only the NRF-2
motif in the GABP dataset and strikingly, 90% of our
NRF-2 peaks were co-localizing with a peak in the
Jurkat cells whereas the overlap was only 14% for peaks
with the NRF-1 motif. To exclude the possibility that the
differences are due to cell-type specific events or experi-
mental variation we performed ChIP-PCR using the
two GABP antibodies and a NRF-1 specific antibody.
Figure 5B show that ChIPs using both NRF-2 antibodies
but not the NRF-1 antibody was positive for an NRF-2
site in the SF3A3 promoter while both NRF-1 and the
polyclonal NRF-2 antibody detected an NRF-1 site in
the LRRC27 promoter. However, in some cases the
NRF-1-only peaks did co-localize with weak binding
sites in the Jurkat dataset (Figure 5D), indicating that
this antibody also recognizes proteins binding to these

Figure 5. Analysis of NRF-1 and NRF-2 motifs in GABP peaks. (A) Distribution of peaks with NRF-2 (blue) and NRF-1 (black) motifs around
HNF4a peaks. (B) ChIP-PCR for sites containing either NRF-2 or NRF-1 motifs using two different GABP antibodies and one NRF-1 specific
antibody. (C) NRF-2 motifs are located closer to TSS than NRF-1. (D) GABP signal is found both in Jurkat and HepG2 in the ATP6V1D promoter
(left) but with different peak centers. Signals are also found in both datasets at a known NRF-1 site in the EIF2S1 promoter (right).
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sites but less efficiently compared to the polyclonal
antibody.

Interactions with GABP is verified by co-IP

To further study the interaction between these TFs, we
performed co-immunoprecipitation experiments on
nuclear extracts from HepG2 cells. Western blot of the
HNF4a IP was positive for GABP and FOXA2 and sim-
ilarly, HNF4a and FOXA2 were present in the GABP IP
(Figure 6). Although the USF2 signal from the ChIP-chip
study (7) was found to co-localize with FOXA2 and
HNF4a in many cases, it was not as frequent and close
as the GABP signal. We could not verify this interaction
with the co-IP experiments, suggesting that these TFs do
not physically interact.

ChIP-seq facilitates detection of functional SNPs

Recently several genome wide association studies (GWAS)
have identified many non-coding SNPs associated to liver
mediated phenotypes such as plasma levels of liver
enzymes, lipid and glucose levels and diabetes risk
(33–39). In some cases a coding functional variant in LD
with the associated SNPs have been identified but it is
likely that some of the non-coding SNPs are causative
and may exert the effect by affecting TF binding, either
directly by changing the targeted DNA sequence or
indirectly, e.g. by changing the methylation status of
the DNA. We matched the SNPs present within our
positive peaks to the lists of SNPs in these studies and
to a collection of SNPs from GWAS studies (40) available
from http://www.genome.gov/26525384 and found several
matches to liver-mediated traits for HNF4a and FOXA2,
with examples such as a SNP altering the plasma levels
of ALT and two diabetes associated SNPs in MTNR1B
and GCKR (Table 2). Although none of these SNPs were
in the motif sequences they could be functional as they are
located in regions with regulatory potential. Additionally,
some SNPs associated to colorectal cancer and other
traits were within the peaks (Supplementary Table S1),

including the 8q24 cancer risk variant rs6983267 which
is located 15 bp from an HNF4a site. This SNP was
recently shown to be differentially bound by TCF7L2,
a TF with similar sequence specificity as HNF4a, and to
have long-range interaction with MYC in colorectal
cancer (41).

We also note that ChIP-seq datasets can be used to
identify allele-specific enrichment of TF binding given suf-
ficient base coverage within the peaks. We looked for this
by comparing the sequences at SNPs for HNF4a and
FOXA2 and identified some positions where the factors
may bind different alleles; however in these datasets the
number of reads covering the SNPs was generally too few
to yield significant results (Supplementary Figure S8 and
Supplementary Table S2).

DISCUSSION

The recent advances in microarray and sequencing
technologies have made it possible to map the gene regu-
latory circuitry in living cells on a genome-wide basis and
thus also to challenge some previous notions on gene reg-
ulation. Boyer et al. used the distribution of binding sites
from the Transfac database to state that ‘Although some
transcription factors are known to regulate genes from
distances >8 kb, 98% of known binding sites for human
transcription factors occur within 8 kb of target genes’
(42), and the preference for binding in promoter regions
has also been claimed to be true for FOXA2 and other
related factors (43). In this article, we present genome-
wide maps of HNF4a and FOXA2 in human cells.
In concordance with previous results from 1% of the
genome (28) we found the vast majority of binding sites
to be located far from TSSs, with more than 80% at distal
positions even when a large set of CAGE-tags was
included as putative TSSs. For sites close to TSS, enrich-
ment was seen in the first 100–200 upstream bases of many
liver-specific genes, however, the genome wide distribution
of binding sites indicates that studies aiming to identify the
effect of these TFs on specific genes should not be limited
to promoter regions.

We and others have shown that it is possible to identify
the base-pairs a TF interacts with by motif analysis in
enriched peaks. However, identification of alternative
motifs in subsets of peaks is often not easily done since

Figure 6. Co-immunoprecipitation results. Western blots are shown for
HNF4a, NRF-2, USF2 and FOXA2 on IPs for the TFs and for IgG.
Nuclear extract (Nuc) and Immuno depleted (ID) material are included
as controls. White arrows indicate positive signals.

Table 2. SNPs from GWAS studies of liver-mediated traits present

in peaks

SNP Height Gene Trait

rs11597390 116/49 CPN1 Plasma levels of ALT
rs2144300 75 GALNT2 HDL/triglycerides
rs3847303 75/14 ABCA1 HDL
rs561241 41/21 F7 Factor VII
rs1800588 28 LIPC HDL
rs10830963 20 MTNR1B T2D, fasting plasma glucose
rs11887534 15 ABCG8 Gallstones
rs780094 15 GCKR Triglycerides
rs12740374 15/13 CELSR2 LDL cholesterol

Height denotes the maximum overlaps for HNF4a/FOXA2 in the peak
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most motif finders will only report variants of the best
scoring motifs, and due to the prohibitively slow
running time on large datasets they are often used only
on the top scoring peaks (19). We report here a fast
and accurate way of identifying independent motifs in
ChIP-seq datasets. With this method we were able not
only to identify the established motifs for the three dif-
ferent factors but also to find that the antibody used
against GABP can identify the related factor NRF-1 and
show that the two subsets of peaks have different
properties, such as the interaction between NRF-2 and
HNF4a and the differences in enriched GO-categories
for bound genes.

As we and others found in the ENCODE project (1),
and as further shown by Odom et al. (44) TFBS evolve
faster than protein coding regions. We found here also a
low overlap between FOXA2 sites in mouse and human.
However, we find that many of the strongest binding
events were evolutionary conserved. Thus sequence con-
servation can be used to highlight particularly important
binding sites, but restricting functional studies to
conserved elements will exclude a large proportion of the
true binding sites.

We previously found that the HNF4a peaks at TSSs in
the ENCODE regions had fewer matches to the motif,
leading to the theory that this is due to indirect binding,
e.g. by virtue of chromatin loops (28). In this study we
identified a subset of HNF4a peaks at TSS that were also
bound by GABP and found that these sites most often did
not contain the HNF4a consensus. Apparently HNF4a is
not using the traditional sequence to interact with these
regions. This means that the interaction could be to a so
far unrecognized motif, unspecifically to DNA or
indirectly via another protein. The results from the co-IP
experiments are compatible with the last hypothesis as
HNF4a was found in complex with GABP. The interac-
tion between GABP and HNF4a has previously been
identified in silico from ChIP-chip data on promoter
arrays (45) but to our knowledge this is the first study
presenting in vivo data on their co-localization.

In conclusion, our study verify that ChIP-seq is a
powerful method to map gene regulatory networks and
has the potential to identify not only the bound bases
but also the allelic preference of bindings to regulatory
SNPs. We propose that this strategy can be used to find
TFs binding to SNPs associated to several common
diseases, thereby providing more knowledge of the mech-
anism leading to pathologic results. To do this systemat-
ically, cells or tissues from several individuals need to be
studied so that the relevant alleles are sampled from the
population. The rapid increase in sequencing throughput
may soon make such projects feasible, but in the mean
time studies like the one presented here will continue to
contribute data on the regulatory wiring of important
tissues.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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