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Abstract
The many different mechanisms that fungi use to transmit and share genetic material are mediated
by a broad range of chromosome and nuclear dynamics. The mechanics underlying nuclear migration
are well integrated into detailed models, in which the forces supplied by plus- and minus-end-directed
microtubule motors position and move the nucleus in a cell. Although we know much about how
cells move nuclei, we know much less about why the cell invests in so many different nuclear
‘dances’. Here, we briefly survey the available models for the mechanics of nuclear migration in
fungi and then focus on examples of how fungal cells use these nuclear dances — the movement of
intact nuclei in and between cells — to control the integrity, ploidy and assortment of specific
genomes or individual chromosomes.

Different fungal species propagate as haploids, diploids, dikaryons, multinucleates, polyploids
or aneuploids, and some fungal life cycles include not just one or two but several of these
different states. Each of these genome conditions has different challenges and requirements
for moving nuclei around the cell, and this movement must be developmentally regulated.
Molecular analysis of a range of fungal organisms (TABLE 1) has revealed both similarities
to and important differences from the paradigms that have been established in the model yeast
Saccharomyces cerevisiae. Here, we discuss how whole nuclei move during normal cell
division, how nuclei maintain or alter the ploidy of one or all chromosomes and how different
nuclei interact in multinucleate cells. We also discuss some of the additional functions of
nuclear movement and our emerging understanding of how nuclear positioning might
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contribute to the preservation of an ‘immortal’ template chromosome in stem cell-like nuclei.
The specific nuclear dynamics discussed here are examples from fungi, but many of them
resemble processes that occur in mammalian cells, including cancer cells and stem cells. Thus,
in this Review, we survey diverse fungal systems and many different areas of cell biology in
order to highlight open questions about the interplay between nuclear content and nuclear
migration.

Nuclear dances: moving intact nuclei
The paradigms for nuclear migration have emerged from studies in both the budding yeast S.
cerevisiae and the multinucleate filamentous fungus Aspergillus nidulans. These have been
exhaustively reviewed elsewhere, and we do not attempt to review this vast literature here.
Instead, we provide a brief overview of the general mechanics that underlie nuclear migration.
Summaries of mitotic cell cycle progression in yeast and dimorphic yeast cells and in
filamentous fungi are provided in BOXES 1,2,3.

Microtubules (MTs) and microtubule-organizing centres (MTOCs) have a central and
conserved role in moving nuclei. Kinetochore MTs in the nucleus segregate chromosomes by
pulling them towards the poles. Interpolar MTs facilitate nuclear pole separation by pushing
against each other. Outside the nucleus, astral MTs emanate from the MTOC to orientate the
mitotic spindle across the mother–daughter cell junction through interactions with the cell
cortex and to promote pole separation. In some organisms, such as S. cerevisiae, all MTs
originate from spindle pole bodies (SPBs) (FIG. 1). In other organisms (for example, the fission
yeast Schizosaccharomyces pombe (BOX 2) and the basidiomycete Ustilago maydis (BOX
3)), MTOCs arise at extra-SPB positions during interphase1 or during mating, when mating-
specific MTOCs form at the tips of mating projections2. In S. pombe, MT dynamics, along
with plus-end tracking (+TIP) proteins, which localize to the plus ends of MTs, have central
roles in nuclear positioning. The cylindrical shape, small size and symmetrical division plane
of fission yeast all facilitate a simple mechanism of nuclear positioning that relies on MT
dynamics. In this system, parallel arrays of MTs interact with the cortex and exert pushing
forces on the nucleus1,3. However, in most systems, particularly in large filamentous fungal
hyphae, MT dynamics alone are not sufficient for nuclear positioning during interphase, and
nuclear migration is also powered by molecular motors.

S. cerevisiae
Work from a number of laboratories has shown that the dynein heavy chain (Dyn1) has a key
role in S. cerevisiae nuclear positioning, as it provides the main force that pulls the nucleus,
through astral MTs. For example, S. cerevisiae dyn1 mutants exhibit abnormal nuclear
localization and elevated levels of binucleate cells4. During G2 and early M phase in the cell
cycle, the entire mitotic spindle, including the duplicated chromosomes, undergoes a series of
oscillations across the mother–bud neck. This requires Dyn1 and interactions between astral
MTs and actin cables, mediated by the MT-associated proteins karyogamy protein 9 (Kar9)
and Bim1, which tether the S. cerevisiae type v myosin Myo2 to the plus ends of MTs4. In the
absence of Kar9 or the spindle polarity determinants Bni1 and_bud site selection protein 6
(Bud6), dynein-mediated nuclear movement occurs earlier and more rapidly than in wild-type
cells, indicating that Bud6 and Bni1 normally attenuate dynein activity5, although they
probably do so through independent mechanisms6. Similarly, in response to double-strand
breaks, the mitosis entry checkpoint protein 1 (Mec1)-dependent checkpoint signals through
Rad52 and checkpoint kinase 1 (Chk1) to repress dynein-dependent nuclear migration through
the bud neck7. This balance of forces ensures that, in S. cerevisiae, the mitotic spindle is
properly orientated to span the mother–bud neck and that replicated chromosomes are
accurately delivered to both mother and daughter cells. One key question that remains to be
resolved is how mitotic checkpoints help cells to determine when both nuclei have been
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properly positioned. This process involves the asymmetrical association of proteins such as
Kar9 and Dyn1 with the SPB that localizes to daughter cells8,9.

Box 1

Mitotic cell cycle progression in budding yeast

Unicellular yeast

Saccharomyces cerevisiae and Candida albicans yeast cells undergo a well-characterized
mitotic cell cycle (see the figure, part a). In G1, a new septin ring forms adjacent to the birth
scar (orange rings) or at the opposite pole of the cell (not illustrated). At the G1–S boundary
(Start), the spindle pole body (SPB; yellow) duplicates, and the bud (pink) emerges through
the septin ring by the action of polarized secretory vesicles in the bud. All microtubules
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(MTs; green) seem to nucleate at the SPBs, and mitosis is closed (the nuclear envelope does
not break down). In C. albicans, free microtubules are evident along the cell cortex. The
duplicated SPB forms a short spindle, and astral MTs communicate with the septin ring to
orientate the spindle with the mother–bud axis. Spindle oscillations across the bud neck are
mediated by dynein acting on the astral MTs. Growth of the bud is mediated by secretory
vesicles, which are organized into a crescent-shaped polarisome (pink). During anaphase,
spindle elongation forces are sufficient to deliver the sister chromatids into the two daughter
nuclei (blue). Polarized growth is re-orientated to the septin ring, the ring contracts, and it
is filled with chitin-rich cell wall material before cell separation. Yeast and pseudohyphal
cells have similar dynamics, with the main difference being that pseudohyphae spend more
time in G2 and, thus, the buds become longer than buds in yeast cells before the onset of
anaphase, and cells often do not separate completely, remaining attached in chains of
elongated budded cells.

Unicellular hyphae in multimorphic budding yeast

When grown under conditions that induce hyphal growth (see the figure, part b), a C.
albicans germ tube evaginates through a band of septin proteins (orange). Polarized growth
is driven by a polarisome (pink cresent) in addition to a Spitzenkörper (pink circle), which
is a vesicle-organizing centre that drives the highly polarized growth of hyphal tips. Septin
ring formation occurs ∼10–20 μm from the basal cell at the time of SPB duplication88, and
the ring is laid down just as the tip passes this future site of septation (the presumptum).
Nuclei with short spindles migrate to the presumptum by oscillatory movements that are
mediated by contacts between astral MTs and the cell cortex and that are primarily dynein
dependent. Anaphase occurs across the septin ring, and spindle elongation forces deliver
the daughter nuclei into the two compartments (the basal cell and the hyphal tip cell). Other,
slower forces move the mother nucleus back into the basal cell. Dissolution of the spindle
is followed by contraction of the septin ring and accumulation of cell wall material at the
septum, but the cells remain attached to one another.

+, microtubule plus end; −, microtubule minus end.
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Box 2

Mitotic cell cycle progression in fission yeast

In Schizosaccharomyces pombe cells (see the figure), G1 is very short-lived, and thus
cytokinesis and cell separation are accomplished during S phase of the next cell cycle.
Microtubule-organizing centres (MTOCs; yellow), primarily at the nuclear periphery,
nucleate microtubules (MTs; green) in interphase, in addition to the spindle pole bodies,
which nucleate the mitotic spindle. Before cell division, equatorial MTOCs nucleate MTs
from the future site of septation. In general, MT minus ends (−) are located towards the
centre of the cell and the plus ends (+) are located towards the tips.

By contrast, the nuclear migration that is involved in karyogamy (the fusion of haploid nuclei
following conjugation between gametes) seems to be powered primarily by interactions
between cytoplasmic MTs that extend from the SPBs to interconnect the fusing nuclei10.
Depolymerization of SPB-bound MTs pulls the nuclei together, and these nuclei then fuse near
one edge of the SPBs. a careful study of this nuclear congression found that karyogamy is
mediated by the interaction of MT plus ends rather than by MT sliding and extensive
overlap11. The prevailing model is that during karyogamy MT plus-end interactions from
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oppositely orientated MTOCs provide the force to move nuclei through the cytoplasm11.
Mutations causing defects in karyogamy also provide powerful genetic tools for performing
cytoduction12.

Filamentous fungi—Most filamentous fungi have multinucleate hyphal compartments.
Thus, in expanding myce lia, daughter nuclei remain in the same compartment after mitosis
(which is not spatially and temporally coordinated with cell division; see REF. 13 for an
exception). However, the nuclei are evenly distributed along the hyphal compartments, which
balances the cytoplasmic volume and contents that are sampled by each nucleus. MTs and their
motors have central roles in positioning nuclei in hyphae, and this has been reviewed in detail
elsewhere14. The role of kinesins in nuclear positioning has been elusive, potentially because
of functional redundancy among the conventional kinesins; for example, in A. nidulans there
are at least 11 different forms. There is some, limited, evidence in A. nidulans for a role for
kinesins in destabilizing MTs and localizing dynein to promote nuclear migration, but on the
whole much remains to be discovered about the role of kinesins in nuclear migration in
filamentous fungi15,16.

By contrast, dynein is central to nuclear migration in many filamentous fungi. Mutations in
dynein components, such as the classic nud alleles of A. nidulans and the ropy alleles of
Neurospora crassa, have revealed that dynein has a broad range of functions. In Ashbya
gossypii, N. crassa and A. nidulans dynein mutants, the nuclei are no longer evenly spaced,
leading to clumping of nuclei in regions of the mycelia17–19. In A. gossypii, the loss of dynein
leads to the clustering of all the nuclei at hyphal tips, leaving vast areas (tens of microns) of
cytosol devoid of nuclei17 (BOX 3). By contrast, in A. nidulans dynein mutants, all of the nuclei
clump at the germ bubble by the ascospore (the area of the hypha that is farthest from the hyphal
tip)17,19. In these systems, dynein ensures the balanced distribution and even spacing of nuclei
throughout the hyphal tube. However, it is not known whether this is accomplished directly,
by dynein acting as a conventional motor, or whether it is an indirect effect of dynein on MT
dynamics14. In U. maydis, between three and six small, motile, γ-tubulin-containing MTOCs
nucleate MTs at the boundary of mother and budding daughter cells, and dynein-based transport
of MTs and MTOCs is required to polarize the MT cytoskeleton20.

Candida albicans
The human pathogen Candida albicans21 can form yeast, pseudohyphae or true hyphae,
depending on the environmental conditions22,23. The nuclear dynamics in C. albicans yeast
and pseudohyphae resemble those in S. cerevisiae: the nuclei cross the mother–bud neck, and
the elongated mitotic spindle oscillates across the neck in a dynein-dependent manner24,25

(FIG. 2). Spindle elongation is sufficient to deliver a single nucleus to each daughter cell. The
nuclear dynamics in C. albicans true hyphae are different: the nucleus migrates ∼10 μm into
the growing germ tube to the presumptum, which is the site of germ tube division and septum
formation24. The spindles undergo dynein-dependent oscillatory movements that cross the
presumptum (Supplementary information S1 (movie)). In the absence of dynein in both hyphae
and yeast (FIG. 2c), the velocity of nuclear movement is reduced such that mitosis ensues in
the mother cell. However, a spindle checkpoint mediated by Bub2 prevents premature
cytokinesis, such that a post-mitotic daughter nucleus often succeeds in eventually reaching
the bud. The slower movement of nuclei in dynein mutants is probably mediated by MT plus-
end dynamics25.
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Box 3

Mitosis in filamentous fungi

Ustilago maydis

In the basidomycete corn smut fungus, Ustilago maydis, yeast growth (see the figure, part
a) is accompanied by microtubule organizing centre (MTOC)-mediated nucleation of
microtubules (MTs; green) from the bud neck region (blue circles). The plus-end
localization of dynein (orange stars) mediates spindle elongation and is essential for
retrograde endosome motility. In hyphae, MTs nucleate near the central nucleus (dark blue),
or the central pair of nuclei in dikaryotic cells89. Nuclear envelope breakdown begins with
extension of the nuclear envelope. In prophase, dynein in the bud cortex pulls on MTs and
spindle pole bodies (SPBs; yellow) that are attached to condensed chromosomes. The
nuclear envelope eventually breaks at the SPB, and the chromosomes congregate with the
SPB outside the old nuclear envelope. Once the chromosomes are separated in anaphase, a
new nuclear envelope forms around the daughter chromosomes.

Aspergillus nidulans

In the most apical hyphal compartment, Aspergillus nidulans nuclei divide in a
parasynchronous wave, and SPBs of post-mitotic nuclei nucleate cytosolic MTs90,91. The
basal compartments, which are separated from the apical compartment by a septum that is
established by septin rings, contain nuclei that are arrested in interphase until a side branch
emerges, at which time the nuclei re-enter the division cycle. Cytosolic MTs are present at
interphase and generally disappear during mitosis, except in the hyphal tip92. A. nidulans
nucleolar proteins are separated from the ribosomal DNA that makes up the nucleolar

Gladfelter and Berman Page 7

Nat Rev Microbiol. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



organizing region (NOR) and are expelled from daughter nuclei to the cytoplasm between
them (see the figure, part b). Unlike most nuclear reorganizations, this process can occur
even when spindle attachment is abrogated93. Nuclear DNA in hyphae undergoes a partially
open mitosis, in which nuclear pore complexes (NPCs) disassemble, making the nucleus
more permeable during mitosis. In addition, on the initiation of mitosis, DNA (dark blue)
condenses and nucleolar proteins (dark green) are exported from the nucleus, whereas the
NOR (pink) is retained. Following mitosis, nucleolar proteins are imported through
reassembled NPCs in the nuclear membrane to form new nuclei.

Ashbya gossypii

This ascomycete is thought to nucleate MTs exclusively from nuclear-membrane-associated
SPBs. Short astral MTs associate with the cortex, and longer cytosolic microtubules extend
for tens of microns through the cytosol. The nuclei divide asynchronously, and therefore in
the figure (part c), individual nuclei are depicted in different states of SPB duplication and
separation94,95.

C. albicans pseudohyphal cells that lack dynein exhibit a distinctive nuclear dance: the nuclei
move into the daughter cell before mitosis and divide there (FIG. 2d). In the absence of dynein,
there is no oscillation across the mother–bud neck. Importantly, in pseudohyphae there is no
evident checkpoint-mediated delay of cytokinesis when the entire mitotic spindle is in the bud;
the result is the formation of a dikaryotic daughter cell and an anucleate mother cell. In
subsequent divisions, the binucleate cells continue to grow and divide with multiple nuclei (K.
Finley, personal communication). a similar multinuclear phenotype is seen in a subpopulation
of mutants with cell cycle defects, such as those lacking forkhead transcription factor 2
(Fkh2)26 or the cell cycle kinase Dbf227. Interestingly, in some of the cells that lack Fkh2 the
spindles seem to be in synchronous stages of the cell cycle, whereas in other multinucleate
cells mitotic spindles coexist with duplicated SPBs, suggesting that different stages of the cell
cycle can coexist in the same cytosol (E. Bensen, personal communication). Similarly, in S.
pombe, nuclear alignment and the plane of division is determined by the nuclear oscillations
that occur just before mitosis, and defects in MT attachment to the nucleus lead to misaligned
spindles and the mis-segregation of nuclei28,29. Thus, defects in nuclear movement, like defects
in cell cycle progression, can result in multinucleate cells.

Dancing partners: genome integrity
MTs and their motors are not simply a generic ‘mass transit system’ in which astral MTs move
nuclei. With each turn of the cell cycle there is another layer of choreography within each
migrating nucleus, as the chromosomes move in the process of attaching to kinetochore MTs.
Recent work indicates that there is an intimate association between the molecular machines
that move the DNA and the amount and content of the DNA that is transported. Controlled MT
dynamics combined with specific MT motors ensure that each individual chromosome is
correctly tethered to, and later appropriately released by, its kinetochore MTs.

S. cerevisiae
In S. cerevisiae, cells are normally maintained as haploids or diploids, although crosses can be
manipulated to yield triploid and tetraploid strains. Although deviations in normal ploidy can
occur through endoreplication, non-disjunction or mating of non-haploid strains (reviewed in
REF. 30), most tetraploidy is assumed to arise unintentionally, as a by-product of defects such
as a failure of cytokinesis. Cytokinesis can fail as a consequence of subtle defects in the
segregation of a single pair of chromosomes or because of wholesale defects in mitotic
processes (reviewed in REFS 31,32). In mammalian cells, such ‘4n’ cells usually undergo
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apoptosis. However, when they do divide, these cells exhibit high levels of genome instability,
resulting in the extensive aneuploidy that is typical of cancer cells (reviewed in REF. 30).

In S. cerevisiae, mitotically dividing tetraploids exhibit high levels of genome instability,
including the accumulation of point mutations during S phase at a twofold higher rate than that
in diploid cells33. A genome-wide screen for ploidy-specific lethality revealed that only a small
number of genes are necessary to maintain tetraploidy33. These genes fall into three main
functional groups: genes encoding components of the mitotic spindle, including the SPB; genes
that are necessary for the establishment of chromosome cohesion, including several
kinetochore components; and genes that are required for homologous recombination33. This
suggests that the presence of extra chromosome copies causes cells to expend more energy on
whole-chromosome dynamics and maintaining the integrity of the DNA. It has been proposed
that extra stress is placed on tetraploid cells, because MTs do not increase in length despite the
higher number of chromosomes on a tetraploid mitotic spindle33.

When unstressed and salt-stressed haploid, diploid and tetraploid S. cerevisiae strains were
followed for ∼1,800 doublings, all cultures converged to diploidy, suggesting that the diploid
state has a selective advantage in these conditions34. Furthermore, diploids had an advantage
over haploids when serial cultures of mutator (msh2Δ) strains were propagated, presumably
owing to the ability of the diploid state to buffer deleterious mutations35. Despite the instability
of cells with increased ploidy, many industrial S. cerevisiae strains are polyploid36. It is likely
that the fitness of a strain with increased ploidy depends on the specific chromosomes that are
amplified.

Aneuploidy is assumed to arise from defects in the associations between individual
kinetochores and their kinetochore MTs. aneuploidy was studied in haploid yeast strains that
each carried an extra copy of one or more chromosomes37. These disomic (haploid + 1)
aneuploids shared several phenotypes, including sensitivity to conditions that interfere with
protein folding, protein synthesis and cell cycle progression. In addition, the transcription level
of ∼400 genes was altered in almost all of the aneuploid strains, suggesting that, irrespective
of the chromosome involved, disomic haploids exhibit growth defects and changes in
transcription due to the presence of extra chromosomes37. Similarly, trisomic mouse cell lines
(diploid + 1) exhibited reduced proliferation and cellular fitness38. an important open question
is: why do aneuploid cancer cells exhibit increased proliferative capacity39, but aneuploid S.
cerevisiae and mouse cells exhibit reduced fitness37? It is likely that specific aneuploidies
provide fitness advantages under specific stress conditions40,41.

C. albicans
In contrast to S. cerevisiae, C. albicans is much more tolerant of aneuploidies and
translocations. Whole-chromosome aneuploidies arise frequently following transformation of
laboratory strains42–44, with trisomy being much more prevalent than monosomy. aneuploidy,
including whole-chromosome and segmental amplifications, has been detected in 50% of C.
albicans strains that have elevated resistance to fluconazole41, the most commonly used
antifungal drug. One specific segmental aneuploidy, isochromosome 5l, in which 2 copies of
the left arm of chromosome 5 flank the centromere, accounts for at least 20% of these
aneuploidies41. The elevated copy number of two genes on isochromosome 5l, one near the
telomere and one near the centromere, is responsible for most of the resistance that is seen in
strains carrying this isochromosome45.

The high level of tolerance for aneuploidy and translocations could be because C. albicans
does not undergo the conventional meiotic pairing that requires alignment of homologous
chromosomes. alternatively, this tolerance may stem from the flexibility in spindle length
between yeast, pseudohyphal and hyphal C. albicans cells24. This flexibility would allow C.
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albicans to accommodate extra chromosomes by adjusting its spindle geometry to the changing
needs of a dynamic genome in a manner that does not occur in S. cerevisiae. Such genome
plasticity is far from unique and has been seen in many other fungi. among the human
pathogens, Candida glabrata undergoes rapid changes in karyotype during bloodstream
infections46,47, and Cryptococcus neoformans, a basidiomycete, also exhibits aneuploidy48.
In addition, supernumerary chromosomes (or dispensable ‘B’ chromosomes) have arisen in
specific fungal isolates and seem to have been acquired by horizontal transmission (for
examples, see REFS 49–51). In some cases, supernumerary chromosomes are associated with
virulence factors and confer pathogenic properties on an otherwise benign fungus.

The ability of cancer cells and certain fungal pathogens to adapt to the aneuploid state is
striking. On the basis of work in budding yeast, it is likely that this occurs at least partially
through adaptive pressure on the MTs and MT motors that move chromosomes and nuclei.
Thus, multimorphic fungi hold promise for studying the basic mechanisms that facilitate
aneuploidy and, by implication, tumorigenesis and pathogenesis. It is becoming clear that MTs
and MT motors are not passive shuttles of chromosomes and nuclei but instead respond to
changes in the environment and to the genotypic alterations that arise as a consequence of
changes in ploidy or, as we discuss below, when two different genotypes share a cell.

Dikaryons: a nuclear two-step
Although we have a clear mechanistic understanding of nuclear migration in mating and
vegetative cells for a range of model ascomycetes and a few basidiomycetes with yeast forms,
there is a paucity of information about the regulation of nuclear dynamics in many
basidiomycete mushrooms. Dikaryons are cells in which two haploid nuclei, one from each
parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion or
meiosis52. The dikaryon stage dominates the life cycles of many basidiomycetes, such as
mushrooms. By contrast, filamentous ascomycetes, such as aspergilli or Podospora
anserina, produce transient dikaryons as part of their sexual cycle. Dikaryons also form
following mating in S. cerevisiae karyogamy (kar) mutants53,54. The receipt of an unknown
environmental signal ends the dikaryon stage and triggers rapid karyogamy, meiosis and
fruiting-body development. In many systems, dikaryons emerge from a heterogeneous mixture
of nuclei in the large syncytia that form when the parental mycelia fuse. The process of dikaryon
formation involves nuclear migration and sorting of the nuclei by genotype to ensure that each
dikaryon contains a balance of each parental genome (FIG. 3).

When hyphae of compatible mating types fuse, the nuclei rapidly migrate (for example, up to
2–3 mm per hour in Schizophyllum commune55 and a remarkable 4 cm per hour in Coprinellus
congregatus56) to the distal reaches of the partner mycelium56,57. unlike yeast, filamentous
fungi that form dikaryons do not use pheromones to recognize mates extracellularly, as the
hyphae will fuse (a process termed anastomosis) regardless of mating type52. nuclei do not
initiate migration when cell fusion is with the same mating type, so the rapid increase in motility
is triggered by the coexistence of compatible nuclei, as defined by their mating-type loci52.
Presumably, there are regulators of MT motors and MT organization that are controlled
(directly or indirectly) by the mating-type loci and that lead to the induction of nuclear
migration, but these regulators have not been identified.

On arrival at the hyphal tips, nuclei of opposite mating types pair through MT associations,
but the basis for detecting the opposite mate for such pairing is unknown. One possibility is
that the pheromones and pheromone receptors that are encoded by the mating-type locus are
spatially limited to either the nuclear membrane58 or to the cell cortex surrounding the nuclei.
In the filamentous ascomycete P. anserina, genetic evidence points to autonomous nuclear
signals, such as nuclear-membrane markers, that sort the nuclei so that each dikaryon contains
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two different parental nuclei59. Remarkably, in multiparental matings, in which there are
multiple competing genotypes in a single cell, the most genetically diverse nuclei will form
dikaryon pairs60.

In some fungal species, nuclear pairing initiates the formation of a clamp or crozier cell; this
is a specialized projection that connects two adjacent hyphal cells and facilitates the segregation
of two daughter nuclei, one of each mating type, into distinct cellular compartments (FIG. 3).
In species that form clamp cells, one nucleus divides in the clamp cell and the other divides in
the main hypha, but the nuclei have spindles of different lengths, which helps to ensure sorting
of the daughter nuclei into different cells. In Coprinopsis cinerea, the genotypes alternate
positions along the hypha so that in one cell a nucleus with one mating type enters the clamp
cell and in the adjacent cell the nucleus with the other mating type enters the clamp cell (FIG.
3). This produces a perfect alternating pattern of parental genotypes along the dikaryotic
hypha61. However, clamp cell formation is not essential for stable and accurate dikaryon
formation and is not seen in all species that can form dikaryons62. In species that do not form
clamp cells, different spindle lengths, different spindle elongation rates or simply a small
enough starting distance between the two nuclei ensure that the spindles overlap in anaphase,
enabling a ‘two-step’ swap of different sister nuclei. This is seen in S. pombe dikaryons, which
can be forced to form using conditional cell cycle mutants such that, after mitosis, the sister
nuclei (that is, nuclei originating from the same mother nucleus) are systematically segregated
to different cells63. Thus, spindle elongation-based sorting mechanisms occur in the absence
of a clamp cell and during otherwise normal vegetative growth, even in a yeast63.

Dikaryons are neither true haploids nor true diploids, and this unique state of ploidy seems to
lend them some adaptive power. Mutations can be more readily expressed phenotypically in
dikaryons than in homokaryotic, haploid mycelia64. In laboratory selection experiments with
S. commune64, the biparental nuclei in the dikaryon underwent co-adaptation as a result of
compensatory changes. Some basidiomycetes form stable heterokaryons, in which multiple
nuclei from each mating partner are maintained in a multinuclear compartment. Intriguingly,
the balance of parental genotypes in the heterokaryons deviates from a strict 1/1 ratio depending
on environmental conditions65. Work in Heterobasidion parviporum suggests that individual
nuclei are under selection65. In addition, nuclei with different genotypes or different epigenetic
states also differ in their rates of replication and migration, further adding to the intriguing
connections between genotype, ploidy and nuclear migration that are seen in filamentous
fungal cells65,66.

It has long been known that the nuclei in a dikaryon can communicate: exchange of genetic
material and somatic recombination occurs between genotypes60,64. Interestingly, the exact
position of the two nuclei in a dikaryon influences the specific genes that are expressed in these
nuclei. For example, in S. commune dikaryons, when the nuclei are close together (<2 microns
apart) a different set of hydrophobin-encoding genes is expressed than when the nuclei are
further apart67. Thus, the precise positions of the biparental nuclei in the dikaryon can specify
the transcriptional programme of the cell. Intriguingly, a similar proximity effect has been seen
in S. pombe cells. The nuclei in induced multinucleate fission yeast are different sizes,
depending on their proximity to other nuclei. This indicates that nuclei sharing a single cell
may be able to locally sense and respond to the presence of the other nuclei in the same
cell68.

The dikaryotic state ensures that an organism is poised for meiosis whenever the proper
environmental cues are sensed and also confers functional and fitness benefits on the cell.
Dikaryon formation requires the regulation of nuclear migration when there are multiple
cohabiting genotypes. The variation in the length and alignment of spindles may be the basis
of alternating genotypes, but it does not explain how opposite mates find each other and pair
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in large syncytia (for example, in mushrooms). There are still many open questions to be
answered, including how nuclei recognize one another as ‘different’ in a common cytoplasm,
and how this information is converted to the signals that regulate the migration, positioning
and sorting of the genotypes into dikaryons. Studying these questions in model filamentous
fungi will probably reveal new lines of communication between the genome and MT motor
machinery.

Reasons to dance: harnessing nuclear migration
Nuclear movement in fungi is not only used in specialized sexual cells or to position nuclei
relative to the plane of cell division, but it also contributes to other basic nuclear functions in
vegetative cells. In N. crassa hyphae, chromatin structure responds to the direction of nuclear
migration, thereby establishing intranuclear polarity and often mirroring the hyphal axis of
polarity69. This suggests that chromatin organization either responds to the external MT-based
forces that are encountered by a migrating nucleus or, conversely, influences the direction of
nuclear migration. notably, polarization of histone localization and modification is also seen
in migrating uninucleate mammalian cells in tissue culture, suggesting that signals coordinating
nuclear or cell migration with chromatin organization may be evolutionarily conserved70.

U. maydis makes use of dynein-dependent nuclear migration for the mechanical process of
tearing open the nuclear envelope71 (BOX 3). This basidiomycete undergoes ‘open’
mitosis71,72, meaning that the nuclear envelope breaks down with each cell cycle. This is unlike
the closed mitosis in most ascomycetes, such as budding yeast, in which the nuclear envelope
remains intact and mitosis occurs in the nucleus73, or the partially open mitosis in A.
nidulans, in which the envelope remains intact but the nuclear pores open to allow non-selective
transport74 (BOX 3). In animal cells, open mitosis is achieved by fragmenting the nuclear
membrane and disassembling the nuclear lamina. By contrast, U. maydis uses the energy from
MT motors to rip apart the nuclear membrane and enable cytoplasmic MTs to form the
kinetochore attachments that are necessary for chromosome segregation71. Presumably, this
is an evolutionary intermediate or at least an alternative solution to mixing the nucleoplasm
and cytosol.

Nuclear oscillations might also protect genome integrity in budding and fission yeast. a
dicentric S. cerevisiae strain undergoing chromosome breaks due to the attempted segregation
of the two centromeres can be rescued by DNA repair mechanisms. These repair processes are
accompanied by MT-dependent, dynein-independent nuclear oscillations75. Similarly, the
prophase zygote in S. pombe, which exists for a short period following conjugation and before
meiosis, undergoes dramatic chromosomal DNA oscillations, termed ‘horse tail’
movements76. These occur through dynein-dependent movement of astral MTs that are bound
to SPBs which are, in turn, attached to telomeres from the time of conjugation to the end of
meiosis I76. The movement has been proposed to assist in the alignment of homologous
chromosomes before meiotic recombination77. Recent work presented a mechanism for these
oscillations that may be applicable to nuclear migration in many systems. In an elegant marriage
of in vivo microscopy and mathematical modelling, vogel et al. provide evidence for the
collective self-organization of dynein motors, during horse tail movements, into an
asymmetrical distribution on MTs. The distribution changes as a consequence of mechanical
forces on the MTs and thus generates the oscillations78. Therefore, nuclear movements seem
to facilitate other DNA transactions as well as chromosome segregation in these model yeasts.

Nuclear migration is also required for the assembly of an appressorium, which is a specialized
extension of a germ tube that uses turgor pressure to penetrate rigid plant cell walls. In the
filamentous ascomycete Magnaporthe grisea (rice blast fungus), the appressorium ultimately
builds up to 8 MPa of turgor to cross the plant cuticle79. This process requires nuclear migration

Gladfelter and Berman Page 12

Nat Rev Microbiol. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and the completion of one cycle of mitosis in a germ tube. Intriguingly, after the single mitosis,
one nucleus migrates back into the spore body and, from there, triggers an autophagy
programme that is essential for appressorium development. It has been proposed that
checkpoints monitor the completion of mitosis and couple it to the autophagy program. This
checkpoint signal may be ‘carried’ back to the spore by the migrating nucleus to trigger
autophagy and thereby enable appressorium formation. Thus, nuclear migration might be used
as a messenger system to ensure linear progression through a developmental programme that
is necessary for plant infection.

The perpetual dance: the immortal strand
As early as 1968, evidence existed for intriguing positional differences between nuclei of
different ages that shared the cytoplasm of A. nidulans vegetative hyphae. Rosenberger and
Kessel incubated germinating conidia in radioactive adenine to label the DNA of the ‘founding’
nucleus in the spore80. They then analysed where the labelled nuclei were found along the
hypha. after multiple rounds of mitosis with random segregation of chromatids, the
radioactivity should have been dispersed between the nuclei. Instead, these early pulse–chase
studies indicated that the two nuclei proximal to the hyphal tip contained the labelled ‘old’
DNA, and the more basal nuclei contained the ‘new’ DNA. To establish this gradient of genome
age along a hypha, non-random sister chromatid segregation must be coupled with nuclear
segregation that can position nuclei on the basis of the presence of the template strand.

A few years later, John Cairns proposed his ‘immortal strand’ hypothesis, in which non-random
segregation of old and new DNA occurs to protect the ‘original’ genome in the asymmetric
division of stem cells81. In self-renewing division cycles, the asymmetric distribution of
chromosomes on the basis of DNA age enables the original or template genome (and, perhaps,
any imprinting) to be preserved without the risks of replication errors. Interestingly, in
Armillaria gallica, a wood rot honey mushroom that is clonal and can live for more than 1,000
years, there is extremely low sequence variation between nuclei that are separated by hundreds
of metres in individuals found in nature82,83. Such stability in the sequence is puzzling and
unexpected in nuclei that are physically far apart and presumably separated by many rounds
of nuclear division. One mechanism to preserve the original genotype throughout the extensive
mycelia is through a repository of stem-cell-like nuclei, which mitigate variation over time and
space.

Recent evidence from mammalian stem cells supports the idea that self-renewing stem cells
can retain their ‘template’ DNA. Experiments in both adult muscle stem cells (‘satellite’ cells)
and mouse embryonic stem cells showed that non-random chromosome segregation
occurs84,85. Thus, the most apical tip zone of some fungal hyphae potentially contains a self-
renewing pool of nuclei that is selectively retained in this position. alternatively, in A.
gallica there might be repositories of ‘stem nuclei’ throughout the mycelia. An exciting
possibility is that the molecular mechanisms underlying this process may be conserved from
fungi to mammalian stem cells. Although asymmetrical segregation is not widespread in
eukaryotic cells (for example, it is not seen in S. cerevisiae86), many potential mechanisms
resulting in asymmetrical chromatid segregation87 can be envisioned. Accordingly, this might
be an ancient molecular process that is used in hyphal development. A. nidulans, A. gallica
and perhaps other filamentous fungi can be powerful, genetically tractable models for
identifying possible conserved mechanisms of selective template DNA maintenance and of
transmission of template age into spatial coordinates in the cell.

Concluding remarks
The study of nuclear and chromosome dynamics in diverse fungal systems provides ample
evidence that there is tremendous variety in how and why cells move nuclei. The nuclear
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‘dances’ that are powered by MTs and MT motors ensure the clearance of the division plane
and the segregation of euploid genomes. In addition, fungi exploit the MT-based migration of
nuclei and individual chromosomes for diverse purposes that range from sorting nuclei by
genotype or age to facilitating recombination and generating genome alterations such as
aneuploidy. Nuclear movements respond to the genome content, or its expression, as well as
to nuclear position. The diverse fungal models that we have discussed are powerful tools for
studying the molecular mechanisms that underlie the generation of genetic diversity during
mitotic and meiotic divisions, the maintenance of low levels of diversity in stem cells and the
generation of polyploidy and aneuploidy in tumour cells.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

Dikaryon A hyphal cell in which two compatible nuclei are maintained without
karyogamy (nuclear fusion). Ascomycete dikaryons can produce
crozier cells, whereas basidiomycete dikaryons can produce clamp
connections for the formation of the dikaryotic state.

Aneuploid A cell with an abnormal number of chromosomes; for example, in a
diploid organism, the lack of one copy of a chromosome (monosomy)
or the presence of an extra copy of a chromosome (triploidy).

Microtubule-
organizing centre

(MTOC). A structure that nucleates and often retains a connection to
microtubules. MTOCs at the centrosome (or centriole or spindle pole
body) organize the mitotic (and meiotic) spindle apparatus.

Spindle pole body In yeast cells, the microtubule-organizing centre that functions like a
centrosome and is usually associated with the nuclear membrane for
part or all of the cell cycle.

Dynein A minus-end-directed microtubule motor protein that transports cellular
cargo along microtubules. In fungi, dynein is a key motor protein that
is responsible for nuclear movement through interactions with astral
microtubules.

Cytoduction The production of a cell with a mixed cytoplasm but only one of the
two parental nuclei. In Saccharomyces cerevisiae, cytoduction is
accomplished by mating cells with defects in nuclear fusion
(karyogamy).

Supernumerary
chromosomes

Small extra chromosomes that are generally dispensable for normal cell
functions but that, in some cases, are required for pathogenicity and
thus are ‘conditionally dispensable’.

Dicentric A chromosome that has two functional centromeres. When they are
tethered to opposite poles of the mitotic spindle the chromosome will
break during mitosis.
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Figure 1. Microtubules and nuclear movement
In Saccharomyces cerevisiae, all microtubules (MTs) originate from the spindle pole body.
Kinetochore MTs are required for chromosome segregation, and interpolar MTs are required
for nuclear pole separation. Astral MTs interact with the cell cortex and septin ring at the bud
neck to orientate the mitotic spindle across the mother–daughter cell junction.
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Figure 2. Mitotic dynamics in Candida albicans
a,b | In wild-type yeast (part a) and pseudohyphal (part b) cells, the nuclei are aligned by the
mitotic spindle (spindle pole bodies are in yellow, kinetochore microtubules are in green and
interpolar microtubules are in black) and divide across the mother–bud neck. c | In yeast cells
lacking the dynein heavy chain, the nuclei divide in the mother cell and a checkpoint delays
cell cycle progression until the nucleus enters the daughter cell. d | In pseudohyphal cells
lacking dynein, nuclei migrate into the daughter cell and divide there. There is no checkpoint
to ensure that the mother nucleus returns to the mother cell. In this schematic, the details of
microtubule attachment to chromosomes and of inter-microtubule interactions are not shown.
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Figure 3. Overview of dikaryon formation
a | Hyphae of many types of filamentous fungi can fuse regardless of mating type. b | If fusion
occurs between mates with compatible mating loci (blue and pink nuclei), rapid nuclear
migration and exchange between the two parental mycelia is initiated. It is unknown how
microtubules (MTs) and MT-based motors are regulated during this process, but there is no
migration if noncompatible mates fuse. c | The nuclei migrate until they reach the distal tip of
a hypha and then pair with a nucleus from the other parent. In some cells, a specialized polarized
cell structure forms, called a clamp, crozier or hook cell (depending on the species). Some
dikaryons form without a clamp. The clamp cell is a side projection of the hypha, and one
nucleus migrates up into this projection while the opposite mating-type nucleus remains in the
hypha. Both nuclei divide synchronously. Owing to the placement of the septa and the
subsequent fusion of the clamp cell back to the main hypha, one daughter nucleus from each
mitosis ends up in each cell of the hyphal tube. d | This intricate process produces a dikaryotic
hypha: it is compartmentalized such that two parental nuclei share the same cytosol. The
dikaryon state can persist for extended periods and there can be exchange of genetic material
between nuclei.
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Table 1
Selected model fungi

Organism Phylum Environment Utility and areas of investigation Genome sequence

Saccharomyces cerevisiae Ascomycete Ubiquitous Baker's and brewer's yeast; premier
eukaryotic model organism used to study a
broad range of molecular, cell-biological and
genetic questions

1996
(REF. 96)

Candida albicans Ascomycete Ubiquitous Human commensal and opportunistic
pathogen with budding yeast and hyphal
forms; studies focus on drug resistance,
biofilm formation and morphogenesis, as the
ability to switch to the hyphal form seems to
be important for virulence

2004
(REF. 97)

Schizosaccharomyces pombe Ascomycete Ubiquitous Fission yeast with three chromosomes that are
detectable by light microscopy; used to study
many aspects of cell cycle progression and the
general biology of eukaryotes

2002
(REF. 98)

Neurospora crassa Ascomycete Tropical and subtropical;
found on dead plant matter
following fires

Classic haploid genetic model; used to study
circadian rhythms, epigenetics, gene
silencing, polarized growth and cell
development

2003
(REF. 99)

Ashbya gossypii Ascomycete Associated with insects
and plants; potential
symbiote with both

Filamentous, multinucleate growth with
haploid nuclei that divide asynchronously in
a common cytoplasm; high genome similarity
to S. cerevisiae and highly tractable for
molecular genetics; used as a model system
for the cell cycle and morphogenesis and in
industry to produce riboflavin (vitamin B2)

2004
(REF. 100)

Ustilago maydis Basidiomycete Corn smut pathogen Model organism readily amenable to gene
replacement; used to study DNA
recombination and repair, and cytoskeleton
dynamics; biotrophic organism requiring
plant tissue for growth and development

2006
(REF. 101)

Podospora anserina Ascomycete Herbivore dung Classic genetic model with no asexual spores;
used to study cytoplasmic inheritance,
differentiation and cell death, ageing,
multicellularity and epigenetics; close relative
of N. crassa

2008
(REF. 102)

Schizophyllum commune Basidiomycete Widespread Split-gill fungus that causes white rot;
>20,000 different compatible mating types
found worldwide

Incomplete*

Coprinopsis cinerea Basidiomycete Widespread Inky-cap mushroom with a sexual cycle that
is completed in ∼2 weeks in the laboratory

Draft sequence annotated‡

Heterobasidion parviporum Basidiomycete North American and
European conifer forests

Root rot fungus and important pathogen of
conifers; model system for evolutionary
genetics

NA

Magnaporthe grisea Ascomycete Widespread Rice blast fungus that also infects grasses;
model system for understanding plant–
fungal-pathogen interactions

2005
(REF. 103)

Armillaria gallica Basidiomycete Hardwood forests A ‘honey mushroom’, one of the oldest and
largest living organisms; important model
system for evolutionary genetics

NA

*
Entrez Genome Project S. commune entry (see Online links box).

‡
Broad Institute C. cinerea genome project (see Further Information).
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