
In Vivo Dynamical Interactions between CD4 Tregs, CD8
Tregs and CD4+CD252 Cells in Mice
Arnon Arazi1., Amir Sharabi2., Heidy Zinger2, Edna Mozes2", Avidan U. Neumann1"*

1 Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel, 2 Department of Immunology, Weizmann Institute of Science, Rehovot, Israel

Abstract

Background: Regulatory T cells (Tregs) were shown to be central in maintaining immunological homeostasis and
preventing the development of autoimmune diseases. Several subsets of Tregs have been identified to date; however, the
dynamics of the interactions between these subsets, and their implications on their regulatory functions are yet to be
elucidated.

Methodology/Principal Findings: We employed a combination of mathematical modeling and frequent in vivo
measurements of several T cell subsets. Healthy BALB/c mice received a single injection of either hCDR1 - a tolerogenic
peptide previously shown to induce Tregs, a control peptide or vehicle alone, and were monitored for 16 days. During this
period, splenocytes from the treated mice were analyzed for the levels of CD4, CD25, CD8, CD28 and Foxp3. The collected
data were then fitted to mathematical models, in order to test competing hypotheses regarding the interactions between
the followed T cell subsets. In all 3 treatment groups, a significant, lasting, non-random perturbation of the immune system
could be observed. Our analysis predicted the emergence of functional CD4 Tregs based on inverse oscillations of the latter
and CD4+CD252 cells. Furthermore, CD4 Tregs seemed to require a sufficiently high level of CD8 Tregs in order to become
functional, while conversion was unlikely to be their major source. Our results indicated in addition that Foxp3 is not a
sufficient marker for regulatory activity.

Conclusions/Significance: In this work, we unraveled the dynamics of the interplay between CD4, CD8 Tregs and effector T
cells, using, for the first time, a mathematical-mechanistic perspective in the analysis of Treg kinetics. Furthermore, the
results obtained from this interdisciplinary approach supported the notion that CD4 Tregs need to interact with CD8 Tregs
in order to become functional. Finally, we generated predictions regarding the time-dependent function of Tregs, which can
be further tested empirically in future work.
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Introduction

Regulatory T cells play an important role in both health and

disease, preventing the development of autoimmunity and regulating

the normal immune response to invading pathogens [1]. Deficiencies

in such cells have been associated with several autoimmune diseases

[2], while their upregulation has been shown to be a key factor

mediating the beneficial effects of novel experimental treatments to

such diseases [3–5]. Several subsets of regulatory T cells have been

identified to date [6]; however, their developmental dynamics, as

well as the nature of interactions between them, are yet to be

characterized.

A peptide, hCDR1, that is based on the sequence of the

complementarity determining region (CDR)-1 of an autoantibody

[7], was shown to ameliorate the serological and clinical manifes-

tations of the autoimmune disease, systemic lupus erythematosus

(SLE) [8]. The beneficial effects of hCDR1, following tolerogenic

administrations, were demonstrated to be mediated via the induction

of functional CD4+CD25+Foxp3+ regulatory T cells (CD4 Tregs)

[4]. Furthermore, CD8+CD282Foxp3+ cells (CD8 Tregs) play an

important role in the ameliorative effects of hCDR1 as well, and

were shown to be required for the optimal development and function

of CD4 Tregs [9]. Moreover, a single injection of hCDR1 into

healthy, naı̈ve mice was also shown to induce functional CD4

Tregs capable of suppressing the activity of effector T cells, as

demonstrated by the clinical improvement of SLE-afflicted mice

administered with these cells [4,9]. Thus, based on these results, it

was of interest to study the interactions between these different cell

subsets in healthy mice injected with hCDR1.

The application of mathematical models, in conjunction with

kinetically-measured experimental and clinical data, has proven in

the past to be an extremely useful approach, in particular in the

fields of virology and immunology [10–12]. In addition to

generally shedding light on the time-dependant behavior of the

PLoS ONE | www.plosone.org 1 December 2009 | Volume 4 | Issue 12 | e8447



system at hand, such a methodology can produce both

quantitative and qualitative insights into the underlying mecha-

nisms [13,14]. The kinetics of regulatory T cells have been studied

in recent years [15–23]. However, this has not been yet done with

regard to a non-immunogenic (tolerogenic) immunomodulation by

a peptide. In addition, the interactions between different subsets of

regulatory T cells have not been previously studied kinetically.

While mathematical models have been applied to the investigation

of Tregs dynamics by Vukmanovic-Stejic et al., 2006, these models

were merely descriptive, and did not incorporate an explicit

specification of the biological interactions between different cell

populations.

The objective of the present work has been to quantitatively

characterize the time-dependent interplay between several im-

mune subpopulations, and in particular CD4+CD252, CD4+

CD25+Foxp3+ and CD8+CD282Foxp3+ cells, under tolerogenic

conditions. To this end, the kinetics of the latter cell subsets were

determined following a single subcutaneous injection of healthy

mice with hCDR1. By fitting the measured biological data to

mathematical models, the interactions between the 3 subpopula-

tions were analyzed.

Results

In Vivo Kinetics of Different Spleen-Derived T Cell Subsets
Healthy BALB/c mice were divided into 3 treatment groups,

receiving a single subcutaneous injection of either hCDR1, a

control (scrambled) peptide, or vehicle alone. At each time point

studied, 2 mice were sacrificed out of each treatment group, and

the percentage of spleen-derived cells bearing the markers CD4,

CD8, CD25, CD28 and Foxp3 was determined following staining

with the relevant antibodies, using flow cytometry. Figure 1

demonstrates the analysis performed on a representative day.

Substantial changes in the in vivo levels of the studied cell

populations were discernable over a period of 16 days following

either injection (Figure 2). In all 3 treatment groups, an initial

transient rise occurred in all cell subsets (with the exception of

CD4+CD25+Foxp32 cells) between days 0–4. Subsequently, the

observed kinetic patterns demonstrated statistically significant

cross-correlations between pairs of the different treatment groups

for most of the cell subsets (see details in Table S1). This implies

that the measured changes in cell populations did not represent

mere stochastic fluctuations but rather a genuine biological

process, since in the former case, the corresponding pairs of time

series would not be expected to be correlated across time.

Additional support for this statement is provided by the statistically

significant difference between the relatively small variance of

within-day measurements, as compared to the magnitude of

between-days changes (Figure 3; p-value,0.001 for all treatment

groups, Mann-Whitney U-test). Again, if the observed kinetics

represented solely random fluctuations, the variance of within-day

measurements and between-days changes would be expected to be

similar – as was indeed the case for untreated mice (i.e. mice that

were not injected with any substance) monitored over time. These

observations diminish the potential uncertainty in the results due

to the limited number of mice sacrificed each day in each

treatment group. It is noteworthy that the vehicle-only injection

produced kinetic patterns qualitatively similar to those obtained

following both other types of treatment.

Quantitatively, the most pronounced differences between the

kinetics induced by the 3 types of treatment were with regard to

the CD4 and CD8 Foxp3-expressing T cells (Figure 2E–F). More

specifically, these cells rose higher and earlier following the

administration of hCDR1, compared to the other types of

injections (days 7–11). Indeed, these cells have been previously

shown to mediate the beneficial therapeutic effects of hCDR1

[4,9]. The effect of hCDR1 was qualitatively reproduced in 3

independent experiments, with a total of N = 136 mice analyzed.

As can be seen in Figure 2G, showing kinetic measurements of an

additional experiment, some quantitative differences may exist

between such repetitions; in particular, the exact timing of the rise

in the level of CD4+CD25+Foxp3+ cells may slightly differ. In

untreated mice the level of CD4+CD25+Foxp3+ remained more or

less constant over time (Fig 2H).

Throughout this work, we referred in our analysis to mea-

surements of cell percentages (out of total viable splenocytes, as

obtained by FACS measurements) rather than absolute numbers

of cells. This was done due to the additional noise introduced in

the latter as a result of differences in spleen sizes and cell numbers

between individual mice. Nonetheless, as exemplified in Figure S1,

compared to Figure 2E, we verified that absolute cell numbers

yielded qualitatively similar results to those reported here.

Correlation between the Kinetics of CD4+CD252,
CD4+CD25+Foxp3+ and CD8+CD282Foxp3+ Cells

In all 3 treatment groups, there was an apparent and persistent

growth in the population of CD4+CD252 cells, with an overall

increase of 124%, 120%, and 131% in the level of these cells

following the hCDR1, control peptide, and vehicle injections,

respectively. After the initial response (days 0–4, see above), these

cells climbed gradually in an approximately exponential process

(i.e., linear on a logarithmic scale; see dotted line in Figure 4), with

similar doubling times in all 3 arms, equal to 26, 32, and 27 days.

Moreover, during the later stages of this process (days 9–16), the

CD4+CD252 cells demonstrated fluctuations around the growth

trend line which were inversely correlated with the kinetics of

Foxp3-expressing CD4+CD25+ regulatory T cells; that is, a rise in

the regulatory T cells corresponded to a decrease in the growth

rate of CD4+CD252 cells, and vice versa.

It is interesting to note that this inverse correlation was

observable only after the late rise of CD8+CD282Foxp3+ cells,

in days 7–8 (Figure 4). Indeed, as our data show, a minor increase

in the latter cells to a level lower than 1% corresponded to no

apparent consequent fluctuations of the CD4+CD252 cells, as was

the case for the control peptide injection, compared with the other

two treatment groups (Figure 4).

Fitting the In Vivo Kinetics Using Mathematical Models
By fitting a mathematical model to the observed data, we were

able to show here that the hypothesis that CD4+CD25+Foxp3+

cells modulate the proliferation rate of CD4+CD252 cells after

interacting with CD8+CD282Foxp3+ cells matches well the

measured kinetics. More specifically, the mathematical model

used here represents 2 main biological assumptions: First, that

CD4+CD25+Foxp3+ cells may expand independently (it should be

noted that it is known that regulatory T cells, although usually

anergic, may nonetheless expand in the proper milieu of

cytokines). Second, that a rise in these cells reduces the

proliferation rate of CD4+CD252 cells and as a consequence

their level (and vice versa) – but only if the CD4+CD25+Foxp3+

cells interacted first with CD8+CD282Foxp3+ cells. This last

assumption explains why in the control peptide treatment group,

unlike the 2 other treatment groups, the inverse fluctuations of the

CD4+CD25+Foxp3+ and CD4+CD252 populations were absent

since, as mentioned above, in this group only the level of

CD8+CD282Foxp3+ cells did not demonstrate a substantial and

persistent rise.

T Cell Subsets Dynamics

PLoS ONE | www.plosone.org 2 December 2009 | Volume 4 | Issue 12 | e8447



Figure 5 presents the results of fitting the mathematical model to

the kinetics observed in days 4–16 (after the transient initial rise).

As can be seen, the predictions generated by the model agree well

with the measured levels of cells. Thus, we may conclude that the

suggested mechanism is not refuted by the available measurements

and explains them well.

We note that in the fitted mathematical model, it is assumed that

CD4+CD252 cells respond to changes in the level of CD4+

CD25+Foxp3+ cells, rather than to their absolute level itself. This

assumption is justified directly by the kinetic data: as can be seen in

Figure 4, for example for the hCDR1-injected group, the level of CD4

Tregs was generally lower between days 11–12, compared to their

level between days 14–16; nonetheless, the CD4+CD252 subset

dropped between days 11 and 12, and rose between days 14 and

16. Thus, the absolute level of CD4 Tregs cannot be used to explain

the kinetics of CD4+CD252 cells, unlike changes in this level. A

similar picture is evident with regard to the vehicle-only treatment

group. Accordingly, models which assume dependence between

CD4+CD252 dynamics and the absolute level of CD4+CD25+Foxp3+

could not produce a good fit to the measured data.

Conversion Unlikely to Be the Sole Source of CD4 Tregs
The model described above assumes that the CD4+CD25+

Foxp3+ population is capable of undergoing expansion, and that

Figure 1. Plot settings for analyzing CD4 and CD8 Tregs by flow cytometry. Percentages of CD4+CD25+Foxp3+ cells (i.e. CD4 Tregs) and
CD8+CD282Foxp3+ cells in spleens from individual healthy BALB/c mice were determined at different time points over a period of 16 days following a
single subcutaneous injection of either a tolerogenic peptide (hCDR1), a control peptide or vehicle alone. Spleen-derived cells were triple-stained
with CD4, CD25 and Foxp3 and analyzed by flow cytometry. Shown are representative results obtained on day 9 following the injection. (A) The gate
of CD4+ cells was subdivided for 6 regions corresponding to different intensities of staining with CD25. (B) The expression of Foxp3 was determined
in the different regions. Gray contours indicate staining with the isotype control. (C) Foxp3 relative expression in CD4+ cells per intensity region of
CD25 staining. Accordingly, cutting borders that summate regions R4, R5, and R6 of CD25 intensity should properly indicate regulatory phenotype
based on Foxp3 staining.(A, B, C) present results with cells of mice injected with hCDR1 only. (D) Representative dot plots of CD4 and CD25-
expressing spleen-derived cells and histograms of Foxp3 expression in the CD4+CD25+ cells from the 3 treatment groups. (E) Representative dot plots
of CD8 and CD28-expressing spleen-derived cells and histograms of Foxp3 expression in the CD8+CD282 cells from the 3 treatment groups.
doi:10.1371/journal.pone.0008447.g001

T Cell Subsets Dynamics
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Figure 2. The kinetics of spleen-derived T cell subsets. Healthy BALB/c mice received a single injection of one of three alternative treatments
(hCDR1, vehicle-only, control peptide). In each inspected day, 2 mice were sacrificed out of each treatment group, and the percentage of cells bearing
the markers CD4, CD8, CD25, CD28 and Foxp3 was determined using flow cytometry. Points represent measured values, lines connect the daily
averages. Presented cell subpopulations: (A) CD4+CD252 (B) CD8+CD28+ (C) CD4+CD25+Foxp32 (D) CD8+CD282Foxp32 (E) CD4+CD25+Foxp3+ (F)
CD8+CD282Foxp3+. Panel (G) compares the kinetics of CD4+CD25+Foxp3+ cells in two different experiments, following injection of hCDR1. Panel (H)
presents measurements of CD4+CD25+Foxp3+ cells, taken from mice which received no injection, as compared to mice injected with vehicle alone.
Note that both in panel (G) and panel (H), the reported data are absolute shifts from the baseline (i.e. day 0 measurements), to enable comparison
over different experiments.
doi:10.1371/journal.pone.0008447.g002

T Cell Subsets Dynamics
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this process constitutes the main source for its increase, rather than

conversion of CD4+CD252 and/or CD4+CD25+Foxp32 cells.

While this assumption yields a good fit to the data for all 3

treatment groups, we cannot rule out the possibility that

conversion is the major contributor to the late rise (days 11–14)

of CD4 Tregs cells in two of the treatment groups – the mice

injected with hCDR1, and those injected with vehicle-alone.

However, in the third group – the control peptide-injected mice –

conversion cannot play such a role, as in this arm the substantial

rise of the CD4+CD25+Foxp3+ population between days 11 and

14 is not accompanied by a concurrent decrease in the

CD4+CD252 and CD4+CD25+Foxp32 subsets.

Discussion

In this work we have combined, for the first time, mathematical

modeling with frequent in vivo sampling, in order to characterize

the processes responsible for the development of regulatory T cells

in response to the tolerogenic administration of a peptide. The

results obtained taking this approach predicted the emergence of

functional CD4 Tregs based on the occurrence of inverse

oscillations of the latter and CD4+CD252 cells. Furthermore, we

demonstrated that at least in the studied system, CD4 Tregs

require a sufficiently high level of CD8 Tregs in order to become

functional. In addition, our analysis implied that conversion of

effector cells is not the major source of CD4 Tregs here.

The beneficial effect of hCDR1 was previously shown to be

mediated by the upregulation of a specific population of CD4

Tregs [4]. Accordingly, we have shown here that the administra-

tion of this peptide induced a significant, lasting (over two weeks),

non-random perturbation of the immune system. Following an

initial, transient rise of all of the studied immune populations

(which may be interpreted as a response to the injection itself), a

significant expansion of CD8+CD282Foxp3+ cells preceded the

occurrence of inverse oscillations of CD4+CD25+Foxp3+ and

CD4+CD252 cells, such that a rise in the former subset was

accompanied by a fall in the latter and vice versa. This kinetic

behavior matches the previously reported capability of hCDR1-

induced CD4 Tregs to suppress the proliferation of CD4 effector

cells [4], and its dependency on the presence of CD8 Tregs [9].

Moreover, when these hypothesized interrelations between the

above 3 cell populations were represented mathematically, the

predictions generated by the resulting model fitted well the cell

levels measured over time, showing that the suggested mechanism

can indeed explain the actual data.

Similar kinetic patterns, albeit with lower magnitudes, were

observed in mice injected with vehicle alone, including the above-

mentioned inverse oscillations; this suggests functional suppression

by CD4 Tregs in these mice as well. However, CD4 Tregs taken

from vehicle treated mice are known to be ineffective in

suppressing autoreactive T cells in SLE-afflicted mice [4]. One

possible explanation for this alleged discrepancy may lie in the

specificities of the upregulated T cells in each case: while the

administration of hCDR1 induces the expansion of cells with

specificities relevant to the SLE-context, the cells responding to the

injection of the vehicle alone probably represent a plethora of

Figure 3. A comparison of the within-day and between-days variations for the different groups. The within-day variation was computed
as the difference between each FACS measurement and its corresponding daily average (i.e. the average of the 2 measurements taken for the
relevant day, cell subset and treatment group), divided by this average. The between-days variation was computed as the difference between each
daily average and the overall average of the series (i.e., the average of all the measurements related to a cell subset and treatment group), divided by
the overall average. The division by averages serves as a normalization step, allowing to compare all cell subsets together. Horizontal lines represent
the medians. The statistical significance of the differences between the within-day and between-days variations was estimated using the non-
parametric Mann-Whitney U-test, resulting with P,0.001 for each of the 3 treatment groups. For the non-injected mice, the difference between the
within-day and between-days variations was not statistically significant.
doi:10.1371/journal.pone.0008447.g003
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naturally-occurring specificities, non-related to SLE. Although the

latter will be non-functional in SLE-afflicted mice, within the

healthy injected mice we can still expect suppression of CD4

effector cells by CD4 Tregs. The induction of a significant

perturbation to the immune system by the injection of a vehicle

may be a result of a ‘‘danger signal’’ provided by the injection

itself. Thus, the effect observed in the vehicle-treated group may

represent an example of a normal regulation of the immune

system, which involves not only effector T cells but also Tregs to

secure proper balance of the quality and magnitude of the

response [24].

It has been previously shown [4] that the injection of the control

peptide does not yield functional CD4 Tregs. Indeed, as shown

here, in the mice treated with this peptide no inverse oscillations of

CD4+CD252 and CD4+CD25+Foxp3+ cells were recorded. This

can be explained by our observation that in this group the

CD8+CD282Foxp3+ cells did not rise to the same level as in the

other two treatment groups, and started declining earlier. It should

be noted that while the control peptide binds MHC class II with

the same avidity as hCDR1, the injection of the two peptides

results nevertheless in different immunological effects. Thus,

whereas hCDR1 was shown to down-regulate the production of

IFN-c and to up-regulate TGF-b, the control peptide did not

inhibit and sometimes rather led to increased production of IFN-c
and did not affect the expression of TGF-b [25]. These differences

could partially explain the inability of the control peptide to

Figure 4. The correlated kinetics of CD4+CD252, CD4+CD25+Foxp3+ and CD8+CD282Foxp3+ cells, for each of the treatment groups.
The levels of CD4+CD252 (red) cells are specified on the left y-axis, those of CD4+CD25+Foxp3+ (orange) and CD8+CD282Foxp3+ (blue) cells on the
right y-axis. Points represent the values measured by FACS, lines connect daily averages. Note the logarithmic scale of both y-axes. Following an initial
transient response in all 3 subsets (days 0–4; days 0–6 for the additional experiment involving the hCDR1 treatment), the CD4+CD252 population
grew in an approximately exponential process (dotted line; log-linear regression was calculated based on the measurements taken in the days
following the initial response, i.e. disregarding the shaded areas). In the second part of the experiment (day 9 on) fluctuations of CD4+CD252 cells
around the regression line were inversely correlated with changes in CD4+CD25+Foxp3+ cell levels – but only in the hCDR1 and vehicle-only
treatment groups, where CD8+CD282Foxp3+ cells rose and persistently stayed above a hypothetical threshold (dashed line).
doi:10.1371/journal.pone.0008447.g004
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effectively induce CD8 Tregs, which are required for the

development of functional CD4 Tregs.

The above observations suggest that the administration of

hCDR1 and, to a lesser degree, of vehicle alone, promote a

transition to a ‘‘regulatory regime’’, involving a rise in both CD4

and CD8 Treg populations, a suppression of CD4 effector cells

and, possibly, the conversion of such cells into CD4 Tregs. The

administration of the control peptide seems not be sufficient to

trigger such a transition. Thus, the rise of CD8 Tregs is, in this

case, less significant and transient, and the resulting CD4 Tregs

are non-functional. Accordingly, fitting the observed kinetics with

mathematical models showed that while in mice injected with

hCDR1 or vehicle alone the late rise of CD4 Tregs may be

explained (at least in part) by conversion of CD4 effector cell, this

is not the case for the control peptide treatment group. However,

the similarity in the kinetic profiles of CD4 Tregs in all 3 arms may

imply that conversion is not the sole source of CD4 Tregs also in

the other two treatment groups.

Although an increase of CD4+CD25+Foxp3+ cells was observed

following the administration of the control peptide, these cells did

not suppress the proliferation of CD4+CD252 cells; this suggests

that Foxp3 is not a sufficient marker for a regulatory phenotype, as

was previously discussed [26]. Indeed, additional molecules such

as TGF-b, CTLA-4, and Bcl-xL were shown to play a key role in

the development of hCDR1-induced functional Tregs [4,9,27].

In previous studies, hCDR1 was administered in the context of

SLE, namely, it was injected either to SLE-afflicted mice [8],

young, SLE-prone mice [4], or mice that were immunized with an

SLE-inducing anti-DNA antibody that bears a major idiotype,

16/6Id [9,28]. The injection of the tolerogenic peptide induced

CD8 and CD4 Tregs in the treated mice [4,9]. In this study,

however, we analyzed the development of the two subsets of Tregs

Figure 5. Fitting a mathematical model to the measured data. The plotted solid curves were generated using a mathematical model (see
Materials and Methods for details), fitting the measured levels of CD4+CD252 (red, left y-axis) and CD4+CD25+Foxp3+ (orange, right y-axis) cells in
days 4–16 (days 6–14 for the additional experiment involving the hCDR1 treatment). The approximated levels of CD8+CD282Foxp3+ cells (blue,
dashed line, right y-axis) were not produced by the model, but were rather interpolated from the actual measurements and used as an input to the
model. Points represent the daily averages of the values measured by FACS. Note the logarithmic scale of both y-axes.
doi:10.1371/journal.pone.0008447.g005
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in naı̈ve, healthy mice that were administered with a single

injection of this tolerogenic peptide during a 16-day follow-up

period. The cell status in the disease-free context as compared with

that in SLE-afflicted mice is significantly different in regard

to their degree of activation, the level of apoptosis, and the

production of pathogenic cytokines. Hence, the use of naı̈ve mice

enabled us to compare the effects of hCDR1 and a control peptide

on the induction of CD8 and CD4 Tregs without the background

of general activation of the cells.

The model used here assumes that CD4+CD252 cells respond

to changes in the levels of CD4 Tregs, rather than to their absolute

numbers; assuming the latter failed to produce a good fit to

the data since in different time intervals, comparable levels of

CD4 Tregs were accompanied by either a rise or a drop in

CD4+CD252 cells. One can avoid the reliance on changes

(represented mathematically by the time-derivative) by associating

the suppression of CD4+CD252 cells with a signal (e.g. a cytokine)

having the following properties (see Text S1): it stimulates its own

production (i.e. participates in a positive feedback loop), it is

consumed by CD4+CD25+Foxp3+ cells, and may serve as a

growth factor for them. Although the predicted cytokine may be

initially secreted by the Tregs, they are not likely to be its major

producers. TGF-b is a possible candidate to serve as this signal, as

it answers the above description [4,28,29]. It should be noted that

while even without these modifications the model may be

considered too complicated given the amount of available data,

simpler or comparably complicated alternative models tested by us

(see Text S1) failed to explain the observed kinetics.

The combination of mathematical models and in vivo kinetic

measurements utilized in the current work has allowed us to gain

new insights into the mechanisms governing the function of

regulatory T cells, and to generate predictions that can be further

tested in future work.

Materials and Methods

Ethics Statement
The study has been approved by the Animal Care and Use

committee of the Weizmann Institute of Science.

Mice
Female BALB/c mice were purchased from Harlan (Jerusalem,

Israel).

Synthetic Peptides
A peptide with the following sequence GYYWSWIRQPPGK-

GEEWIG (hCDR1) based on the CDR1 of the human anti-DNA

monoclonal antibody [30] bearing the 16/6Id was synthesized by

Polypeptide laboratories (LA, USA) and used in this study. A

peptide with scrambled order of the amino acids of the hCDR1,

SKGIPQYGGWPWEGWRYEI (‘scrambled peptide’) was syn-

thesized and used as a control. The control peptide binds MHC

class II with an avidity similar to that of hCDR1.

Treatment of Mice
Mice at the age of 2 months were divided into 3 groups (N = 24

mice for the hCDR1-injected group, N = 18 for the other two

groups) and treated with a single subcutaneous injection of either

hCDR1 (50 mg/mouse) or the control (scrambled) peptide (50 mg/

mouse) that were administered in the vehicle CaptisolH (Sulfobu-

tylether beta cyclodextrin that has been designed by CyDex to

enhance the solubility and stability of drugs). A third group of mice

was treated with a single subcutaneous injection of the vehicle

only.

mAbs
The following Abs were used for immunofluorescent staining of

cells: Anti-CD4-PE (clone GK1.5), anti-CD4-APC (clone L3T4),

anti-CD25-FITC (clone 7D4), anti-CD8-FITC (clone 53-6.7), and

their matched isotype controls were obtained from Southern

Biotechnology Associates (Birmingham, AL). Anti-CD28-PE

(clone 37.51), and its matched isotype controls were purchased

from PharMingen (San Diego, CA, USA). Anti-Foxp3-FITC

(clone FJK-16s Set) was purchased from eBioscience (San Diego,

CA).

FACS Analysis
Cells were incubated with the relevant Ab and analyzed by

FACS (Becton Dickinson, Franklin Lakes, NY). For intracellular

staining, the cells were incubated with a fixation solution, washed,

and resuspended in permeabilization solution (Serotec; Oxford,

UK).

Kinetic Analysis
The percentages of the 6 different cell populations (CD4+CD252,

CD4+CD25+Foxp32, CD4+CD25+Foxp3+, CD8+CD28+, CD8+

CD282Foxp32, CD8+CD282Foxp3+) out of total viable spleno-

cytes, as obtained from FACS measurements, were used for the

analysis of kinetics and fitting by mathematical models. Measure-

ments were taken on days 0, 2, 3, 4, 5, 7, 8, 9, 11, 12, 14 and 16

following injection for the mice treated with hCDR1, and on days 0,

2, 3, 4, 7, 8, 9, 11, 14 and 16 following injection for the two other

treatment groups. Cell subset percentages, rather than absolute cell

numbers, were used in the analysis, due to the additional noise

detected in the latter due to differences in spleen sizes and cell

numbers between individual mice.

Mathematical Models
ODE-based mathematical models were used to fit the levels of

CD4+CD252 cells (T4E ) and CD4+CD25+Foxp3+ cells, which

were assumed to be either non-functional (T4R) or functional (T�4R).

The dynamics of CD8+CD282Foxp3+ cells (T8R) were not

modeled here, but were rather interpolated from the data and

used as an input to the models. We assumed that cell dynamics in

the first few days following the s.c. injection represented a transient

response to it. Thus, our models, describing the suppressive effect

of Tregs, focused on the dynamics during the second part of the

experiment period.

Several different models were tested (see Text S1), but only one

model, described next, yielded a fit that was able to describe the

entire observed kinetic pattern:
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~{adngrSdngr ð1Þ

dT4R

dt
~ {d4RT4R{kregT4RT8R
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In this model, Sdngr represents a ‘‘danger signal’’, induced by the

initial subcutaneous injection; it is assumed, in the absence of an

actual immunogenic signal, that Sdngr decays exponentially with rate

constant adngr. Initially, T�4R~0. As long as the danger signal is larger

than a certain threshold hdngr, the population of CD4+CD25+Foxp3+

cells remains stable and nonfunctional with an initial level

T4R = TInit
4R . Once the danger signal decays below hdngr and following

a necessary interaction with CD8+CD282Foxp3+ cells, T4R cells

start differentiating into functional CD4 Tregs with probability kreg

per T4R-T8R-interaction. Both functional and nonfunctional CD4

Tregs are removed from the system with rate d4R. It is assumed that

nonfunctional Tregs do not significantly expand, while functional

Tregs expand with rate p4R, as long as the time since injection does

not exceed a certain threshold treg. The basic proliferation rate

constant of CD4+CD252 cells (T4E ) is p4E , and it is modulated by

changes in the level of functional CD4 Tregs with a factor kmod. This

process also requires that the level of CD8+CD282Foxp3+ (T8R) cells

is above a certain threshold, h8R. CD4+CD252 cells are assumed to

be removed from the system with rate d4E . n is assumed to be an

exponent large enough to produce effective step-functions.

Note that since measurements of the danger signal are not

available, we replaced the dependency on this signal (i.e. the Hill

functions in Eqs. 2 & 3) by a step function dependent on time.

Furthermore, a possible biological explanation for the dependency

on the time derivative of T�4R appearing in Eq. 4 is a signal, e.g.

cytokine, that is strongly affected by changes in the T�4R population

(see a detailed description of an explicit model with such signal in

Text S1). Note also that we do not necessarily assume that all of

the CD4+CD252 cells respond to the interactions with the

functional CD4 Tregs; it is possible to split the population of

CD4+CD252 cells into ‘‘responding’’ and ‘‘non-responding’’

(static) cells, without affecting the quality of the resulting fit.

Nonlinear Fitting
Mathematical models were fitted to the experimental data using

Berkeley Madonna (University of California, Berkeley, CA). Due

to the exploratory nature of this study, hence a limited amount of

collected data, the goal of fitting here was to assess the plausibility

of qualitatively different models, rather than to estimate the values

of parameters. Daily averages (2 mice each day) were fitted rather

than individual measurements. The kinetics of the first 4 days of

each experiment (6 days for the additional hCDR1 experiment)

were not fitted, due to the assumptions described above.

Statistical Analysis
Within-day variation was estimated by the difference between

each measurement and its corresponding daily average, divided by

the average. Between-days variation was estimated by considering

the differences between daily averages and the corresponding

average over time, divided by the latter. The above normalization

step was used in order to allow the comparison of all cell subsets

together. The two samples of relative differences were then

compared using the non-parametric Mann-Whitney U-test.

Supporting Information

Text S1 Additional mathematical models.

Found at: doi:10.1371/journal.pone.0008447.s001 (0.09 MB

DOC)

Table S1 The cross-correlation values between the time series of

each cell subset, compared across each pair of treatment groups.

Two numbers are reported for each case: the cross-correlation

value, and the corresponding p-value, i.e. the probability of getting

this cross-correlation value by chance. P-values were computed

using the following non-parametric procedure: given a pair of time

series to be compared, 1,000 different random permutations were

generated from one of them, and the cross-correlation value was

then computed between the second series and each permutation.

The cross-correlation value computed for the original series was

then ranked with reference to these 1,000 values, yielding the

reported p-value.

Found at: doi:10.1371/journal.pone.0008447.s002 (0.03 MB

DOC)

Figure S1 The kinetics of CD4+CD25+Foxp3+ cells expressed in

absolute cell numbers. Similar patterns to those determined by

FACS for percentages of cells were observable (compare to

Figure 2E in the text); however, additional noise was detectable in

measurements referring to absolute numbers of cells (see text). The

legend is the same as in Figure 2.

Found at: doi:10.1371/journal.pone.0008447.s003 (0.13 MB TIF)
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